1
|
Lombardo G, Dorm BC, Salvay AG, Franzi L, Gaffney ML, Peredo Camio JB, Trovatti E, Rossi E, Errea MI. Novel chitosan-based hydrogels as promising wound dressing materials with advanced properties. Int J Biol Macromol 2024; 279:135423. [PMID: 39251000 DOI: 10.1016/j.ijbiomac.2024.135423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Herein, four different grafted chitosans were synthesized by covalent attachment of glycine, L-arginine, L-glutamic acid, or L-cysteine to the chitosan chains. All products were subsequently permethylated to obtain their corresponding quaternary ammonium salts to enhance the inherent antimicrobial properties of native chitosan. In all cases, transparent hydrogels with the following remarkable characteristics were obtained: i) high-water absorption capacity (32-44 g H2O per g of polymer), ii) viscoelastic behavior at low deformations, iii) flexibility when subjected to deformations and iv) stability over long time scales. All the permethylated derivatives successfully inhibited 100 % of the growth of S. aureus. They also exhibited higher antimicrobial activity against E. coli than native chitosan. The structure of the chemically crosslinked products was more stable under external perturbations than that of the physically crosslinked ones. Between the chemically crosslinked products, the permethylated glutamic acid-grafted chitosan exhibited a noteworthy higher water absorption capacity with respect to that modified with cysteine, which makes it the most promising material for various industrial applications, including biomedical and food industries. Regarding biomedical applications, this derivative met the required physicochemical criteria for wound dressings, which encourages the pursuit of biological studies necessary to ensure the safety of its use for this application.
Collapse
Affiliation(s)
- Gabriel Lombardo
- Instituto Tecnológico de Buenos Aires (ITBA), Lavardén 315, 1437, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; YPF Tecnología S.A., Av. del Petróleo s/n, Berisso 1923, Buenos Aires, Argentina
| | - Bruna C Dorm
- University of Araraquara - UNIARA, Rua Carlos Gomes, 1217, CEP: 14801-340 Araraquara, SP, Brazil
| | - Andrés G Salvay
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Bernal, Argentina
| | - Lucas Franzi
- Instituto Tecnológico de Buenos Aires (ITBA), Lavardén 315, 1437, Ciudad de Buenos Aires, Argentina
| | - Mateo López Gaffney
- Instituto Tecnológico de Buenos Aires (ITBA), Lavardén 315, 1437, Ciudad de Buenos Aires, Argentina
| | - Juan B Peredo Camio
- Instituto Tecnológico de Buenos Aires (ITBA), Lavardén 315, 1437, Ciudad de Buenos Aires, Argentina
| | - Eliane Trovatti
- University of Araraquara - UNIARA, Rua Carlos Gomes, 1217, CEP: 14801-340 Araraquara, SP, Brazil
| | - Ezequiel Rossi
- Instituto Tecnológico de Buenos Aires (ITBA), Lavardén 315, 1437, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María I Errea
- Instituto Tecnológico de Buenos Aires (ITBA), Lavardén 315, 1437, Ciudad de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Moridi H, Talebi M, Jafarnezhad B, Mousavi SE, Abbasizadeh S. The role of chitosan grafted copolymer/zeolite Schiff base nanofiber in adsorption of copper and zinc cations from aqueous media. Int J Biol Macromol 2024; 278:135003. [PMID: 39181357 DOI: 10.1016/j.ijbiomac.2024.135003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The objective of this research was to develop and assess chitosan-grafted copolymer/HZSM5 zeolite Schiff base nanofibers for Cu2+ and Zn2+ adsorption from aqueous media. Nanofibers were prepared via electrospinning and characterized using XRD, FTIR, 1H NMR, FESEM, TGA, BET, and XPS. The study evaluated the effect of unmodified HZSM5 and Schiff base functionalization on adsorption capacities. Incorporating 10.0 wt% zeolite Schiff base as the optimum content into the chitosan-grafted copolymer significantly enhanced adsorption, achieving increases of 98.2 % for Zn2+ and 42.2 % for Cu2+. Specifically, Zn2+ adsorption increased from 27.6 to 54.7 mg/g, and Cu2+ from 67.1 to 95.4 mg/g. Factors such as temperature, pH, adsorption time, and initial cation concentration were analyzed. Kinetic studies revealed a double-exponential model, and isotherm analysis indicated a good fit with the Redlich-Peterson model, showing maximum monolayer capacities of 310.1 mg/g for Cu2+ and 97.8 mg/g for Zn2+ (pH 6.0, 240 min, 45 °C). The adsorption thermodynamics indicated a spontaneous and endothermic adsorption. Reusability tests showed minimal capacity loss (4.91 % for Cu2+ and 5.59 % for Zn2+) after five cycles. The nanofiber displayed greater selectivity for Cu2+ over Zn2+ in multi-ion systems and real electroplating wastewater, highlighting its potential for targeted heavy metal removal.
Collapse
Affiliation(s)
- Hadis Moridi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Marzieh Talebi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Bahareh Jafarnezhad
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeed Abbasizadeh
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Aydemir D, Çakır S, Özdemir N, Ulusu NN. Evaluation of the Antimicrobial Activity of Triple Enzyme-Embedded Organic-Inorganic Hybrid Nanoflowers (hNFs) in Comparison with Powerful Antimicrobial Agent Chitosan. Curr Microbiol 2024; 81:359. [PMID: 39287689 DOI: 10.1007/s00284-024-03884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Organic-inorganic hybrid nanoflowers (hNFs) have high stability, reusability, low production cost, and overcome substrate/product inhibition. Antimicrobial activity of various hNFs has been reported to overcome environmental microbial contaminations and infections, which are considered major public health problems. α-amylase, protease, and lipase are the most common industrial enzymes exerting antimicrobial activity; therefore, we synthesized triple enzyme (α-amylase, protease, and lipase)-embedded hNFs by using pancreatin to evaluate their antimicrobial activity in comparison with one of the most potent antimicrobial polymer chitosan. The broad spectrum of the antimicrobial properties of chitosan is used in industrial products, including cosmetics, food, agriculture, pharmaceuticals, and textiles. SEM analysis, thermogravimetric analysis (TGA), and the degree of deacetylation (%DD) were performed for chitosan characterization, where SEM, FTIR, EDX, and XRD analyses were performed for the characterization of hNFs. The catalytic activity of pancreatin and hNFs was evaluated by measuring lipase, α-amylase, and protease enzyme activities at 37 °C. Antibacterial activities of hNFs, pancreatin, and chitosan were tested on gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, compared to the pancreatin and chitosan via agar and broth dilution methods. hNFs showed enhanced catalytic activity for protease, lipase, and α-amylase compared to pancreatin at different pH values (pH 8, 9). hNFs showed catalytic activity after being washed and reused up to six times, indicating their reusability and recoverability. hNFs showed significant antimicrobial activity, such as chitosan, Staphylococcus aureus, and Escherichia coli, compared to pancreatin. Our novel hNFs can be used to develop antimicrobial technologies to fight against environmental microbial contaminations and antibiotic resistance-driven environmental pathogens.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey
| | - Seda Çakır
- Biotechnology Department, Institute of Graduate Education, Nisantasi University, Sarıyer, Istanbul, Turkey
| | - Nalan Özdemir
- Biochemistry Division, Chemistry Department, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
4
|
Khattab H, Gawish AA, Gomaa S, Hamdy A, El-Hoshoudy AN. Assessment of modified chitosan composite in acidic reservoirs through pilot and field-scale simulation studies. Sci Rep 2024; 14:10634. [PMID: 38724544 PMCID: PMC11082220 DOI: 10.1038/s41598-024-60559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Chemical flooding through biopolymers acquires higher attention, especially in acidic reservoirs. This research focuses on the application of biopolymers in chemical flooding for enhanced oil recovery in acidic reservoirs, with a particular emphasis on modified chitosan. The modification process involved combining chitosan with vinyl/silane monomers via emulsion polymerization, followed by an assessment of its rheological behavior under simulated reservoir conditions, including salinity, temperature, pressure, and medium pH. Laboratory-scale flooding experiments were carried out using both the original and modified chitosan at conditions of 2200 psi, 135,000 ppm salinity, and 196° temperature. The study evaluated the impact of pressure on the rheological properties of both chitosan forms, finding that the modified composite was better suited to acidic environments, showing enhanced resistance to pressure effects with a significant increase in viscosity and an 11% improvement in oil recovery over the 5% achieved with the unmodified chitosan. Advanced modeling and simulation techniques, particularly using the tNavigator Simulator on the Bahariya formations in the Western Desert, were employed to further understand the polymer solution dynamics in reservoir contexts and to predict key petroleum engineering metrics. The simulation results underscored the effectiveness of the chitosan composite in increasing oil recovery rates, with the composite outperforming both its native counterpart and traditional water flooding, achieving a recovery factor of 48%, compared to 39% and 37% for native chitosan and water flooding, thereby demonstrating the potential benefits of chitosan composites in enhancing oil recovery operations.
Collapse
Affiliation(s)
- Hamid Khattab
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Ahmed A Gawish
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Sayed Gomaa
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
- Department of Petroleum Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo, Egypt
| | - Abdelnaser Hamdy
- Reservoir Engineering Department, Khalda Petroleum Company, Cairo, Egypt
| | - A N El-Hoshoudy
- PVT lab, Production Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
- PVT service center, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
| |
Collapse
|
5
|
Abdelfattah EM, Elzanaty H, Elsharkawy WB, Azzam MA, Elqahtani ZM, Alotibi S, Alyami M, Fahmy T. Enhancement of the Structure, Thermal, Linear/Nonlinear Optical Properties, and Antibacterial Activity of Poly (vinyl alcohol)/Chitosan/ZnO Nanocomposites for Eco-Friendly Applications. Polymers (Basel) 2023; 15:4282. [PMID: 37959962 PMCID: PMC10648650 DOI: 10.3390/polym15214282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023] Open
Abstract
The preparation of poly (vinyl alcohol)/chitosan/ZnO (PVA/Cs/ZnO) nanocomposite films as bioactive nanocomposites was implemented through an environmentally friendly approach that included mixing, solution pouring, and solvent evaporation. The nanocomposite films were characterized using various techniques such as X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and UV-Vis spectroscopy. The XRD study revealed the encapsulation of nanoparticles by the PVA/Cs blend matrix. The DSC results showed that the addition of ZnO NPs increased glass transition and melting temperature values of the PVA/Cs blend. ATR-FTIR spectra detected an irregular shift (either red or blue) in some of the characteristic bands of the PVA/Cs nanocomposite, indicating the existence of intra/intermolecular hydrogen bonding creating an interaction between the OH groups of PVA/Cs and ZnO nanoparticles. A thermogravimetric (TGA) analysis demonstrated that the nanocomposites achieved better thermal resistance than a pure PVA/Cs blend and its thermal stability was enhanced with increasing concentration of ZnO nanoparticles. UV analysis showed that with an increase in the content of ZnO NPs, the optical bandgap of PVA/Cs was decreased from 4.43 eV to 3.55 eV and linear and nonlinear parameters were enhanced. Our optical results suggest the use of PVA/Cs/ZnO nanocomposite films for various optoelectronics applications. PVA/Cs/ZnO nanocomposites exhibited significant antibacterial activity against Gram-positive and Gram-negative bacteria. It was found that nanocomposite samples were more effective against Gram-positive compared to Gram-negative bacteria.
Collapse
Affiliation(s)
- E. M. Abdelfattah
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
- Physics Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - H. Elzanaty
- Department of Basic Science, Faculty of Engineering, Delta University, Mansoura 11152, Egypt;
| | - W. B. Elsharkawy
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
| | - M. A. Azzam
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Z. M. Elqahtani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - S. Alotibi
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
| | - M. Alyami
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (E.M.A.); (W.B.E.); (S.A.); (M.A.)
| | - T. Fahmy
- Polymer Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
6
|
Bhatia S, Al-Harrasi A, Shah YA, Jawad M, Al-Azri MS, Ullah S, Anwer MK, Aldawsari MF, Koca E, Aydemir LY. Physicochemical Characterization and Antioxidant Properties of Chitosan and Sodium Alginate Based Films Incorporated with Ficus Extract. Polymers (Basel) 2023; 15:1215. [PMID: 36904456 PMCID: PMC10007391 DOI: 10.3390/polym15051215] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Aqueous extract of fruit obtained from Ficus racemosa enriched with phenolic components was used for the first time to fabricate chitosan (CS) and sodium alginate (SA)-based edible films. The edible films supplemented with Ficus fruit aqueous extract (FFE) were characterized physiochemically (using Fourier transform infrared spectroscopy (FT-IR), Texture analyser (TA), Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and colourimeter) and biologically (using antioxidant assays). CS-SA-FFA films showed high thermal stability and high antioxidant properties. The addition of FFA into CS-SA film decreased transparency, crystallinity, tensile strength (TS), and water vapour permeability (WVP) but ameliorate moisture content (MC), elongation at break (EAB) and film thickness. The overall increase in thermal stability and antioxidant property of CS-SA-FFA films demonstrated that FFA could be alternatively used as a potent natural plant-based extract for the development of food packaging material with improved physicochemical and antioxidant properties.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Muhammad Jawad
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Mohammed Said Al-Azri
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sana Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Esra Koca
- Department of Food Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| |
Collapse
|
7
|
Hansapaiboon S, Bulatao BP, Sorasitthiyanukarn FN, Jantaratana P, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Fabrication of Curcumin Diethyl γ-Aminobutyrate-Loaded Chitosan-Coated Magnetic Nanocarriers for Improvement of Cytotoxicity against Breast Cancer Cells. Polymers (Basel) 2022; 14:5563. [PMID: 36559930 PMCID: PMC9785553 DOI: 10.3390/polym14245563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
This study shows the effectiveness of magnetic-guide targeting in the delivery of curcumin diethyl γ-aminobutyrate (CUR-2GE), a prodrug of curcumin (CUR) previously synthesized to overcome unfavorable physicochemical properties of CUR. In this study, chitosan (Ch)-coated iron oxide nanoparticles (Ch-IONPs) were fabricated and optimized using Box-Behnken design-based response surface methodology for delivery of CUR-2GE. Ch was used as a coating material on the nanoparticle surface to avoid aggregation. The optimized condition for preparing Ch-IONPs consisted of using 4 mg Ch fabricated at pH 11 under a reaction temperature of 85 °C. The optimized Ch-IONPs were successfully loaded with CUR-2GE with sufficient loading capacity (1.72 ± 0.01%) and encapsulation efficiency (94.9 ± 0.8%). The obtained CUR-2GE-loaded Ch-IONPs (CUR-2GE-Ch-IONPs) exhibited desirable characteristics including a particle size of less than 50 nm based on TEM images, superparamagnetic property, highly crystalline IONP core, sufficient stability, and sustained-release profile. In the presence of permanent magnets, CUR-2GE-Ch-IONPs significantly increased cellular uptake and cytotoxicity toward MDA-MB-231 with a 12-fold increase in potency compared to free CUR-2GE, indicating the potential of magnetic-field assisted delivery of CUR-2GE-Ch-IONPs for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Supakarn Hansapaiboon
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul Bulatao
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Philippines
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Wan Ikhsan SN, Yusof N, Aziz F, Ismail AF, Shamsuddin N, Jaafar J, Salleh WNW, Goh PS, Lau WJ, Misdan N. Synthesis and Optimization of Superhydrophilic-Superoleophobic Chitosan-Silica/HNT Nanocomposite Coating for Oil-Water Separation Using Response Surface Methodology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203673. [PMID: 36296863 PMCID: PMC9607117 DOI: 10.3390/nano12203673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
In this current study, facile, one-pot synthesis of functionalised nanocomposite coating with simultaneous hydrophilic and oleophobic properties was successfully achieved via the sol-gel technique. The synthesis of this nanocomposite coating aims to develop a highly efficient, simultaneously oleophobic-hydrophilic coating intended for polymer membranes to spontaneously separate oil-in-water emulsions, therefore, mitigating the fouling issue posed by an unmodified polymer membrane. The simultaneous hydrophilicity-oleophobicity of the nanocoating can be applied onto an existing membrane to improve their capability to spontaneously separate oil-in-water substances in the treatment of oily wastewater using little to no energy and being environmentally friendly. The synthesis of hybrid chitosan-silica (CTS-Si)/halloysite nanotube (HNT) nanocomposite coating using the sol-gel method was presented, and the resultant coating was characterised using FTIR, XPS, XRD, NMR, BET, Zeta Potential, and TGA. The wettability of the nanocomposite coating was evaluated in terms of water and oil contact angle, in which it was coated onto a polymer substrate. The coating was optimised in terms of oil and water contact angle using Response Surface Modification (RSM) with Central Composite Design (CCD) theory. The XPS results revealed the successful grafting of organosilanes groups of HNT onto the CTS-Si denoted by a wide band between 102.6-103.7 eV at Si2p. FTIR spectrum presented significant peaks at 3621 cm-1; 1013 cm-1 was attributed to chitosan, and 787 cm-1 signified the stretching of Si-O-Si on HNT. 29Si, 27Al, and 13H NMR spectroscopy confirmed the extensive modification of the particle's shells with chitosan-silica hybrid covalently linked to the halloysite nanotube domains. The morphological analysis via FESEM resulted in the surface morphology that indicates improved wettability of the nanocomposite. The resultant colloids have a high colloid stability of 19.3 mV and electrophoretic mobility of 0.1904 µmcm/Vs. The coating recorded high hydrophilicity with amplified oleophobic properties depicted by a low water contact angle (WCA) of 11° and high oil contact angle (OCA) of 171.3°. The optimisation results via RSM suggested that the optimised sol pH and nanoparticle loadings were pH 7.0 and 1.05 wt%, respectively, yielding 95% desirability for high oil contact angle and low water contact angle.
Collapse
Affiliation(s)
- Syarifah Nazirah Wan Ikhsan
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan BE1410, Brunei
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Block N29a, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Nurasyikin Misdan
- Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat 86400, Johor, Malaysia
| |
Collapse
|
9
|
Psarianos M, Ojha S, Schneider R, Schlüter OK. Chitin Isolation and Chitosan Production from House Crickets ( Acheta domesticus) by Environmentally Friendly Methods. Molecules 2022; 27:molecules27155005. [PMID: 35956955 PMCID: PMC9370203 DOI: 10.3390/molecules27155005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative methods were evaluated for chitin isolation from Acheta domesticus. Chemical demineralization was compared to fermentation with Lactococcus lactis, citric acid treatment, and microwave treatment, leading to a degree of demineralization of 91.1 ± 0.3, 97.3 ± 0.8, 70.5 ± 3.5, and 85.8 ± 1.3%, respectively. Fermentation with Bacillus subtilis, a deep eutectic solvent, and enzymatic digestion were tested for chitin isolation, generating materials with less than half the chitin content when compared to alkaline deproteinization. Chitosan was produced on a large scale by deacetylation of the chitinous material obtained from two selected processes: the chemical treatment and an alternative process combining L. lactis fermentation with bromelain deproteinization. The chemical and alternative processes resulted in similar chitosan content (81.9 and 88.0%), antioxidant activity (59 and 49%), and degree of deacetylation (66.6 and 62.9%), respectively. The chitosan products had comparable physical properties. Therefore, the alternative process is appropriate to replace the chemical process of chitin isolation for industrial applications.
Collapse
Affiliation(s)
- Marios Psarianos
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Shikha Ojha
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)-331-5699-616
| | - Roland Schneider
- Department of Bioengineering, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
| | - Oliver K. Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
10
|
Al-Harrasi A, Bhtaia S, Al-Azri MS, Makeen HA, Albratty M, Alhazmi HA, Mohan S, Sharma A, Behl T. Development and Characterization of Chitosan and Porphyran Based Composite Edible Films Containing Ginger Essential Oil. Polymers (Basel) 2022; 14:polym14091782. [PMID: 35566950 PMCID: PMC9103980 DOI: 10.3390/polym14091782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Recent research shows the growing interest in the development of composite edible films (EFs) by using multiple biopolymers for the substantial improvement in the shelf life and quality of food products, via preventing oxidation among other benefits. In the present work, EFs based on chitosan (CS) and porphyran (POR) loaded with ginger essential oil (GEO) have been developed to study the effect of GEO, glycerol (Gly), and POR on the film structure as well as physical and antioxidant properties. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results showed the level of crystallinity and electrostatic interactions between CS, POR, Gly, and GEO. It was found that electrostatic interactions between CS and POR and the incorporation of GEO substantially improved barrier, thermal, optical, and mechanical properties and reduced the moisture content, swelling index, and thickness values. The color values of the S5 film altered apparently with a shift towards yellowness. SEM micrographs of the composite CS-POR-GEO film (S5) showed improved morphological attributes such as more uniformity and homogeneous structure than other films (S1–S4). Results obtained from total phenolic content assay suggested the presence of high phenolic components (5.97 ± 0.01) mg of GAE/g in GEO. Further, findings obtained from antioxidant assays revealed that the addition of GEO and POR significantly increased the antioxidant effects of CS films. All these findings suggested that GEO loaded CS-POR based films showed better physical and chemical properties with a significant improvement in antioxidant potential and thus can be used as a potential packaging material in the food industry.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
- Correspondence: (A.A.-H.); (S.B.)
| | - Saurabh Bhtaia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India;
- Correspondence: (A.A.-H.); (S.B.)
| | - Mohammed Said Al-Azri
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India;
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India;
| |
Collapse
|
11
|
Figiela M, Wysokowski M, Stanisz E, Hao D, Ni BJ, Stepniak I. Highly sensitive, fast response and selective glucose detection based on CuO/nitrogen‐doped carbon non‐enzymatic sensor. ELECTROANAL 2022. [DOI: 10.1002/elan.202100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Derek Hao
- University of Technology Sydney AUSTRALIA
| | | | | |
Collapse
|
12
|
Sethi A, Ahmad M, Huma T, Ahmad W. Pharmacokinetic variables of medium molecular weight cross linked chitosan nanoparticles to enhance the bioavailability of 5-fluorouracil and reduce the acute oral toxicity. Drug Deliv 2021; 28:1569-1584. [PMID: 34291722 PMCID: PMC8300936 DOI: 10.1080/10717544.2021.1944398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
To prepare glutaraldehyde-based cross-linked medium molecular weight chitosan nanoparticles encapsulated with 5-Fluorouracil (5-FU), to overcome dosing frequency as well as reducing acute oral toxicity and poor bioavailability of the drug. Medium molecular weight chitosan nanoparticles (MMWCH-NPs) were prepared by reverse micelles method based on glutaraldehyde (GA) cross-linking and optimized by the process as well as formulation variables like a various drug to polymer ratio, cross-linker volumes, varying stirring speeds (rpm), different time of rotation/stirring, respectively and their effects on the mean particles size distribution and entrapment efficiency %EE and %LC of NPs. Characterization of formulations was done by FTIR studies, TEM, PXRD, TGA, Stability, and dissolution drug release studies were performed by dialysis bag technique at both pH (1.2 & 7.4) and acute oral toxicity studies in albino rabbits. The formulated nanoparticles showed a smooth morphology with smaller particle size distribution (230-550 nm), zeta potential (-15 to -18 mV) required to achieve enhanced permeation and retention effect (EPR), entrapment efficiency (%EE 12-59%). These NPs exhibited a controlled drug release profile with 84.36% of the drug over a period of 24 h. Drug release data were fitted to different kinetic models which predominantly followed Fickian diffusion mechanism (R2 = 0.972-0.976, N = 0.326-0.256). The optimized formulation (5-FU6) was observed under DSC/TGA, TEM. PXRD curves, FTIR, which confirmed thermal stability, structural integrity, amorphous state, compatibility between drug and polymer of optimized (5-FU6) as well as reduced acute oral toxicity in albino rabbits. Cross-linked medium molecular weight chitosan nanoparticles are nontoxic, well-tolerated therefore could be the future candidate for therapeutic effects as novel drug delivery carrier for anticancer drug(s).
Collapse
Affiliation(s)
- Aisha Sethi
- Faculty of Pharmacy and Alternative medicines, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy and Alternative medicines, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Waqas Ahmad
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
13
|
Red mud-chitosan microspheres for removal of coexistent anions of environmental significance from water bodies. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Oliveira MEFAG, Silva YJA, Azevedo LA, Linhares LA, Montenegro LML, Alves S, Amorim RVS. Antimycobacterial compound of chitosan and ethambutol: ultrastructural biological evaluation in vitro against Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2021; 105:9167-9179. [PMID: 34841463 DOI: 10.1007/s00253-021-11690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Chitosan (CS) is a promising biopolymer and has been tested as a complement to the action and compensation of toxicity presented by anti-tuberculosis drugs. The present work studied the adjuvant effect of CS with the drug ethambutol (EMB) as a compound (CS-EMB), to explore its antimicrobial and cytotoxic activity, using transmission electron microscopy (TEM), to examine ultracellular changes that represent possible antimycobacterial action of CS on Mycobacterium tuberculosis (Mtb). Antimycobacterial activities were tested against reference strains Mtb ATCC® H37Rv and multidrug resistant (MDR). In vitro cytotoxicity tests were performed on Raw 264.7. For the studied compounds, morphological, ultrastructural, and physical-chemical analyses were performed. Drug-polymer interactions that occur through the H bridges were confirmed by physical-chemical analyses. The CS-EMB compound is stable at pHs of 6.5-7.5, allowing its release at physiological pH. The antibacterial activity (minimum inhibitory concentration) of the CS-EMB compound was 50% greater than that of the EMB in the H37Rv and MDR strains and the ultrastructural changes in the bacilli observed by TEM proved that the CS-EMB compound has a bactericidal action, allowing it to break down the Mtb cell wall. The cytotoxicity of CS-EMB was higher than that of isolated EMB, IC50 279, and 176 μg/mL, respectively. It is concluded that CS-EMB forms a promising composite against strains Mtb H37Rv and multidrug resistant (MDR-TB).Key points• Our study will be the first to observe ultrastructurally the effects of the CS-EMB compound on Mtb cells.• CS-EMB antimicrobial activity in a multidrug-resistant clinical strain.• The CS-EMB compound has promising potential for the development of a new drug to fight tuberculosis.
Collapse
Affiliation(s)
- M E F A G Oliveira
- Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50670-420, Brazil.
| | - Y J A Silva
- Programa de Pós-Graduação Em Ciência de Materiais, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50740-560, Brazil
| | - L A Azevedo
- Programa de Pós-Graduação Em Ciência de Materiais, Universidade Federal de Pernambuco (UFPE), Recife, PE, 50740-560, Brazil
| | - L A Linhares
- Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (IAM/FIOCRUZ), 50740-465, Recife-PE, Brazil
| | - L M L Montenegro
- Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (IAM/FIOCRUZ), 50740-465, Recife-PE, Brazil
| | - S Alves
- Departamento de Química Fundamental (dQF), Universidade Federal de Pernambuco (UFPE), Recife, PE, 50740-560, Brazil
| | - R V S Amorim
- Departamento de Histologia E Embriologia (DHE-CB), Universidade Federal de Pernambuco (UFPE), Recife, PE, 50670-420, Brazil
| |
Collapse
|
15
|
Batista M, Pinto ML, Antunes F, Pires J, Carvalho S. Chitosan Biocomposites for the Adsorption and Release of H 2S. MATERIALS 2021; 14:ma14216701. [PMID: 34772227 PMCID: PMC8587643 DOI: 10.3390/ma14216701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022]
Abstract
The search for H2S donors has been increasing due to the multiple therapeutic effects of the gas. However, the use of nanoporous materials has not been investigated despite their potential. Zeolites and activated carbons are known as good gas adsorbents and their modification with chitosan may increase the material biocompatibility and simultaneously its release time in aqueous solution, thus making them good H2S donors. Herein, we modified with chitosan a series of A zeolites (3A, 4A and 5A) with different pore sizes and an activated carbon obtained from glycerin. The amount of H2S adsorbed was evaluated by a volumetric method and their release capacity in aqueous solution was measured. These studies aimed to verify which of the materials had appropriate H2S adsorption/release properties to be considered a potential H2S donor. Additionally, cytotoxicity assays using HeLa cells were performed. Considering the obtained results, the chitosan composite with the A zeolite with the larger pore opening was the most promising material to be used as a H2S donor so a further cytotoxicity assay using H2S loaded was conducted and no toxicity was observed.
Collapse
Affiliation(s)
- Mary Batista
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.B.); (F.A.)
| | - Moisés L. Pinto
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Fernando Antunes
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.B.); (F.A.)
| | - João Pires
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.B.); (F.A.)
- Correspondence: (J.P.); (S.C.); Tel.: +351-217500903 (J.P.); +351-21750000 (S.C.)
| | - Silvia Carvalho
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.B.); (F.A.)
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- Correspondence: (J.P.); (S.C.); Tel.: +351-217500903 (J.P.); +351-21750000 (S.C.)
| |
Collapse
|
16
|
Synthesis and Characterization of 2-Decenoic Acid Modified Chitosan for Infection Prevention and Tissue Engineering. Mar Drugs 2021; 19:md19100556. [PMID: 34677455 PMCID: PMC8538315 DOI: 10.3390/md19100556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Chitosan nanofiber membranes are recognized as functional antimicrobial materials, as they can effectively provide a barrier that guides tissue growth and supports healing. Methods to stabilize nanofibers in aqueous solutions include acylation with fatty acids. Modification with fatty acids that also have antimicrobial and biofilm-resistant properties may be particularly beneficial in tissue regeneration applications. This study investigated the ability to customize the fatty acid attachment by acyl chlorides to include antimicrobial 2-decenoic acid. Synthesis of 2-decenoyl chloride was followed by acylation of electrospun chitosan membranes in pyridine. Physicochemical properties were characterized through scanning electron microscopy, FTIR, contact angle, and thermogravimetric analysis. The ability of membranes to resist biofilm formation by S. aureus and P. aeruginosa was evaluated by direct inoculation. Cytocompatibility was evaluated by adding membranes to cultures of NIH3T3 fibroblast cells. Acylation with chlorides stabilized nanofibers in aqueous media without significant swelling of fibers and increased hydrophobicity of the membranes. Acyl-modified membranes reduced both S. aureus and P.aeruginosa bacterial biofilm formation on membrane while also supporting fibroblast growth. Acylated chitosan membranes may be useful as wound dressings, guided regeneration scaffolds, local drug delivery, or filtration.
Collapse
|
17
|
Sip S, Paczkowska-Walendowska M, Rosiak N, Miklaszewski A, Grabańska-Martyńska K, Samarzewska K, Cielecka-Piontek J. Chitosan as Valuable Excipient for Oral and Topical Carvedilol Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14080712. [PMID: 34451809 PMCID: PMC8401298 DOI: 10.3390/ph14080712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Chitosan is a valued excipient due to its biocompatibility properties and increasing solubility of poorly water-soluble drugs. The research presented in this paper concerns the preparation of binary combinations of chitosan (deacetylated chitin) with carvedilol (beta-blocker) to develop a formulation with a modified carvedilol release profile. As part of the research, six physical mixtures of chitosan with carvedilol were obtained and identified by spectral (PXRD, FT-IR, and Raman), thermal (DSC), and microscopic (SEM) methods. The next stage of the research estimated the profile changes and the dissolution rate for carvedilol in the obtained drug delivery systems; the reference sample was pure carvedilol. The studies were conducted at pH = 1.2 and 6.8, simulating the gastrointestinal tract conditions. Quantitative changes of carvedilol were determined using the developed isocratic UHPLC-DAD method. Established apparent permeability coefficients proved the changes in carvedilol's permeability after introducing a drug delivery system through membranes simulating the gastrointestinal tract and skin walls. A bioadhesive potential of carvedilol-chitosan systems was confirmed using the in vitro model. The conducted research and the obtained results indicate a significant potential of using chitosan as an excipient in modern oral or epidermal drug delivery systems of carvedilol.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (M.P.-W.); (N.R.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (M.P.-W.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (M.P.-W.); (N.R.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland;
| | | | - Karolina Samarzewska
- Department of Clinical Auxiology and Pediatric Nursing, Poznan University of Medical Sciences, Szpitalna 27/33 Street, 60-572 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (M.P.-W.); (N.R.)
- Correspondence:
| |
Collapse
|
18
|
Camargo LG, de Freitas Rosa Remiro P, Rezende GS, Di Carla Santos S, Franz-Montan M, Moraes ÂM. Development of bioadhesive polysaccharide-based films for topical release of the immunomodulatory agent imiquimod on oral mucosa lesions. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Bhavsar P, Dalla Fontana G, Zoccola M. Sustainable Superheated Water Hydrolysis of Black Soldier Fly Exuviae for Chitin Extraction and Use of the Obtained Chitosan in the Textile Field. ACS OMEGA 2021; 6:8884-8893. [PMID: 33842759 PMCID: PMC8028010 DOI: 10.1021/acsomega.0c06040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 05/28/2023]
Abstract
Interest in insects as waste biomass bioconverters and their use as valuable resources for fat, proteins, and chitin has increased considerably in the last few years. In this study, proteins were extracted from defatted black soldier fly (BSF) (Hermetia illucens) exuviae by green hydrolysis using superheated water at 150 °C for 20 h, and the remaining chitin was deacetylated into chitosan and used as a finishing agent for polyester fabrics. A total amount of 7% fat, 40% proteins, and 20% chitin was obtained from BSF exuviae. Different hydrolysis times ranging from 1 to 20 h were tried until the complete purification of chitin. The purity of chitin and the obtained chitosan after deacetylation was assessed by Fourier transform infrared spectroscopy and thermal analysis. A preliminary study was successfully carried out to use the obtained chitosan as a finishing agent for polyester pretreated fabrics using citric acid as a grafting agent. The presence of chitosan on the fabric was verified by scanning electron microscopy and by dyeing of the pretreated polyester fabric using a reactive dye with sulfonated groups that are able to be absorbed by electrostatic attraction because of the created cationic nature of the fiber surface treated by chitosan.
Collapse
|
20
|
Alsohaimi I, Hafez IH, Berber MR. Mechanically stable membranes of polyacrylic acid‐grafted chitosan‐functionalized carbon nanotubes with remarkable water storage capacity in sandy soils. J Appl Polym Sci 2021. [DOI: 10.1002/app.49915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ibrahim Alsohaimi
- Chemistry Department College of Science, Jouf University Saudi Arabia
| | - Inas H. Hafez
- Department of Natural Resources and Agricultural Engineering, Faculty of Agriculture Damanhour University Damanhour Egypt
| | - Mohamed R. Berber
- Chemistry Department College of Science, Jouf University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
21
|
Zheng Q, Aiello A, Choi YS, Tarr K, Shen H, Durkin DP, Shuai D. 3D printed photoreactor with immobilized graphitic carbon nitride: A sustainable platform for solar water purification. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123097. [PMID: 32540711 DOI: 10.1016/j.jhazmat.2020.123097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Solar-energy-enabled photocatalysis is promising for sustainable water purification. However, photoreactor design, especially immobilizing nano-sized photocatalysts, remains a major barrier preventing industrial-scale application of photocatalysis. In this study, we immobilized photocatalytic graphitic carbon nitride on chitosan to produce g-C3N4/chitosan hydrogel beads (GCHBs), and evaluated GCHB photoreactivity for degrading phenol and emerging persistent micropollutants in a 3D printed compound parabolic collector (CPC) reactor. The CPC photocatalytic system showed comparable performance with slurry reactors for sulfamethoxazole and carbamazepine degradation under simulated sunlight, and it maintained the performance for contaminant removal in real water samples collected from water/wastewater treatment plants or under outdoor sunlight irradiation. Global drinking water production was estimated for the CPC system, and it holds promise for small-scale sustainable water treatment, including, but not limited to, the production of high-quality potable water for single houses, small communities, rural areas, and areas impacted by natural disasters in both developed and developing countries.
Collapse
Affiliation(s)
- Qinmin Zheng
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
| | - Ashlee Aiello
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, United States
| | - Yoon Sil Choi
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
| | - Kayla Tarr
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
| | - Hongchen Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States
| | - David P Durkin
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, United States.
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, United States.
| |
Collapse
|
22
|
|
23
|
dos Passos Braga S, Magnani M, Madruga MS, de Souza Galvão M, de Medeiros LL, Batista AUD, Dias RTA, Fernandes LR, de Medeiros ES, de Souza EL. Characterization of edible coatings formulated with chitosan and Mentha essential oils and their use to preserve papaya (Carica papaya L.). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Quiroz‐Castillo JM, Rodríguez‐Félix DE, Romero‐García J, Madera‐Santana TJ, Encinas‐Encinas JC, Castillo‐Ortega MM, Cabrera‐Germán D, Lizárraga‐Laborín LL. Extrusion of polypropylene/chitosan/poly(lactic‐acid) films: Chemical, mechanical, and thermal properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.49850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jesús M. Quiroz‐Castillo
- Departamento de Investigación en Polímeros y Materiales Universidad de Sonora Hermosillo Sonora Mexico
| | - Dora E. Rodríguez‐Félix
- Departamento de Investigación en Polímeros y Materiales Universidad de Sonora Hermosillo Sonora Mexico
| | - Jorge Romero‐García
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Coahuila Mexico
| | - Tomás J. Madera‐Santana
- Laboratorio de Envases, CTAOV Centro de Investigación en Alimentos y Desarrollo A.C. Hermosillo Sonora Mexico
| | - José C. Encinas‐Encinas
- Departamento de Investigación en Polímeros y Materiales Universidad de Sonora Hermosillo Sonora Mexico
| | - María M. Castillo‐Ortega
- Departamento de Investigación en Polímeros y Materiales Universidad de Sonora Hermosillo Sonora Mexico
| | - Dagoberto Cabrera‐Germán
- Departamento de Investigación en Polímeros y Materiales Universidad de Sonora Hermosillo Sonora Mexico
| | | |
Collapse
|
25
|
Study on Thermal Behavior of Some Biocompatible and Biodegradable Materials Based on Plasticized PLA, Chitosan, and Rosemary Ethanolic Extract. INT J POLYM SCI 2020. [DOI: 10.1155/2020/4269792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermal characterization of some multifunctional environmentally friendly materials based on plasticized poly (lactic acid) (PLA)/chitosan (CS) and rosemary extract (R) previously obtained is presented. Differential scanning calorimetry (DSC) associated with other complex investigations such as chemiluminescence and coupled thermogravimetry (TG)/Fourier-transform infrared spectroscopy (FT-IR)/mass spectroscopy (MS) was performed in order to test both the thermal behavior and the biocomposition–property relationship. It was established that the rosemary ethanolic extract offers an efficient protection against thermoxidative degradation to the new developed plasticized PLA-based biocomposites which show good thermal properties, being suitable for both medical and food packaging applications.
Collapse
|
26
|
Elsayed NH, Alatawi A, Monier M. Diacetylmonoxine modified chitosan derived ion-imprinted polymer for selective solid-phase extraction of nickel (II) ions. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104570] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Khan Z. Chitosan capped Au@Pd@Ag trimetallic nanoparticles: Synthesis, stability, capping action and adsorbing activities. Int J Biol Macromol 2020; 153:545-560. [DOI: 10.1016/j.ijbiomac.2020.02.304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
|
28
|
Koc B, Akyuz L, Cakmak YS, Sargin I, Salaberria AM, Labidi J, Ilk S, Cekic FO, Akata I, Kaya M. Production and characterization of chitosan-fungal extract films. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100545] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Chitosan Solution Containing Zein and Essential Oil as Bio Based Coating on Packaging Paper. COATINGS 2020. [DOI: 10.3390/coatings10050497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modifications of the packaging paper surface play an important role in a variety of industries, especially in the food sector. Uncoated paper has poor water and oil barrier properties due to its porous structure. In this study, packaging paper was successfully coated with six different coating solutions containing combinations of chitosan, zein and rosemary essential oil. The chitosan and zein were actually coated in two layers; the mixed chitosan–rosemary oil and the mixed zein–rosemary oil were each applied as one layer to the paper. The results showed increased oil barrier properties in the papers coated with mixed zein–rosemary oil and reduced water permeability in the papers coated with the chitosan–rosemary oil coating solution. The result of this two-layer coating showed excellent water (Cobb60 value of 2.18 g/m2) and oil barrier properties. All the coated papers showed a high thermal stability, especially those coated with chitosan, zein and rosemary oil layer by layer. Scanning electron microscopy was used to verify the surface differences of the coated papers, such as the closed structure, pores and smoother surface, especially in the layer-wise coated samples. Due to their good mechanical and chemical properties, coated papers with rosemary oil can be used in many applications, possibly also in the field of repellents.
Collapse
|
30
|
Comprehensive evaluation of chitosan nanoparticle based phage lysin delivery system; a novel approach to counter S. pneumoniae infections. Int J Pharm 2019; 573:118850. [PMID: 31759993 DOI: 10.1016/j.ijpharm.2019.118850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
Cpl-1, an endolysin derived from Cp-1 phage has been found to be effective in a number of in-vitro and in-vivo pneumococcal infection models. However its lower bioavailability under in-vivo conditions limits its applicability as therapeutic agent. In this study, Cpl-1 loaded chitosan nanoparticles were set up in order to develop a novel therapeutic delivery system to counter antibiotic resistant S. pneumoniae infections. Interactions of chitosan and Cpl-1 were studied by in-silico docking analysis. Chitosan nanoparticles and Cpl-1 loaded chitosan nanoparticles were prepared by using ionic gelation method and the process was optimized by varying chitosan:TPP ratio, pH, stirring time, stirring rate and Cpl-1 concentration. Chitosan nanoparticles and Cpl-1 loaded chitosan nanoparticles were characterized to ascertain successful formation of nanoparticles and entrapment of Cpl-1 into nanoparticles. Chitosan nanoparticles and Cpl-1 loaded nanoparticles were also evaluated for nanoparticle yield, entrapment efficiency, in-vitro release, stability, structural integrity of Cpl-1, in-vitro bioassay, swelling studies, in-vitro biodegradation and heamolysis studies. Mucoadhesion behavior of chitosan nanoparticles and Cpl-1 loaded nanoparticles was explored using mucous glycoprotein assay and ex-vivo mucoadhesion assay, both preparations exhibited their mucoadhesive nature. Cellular cytotoxicity and immune stimulation studies revealed biocompatible nature of nanoparticles. The results of this study confirm that chitosan nanoparticles are a promising biocompatible candidate for Cpl-1 delivery with a significant potential to increase bioavailability of enzyme that in turn can increase its in-vivo half life to treat S. pneumoniae infections.
Collapse
|
31
|
Chabbi J, Aqil A, Katir N, Vertruyen B, Jerôme C, Lahcini M, El Kadib A. Aldehyde-conjugated chitosan-graphene oxide glucodynamers: Ternary cooperative assembly and controlled chemical release. Carbohydr Polym 2019; 230:115634. [PMID: 31887867 DOI: 10.1016/j.carbpol.2019.115634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
Abstract
Simultaneous condensation of aromatic aldehydes (ArxCHO; x = 1-4) on chitosan biopolymer (CS) affords, after water-evaporation, structurally-conjugated aryl-functionalized CS-Arx-f films. Similarly, cooperative assembly of two-dimensional nanometric graphene oxide (GO), aromatic aldehyde and chitosan provides transparent, flexible and crack-free aldehyde-functionalized, ternary-reinforced CS-Arx-GO-f nanocomposite films. Homogenous films were obtained using ortho-hydroxybenzaldehyde Ar1 while the para-hydroxybenzaldehyde Ar4 was prone to packing inside. Textural and mechanical properties were investigated and expectedly, significant improvement was found for CS-Ar1-GO-f because of the great dispersion of the aromatic and the presence of the filler. The sensitivity of unsaturated CN imine bond to hydrolysis was explored for triggering controlled release of aromatics from the as-prepared films. All of them were found to induce a time-dependent aromatic release. It has been moreover observed that the release was significantly delayed in CS-Arx-GO-f compared to CS-Arx-f, a fact attributed to the interplay of the ring with the basal and edges of graphene oxide, through π-π stacking and additional hydrogen bonding interactions. This finding shows that beyond the conventional wisdom using fillers for improving thermal and mechanical properties, the tiny carbon sheets can act as a regulator for aldehyde release, thereby providing a way for more controlled chemical delivery from confined nanocomposites.
Collapse
Affiliation(s)
- Jamal Chabbi
- Euromed Research Center. Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda. 30070 Fès, Morocco; Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium; Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Abdelhafid Aqil
- Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium
| | - Nadia Katir
- Euromed Research Center. Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda. 30070 Fès, Morocco
| | - Bénédicte Vertruyen
- Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium
| | - Christine Jerôme
- Centre for Education and Research on Macromolecules, CESAM Research Unit, Chemistry Department, University of Liege, Sart-Tilman B6a, Allée de la Chimie 4000 Liège, Belgium
| | - Mohamed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center. Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda. 30070 Fès, Morocco.
| |
Collapse
|
32
|
Vasiliu S, Lungan M, Gugoasa I, Drobota M, Popa M, Mihai M, Racovita S. Design of Porous Microparticles Based on Chitosan and Methacrylic Monomers. ChemistrySelect 2019. [DOI: 10.1002/slct.201803782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Silvia Vasiliu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley No. 41 A 700487 Iasi Romania
| | | | - Ionela Gugoasa
- “Gheorghe Asachi” Technical University of IasiFaculty of Chemical Engineering and Environmental ProtectionDepartment of Natural and Synthetic Polymers Prof. Dr. Docent Dimitrie Mangeron Street No. 73 700050 Iasi Romania
| | - Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley No. 41 A 700487 Iasi Romania
| | - Marcel Popa
- “Gheorghe Asachi” Technical University of IasiFaculty of Chemical Engineering and Environmental ProtectionDepartment of Natural and Synthetic Polymers Prof. Dr. Docent Dimitrie Mangeron Street No. 73 700050 Iasi Romania
- Academy of Romanian Scientists Splaiul Independentei Street No. 54 050085 Bucuresti Romania
| | - Marcela Mihai
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley No. 41 A 700487 Iasi Romania
| | - Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley No. 41 A 700487 Iasi Romania
| |
Collapse
|
33
|
Preparation of Modified Chitosan Microsphere-Supported Copper Catalysts for the Borylation of α,β-Unsaturated Compounds. Polymers (Basel) 2019; 11:polym11091417. [PMID: 31466406 PMCID: PMC6788198 DOI: 10.3390/polym11091417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022] Open
Abstract
Chitosan microspheres modified by 2-pyridinecarboxaldehyde were prepared and used in the construction of a heterogeneous catalyst loaded with nano-Cu prepared by a reduction reaction. The chemical structure of the catalyst was investigated by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Under mild conditions, such as no ligand at room temperature, the catalyst was successfully applied to catalyze the borylation of α,β-unsaturated receptors in a water-methanol medium, yielding 17%-100% of the corresponding -hydroxy product. Even after repeated use five times, the catalyst still exhibited excellent catalytic activity.
Collapse
|
34
|
Liudvinaviciute D, Rutkaite R, Bendoraitiene J, Klimaviciute R. Thermogravimetric analysis of caffeic and rosmarinic acid containing chitosan complexes. Carbohydr Polym 2019; 222:115003. [PMID: 31320039 DOI: 10.1016/j.carbpol.2019.115003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Thermal behaviour and stability of chitosan (CH) and phenolic acids complexes could be of high importance in regard both the practical applications and understanding the complex formation. Thermal degradation of insoluble complexes of CH and caffeic (CACH) or rosmarinic acid (RACH) was investigated in air and nitrogen atmosphere. Thermal decomposition of CACH proceeded in two stages, first of which was attributed to decarboxylation of adsorbed CA in the temperature interval from 150 °C to 200 °C, and second one was related to decomposition of CH backbone at temperatures higher than 200 °C. Thermal degradation of RACH proceeded in one stage at temperatures higher than 200 °C, in the broad temperature range and was related to decomposition of formed complex. Values of apparent activation energy (Ea) related to the second stage of thermal decomposition of CACH and decomposition of RACH at conversion values (α) from 0.1 to 0.8 were determined by using Flynn-Wall-Ozawa method. For CACH the dependence between Ea and α was very similar to that of CH and showed that products of CA thermal degradation formed in the first stage didn't influence the thermal degradation of CACH in the second stage. Meanwhile, for RACH, initially, values of Ea increased with an increase of conversion degree, at certain value of α reached the maximum which depended on the RA to CH molar ratio, and then decreased.
Collapse
Affiliation(s)
- Dovile Liudvinaviciute
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania.
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| | - Joana Bendoraitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| | - Rima Klimaviciute
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
35
|
Soares SF, Fernandes T, Trindade T, Daniel-da-Silva AL. Trimethyl Chitosan/Siloxane-Hybrid Coated Fe 3O 4 Nanoparticles for the Uptake of Sulfamethoxazole from Water. Molecules 2019; 24:E1958. [PMID: 31117303 PMCID: PMC6572444 DOI: 10.3390/molecules24101958] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
The presence of several organic contaminants in the environment and aquatic compartments has been a matter of great concern in the recent years. To tackle this problem, new sustainable and cost-effective technologies are needed. Herein we describe magnetic biosorbents prepared from trimethyl chitosan (TMC), which is a quaternary chitosan scarcely studied for environmental applications. Core@shell particles comprising a core of magnetite (Fe3O4) coated with TMC/siloxane hybrid shells (Fe3O4@SiO2/SiTMC) were successfully prepared using a simple one-step coating procedure. Adsorption tests were conducted to investigate the potential of the coated particles for the magnetically assisted removal of the antibiotic sulfamethoxazole (SMX) from aqueous solutions. It was found that TMC-based particles provide higher SMX adsorption capacity than the counterparts prepared using pristine chitosan. Therefore, the type of chemical modification introduced in the chitosan type precursors used in the surface coatings has a dominant effect on the sorption efficiency of the respective final magnetic nanosorbents.
Collapse
Affiliation(s)
- Sofia F Soares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago Fernandes
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
García MA, de la Paz N, Castro C, Rodríguez JL, Rapado M, Zuluaga R, Gañán P, Casariego A. Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mario A. García
- Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, Havana, ZC 13600, Cuba
| | - Nilia de la Paz
- Drug Research and Development Center, Ave. 26 No. 1605, Havana, Cuba
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellin, Colombia
| | - José L. Rodríguez
- Food Industry Research Institute, Carretera al Guatao km 3 ½, Havana, CP 19200, Cuba
| | - Manuel Rapado
- Radiobiology Department, Center for Technological Applications and Nuclear Development, St. 30 No. 502, Playa, Havana, Cuba
| | - Robin Zuluaga
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellin, Colombia
| | - Piedad Gañán
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellin, Colombia
| | - Alicia Casariego
- Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, Havana, ZC 13600, Cuba
| |
Collapse
|
37
|
Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydr Polym 2019; 207:100-107. [DOI: 10.1016/j.carbpol.2018.11.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022]
|
38
|
Divya Madhuri U, Radhakrishnan TP. Insulating Polymer‐Hydrogel Nanocomposite Thin Film ‐ Based Catalytic Electrode for Efficient Oxygen Evolution Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201801659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- U. Divya Madhuri
- School of ChemistryUniversity of Hyderabad Hyderabad – 500 046 India
| | | |
Collapse
|
39
|
Rubio NR, Fish KD, Trimmer BA, Kaplan DL. In Vitro Insect Muscle for Tissue Engineering Applications. ACS Biomater Sci Eng 2019; 5:1071-1082. [PMID: 33405797 DOI: 10.1021/acsbiomaterials.8b01261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tissue engineering is primarily associated with medical disciplines, and research has thus focused on mammalian cells. For applications where clinical relevance is not a constraint, it is useful to evaluate the potential of alternative cell sources to form tissues in vitro. Specifically, skeletal muscle tissue engineering for bioactuation and cultured foods could benefit from the incorporation of invertebrate cells because of their less stringent growth requirements and other versatile features. Here, we used a Drosophila muscle cell line to demonstrate the benefits of insect cells relative to those derived from vertebrates. The cells were adapted to serum-free media, transitioned between adherent and suspension cultures, and manipulated with hormones. Furthermore, we analyzed edible scaffolds to support cell adhesion and assayed cellular protein and minerals to evaluate nutrition potential. The insect muscle cells exhibited advantageous growth patterns and hold unique functionality for tissue engineering applications beyond the medical realm.
Collapse
Affiliation(s)
- Natalie R Rubio
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kyle D Fish
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Barry A Trimmer
- Department of Biology, Tufts University, 200 Boston Avenue #4700, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
40
|
Timur M, Paşa A. Synthesis, Characterization, Swelling, and Metal Uptake Studies of Aryl Cross-Linked Chitosan Hydrogels. ACS OMEGA 2018; 3:17416-17424. [PMID: 31458347 PMCID: PMC6643818 DOI: 10.1021/acsomega.8b01872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/03/2018] [Indexed: 05/02/2023]
Abstract
Today, many chemical modifications are being made to increase the utilization of chitosan and to make the best use of it. In this study, four novel cross-linked chitosan derivatives in the form of hydrogel (CS-L1 CS-L2, CS-L3, and CS-L4) were prepared by the condensation of chitosan with anisole-based phenolic and nonphenolic aromatic dicarbonyls. Structural analyses were performed by elemental analysis (C, H, N), scanning electron microscopy, Fourier transform infrared, 13C-CP/MAS (cross-polarization, magic angle spinning) nuclear magnetic resonance, powder X-ray diffraction, and thermogravimetric analysis techniques. Metal ion uptake capacities were studied for selected transition-metal cations in aqueous medium. The amount of metal ions was determined by microwave plasma-atomic emission spectroscopy. In addition, the swelling behaviors were investigated at different temperatures (25 and 37 °C) and at different pH values (3, 7, and 10). The order of the selectivity of cross-linked chitosan derivatives toward metal ions was found to be Cu(II) > Cd(II) > Fe(II) > Co(II) > Ni(II). The results showed that the derivatives exhibited the property of hydrogel and suggest that they could be applied in many areas such as metal removing, water removing, and biological applications.
Collapse
Affiliation(s)
- Mahir Timur
- Altınözü Vocational School, Mustafa Kemal University, 31060 Antakya, Hatay, Turkey
| | - Ahmet Paşa
- Altınözü Vocational School, Mustafa Kemal University, 31060 Antakya, Hatay, Turkey
| |
Collapse
|
41
|
Md S, Kuldeep Singh JKA, Waqas M, Pandey M, Choudhury H, Habib H, Hussain F, Hussain Z. Nanoencapsulation of betamethasone valerate using high pressure homogenization–solvent evaporation technique: optimization of formulation and process parameters for efficient dermal targeting. Drug Dev Ind Pharm 2018; 45:323-332. [DOI: 10.1080/03639045.2018.1542704] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shadab Md
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Muhammad Waqas
- Johar Institute of Professional Studies Lahore, Punjab, Pakistan
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Haroon Habib
- Johar Institute of Professional Studies Lahore, Punjab, Pakistan
| | - Fahad Hussain
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, Malaysia
| |
Collapse
|
42
|
Gursoy M, Sargin I, Mujtaba M, Akyuz B, Ilk S, Akyuz L, Kaya M, Cakmak YS, Salaberria AM, Labidi J, Erdem N. False flax (Camelina sativa) seed oil as suitable ingredient for the enhancement of physicochemical and biological properties of chitosan films. Int J Biol Macromol 2018; 114:1224-1232. [DOI: 10.1016/j.ijbiomac.2018.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/25/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022]
|
43
|
Rasaki SA, Zhang B, Anbalgam K, Thomas T, Yang M. Synthesis and application of nano-structured metal nitrides and carbides: A review. PROG SOLID STATE CH 2018. [DOI: 10.1016/j.progsolidstchem.2018.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
44
|
Lapo B, Demey H, Zapata J, Romero C, Sastre AM. Sorption of Hg(II) and Pb(II) Ions on Chitosan-Iron(III) from Aqueous Solutions: Single and Binary Systems. Polymers (Basel) 2018; 10:E367. [PMID: 30966402 PMCID: PMC6414923 DOI: 10.3390/polym10040367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
The present work describes the study of mercury Hg(II) and lead Pb(II) removal in single and binary component systems into easily prepared chitosan-iron(III) bio-composite beads. Scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and point of zero charge (pHpzc) analysis were carried out. The experimental set covered pH study, single and competitive equilibrium, kinetics, chloride and sulfate effects as well as sorption⁻desorption cycles. In single systems, the Langmuir nonlinear model fitted the experimental data better than the Freundlich and Sips equations. The sorbent material has more affinity to Hg(II) rather than Pb(II) ions, the maximum sorption capacities were 1.8 mmol·g-1 and 0.56 mmol·g-1 for Hg(II) and Pb(II), respectively. The binary systems data were adjusted with competitive Langmuir isotherm model. The presence of sulfate ions in the multicomponent system [Hg(II)-Pb(II)] had a lesser impact on the sorption efficiency than did chloride ions, however, the presence of chloride ions improves the selectivity towards Hg(II) ions. The bio-based material showed good recovery performance of metal ions along three sorption⁻desorption cycles.
Collapse
Affiliation(s)
- Byron Lapo
- School of Chemical Engineering, Universidad Técnica de Machala, UACQS, BIOeng, 070151 Machala, Ecuador.
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EPSEVG, Av. Víctor Balaguer, s/n, 08800 Vilanova i la Geltrú, Spain.
| | - Hary Demey
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA/DRT/LITEN/DTBH/LTB, 17 rue des Martrys, 38054 Grenoble, France.
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain.
| | - Jessenia Zapata
- School of Chemical Engineering, Universidad Técnica de Machala, UACQS, BIOeng, 070151 Machala, Ecuador.
| | - Cristhian Romero
- School of Chemical Engineering, Universidad Técnica de Machala, UACQS, BIOeng, 070151 Machala, Ecuador.
| | - Ana María Sastre
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain.
| |
Collapse
|
45
|
Pandey M, Choudhury H, Gunasegaran TAP, Nathan SS, Md S, Gorain B, Tripathy M, Hussain Z. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv Transl Res 2018; 9:520-533. [DOI: 10.1007/s13346-018-0480-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Chitosan-edible oil based materials as upgraded adsorbents for textile dyes. Carbohydr Polym 2018; 180:182-191. [DOI: 10.1016/j.carbpol.2017.09.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 01/25/2023]
|
47
|
Mancic L, Djukic-Vukovic A, Dinic I, Nikolic MG, Rabasovic MD, Krmpot AJ, Costa AMLM, Marinkovic BA, Mojovic L, Milosevic O. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv 2018; 8:27429-27437. [PMID: 35540002 PMCID: PMC9083799 DOI: 10.1039/c8ra04178d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 11/21/2022] Open
Abstract
The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml−1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery.![]()
Collapse
Affiliation(s)
- Lidija Mancic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
- Belgrade
- Serbia
| | - Aleksandra Djukic-Vukovic
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- Serbia
| | - Ivana Dinic
- Innovation Center of the Faculty of Chemistry
- University of Belgrade
- Serbia
| | - Marko G. Nikolic
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Mihailo D. Rabasovic
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Aleksandar J. Krmpot
- Photonic Center
- Institute of Physics Belgrade
- University of Belgrade
- Belgrade
- Serbia
| | - Antonio M. L. M. Costa
- Department of Chemical and Materials Engineering
- Pontifical Catholic University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Bojan A. Marinkovic
- Department of Chemical and Materials Engineering
- Pontifical Catholic University of Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Ljiljana Mojovic
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- Serbia
| | - Olivera Milosevic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
- Belgrade
- Serbia
| |
Collapse
|
48
|
Evaluation of Inulin Replacing Chitosan in a Polyurethane/Polysaccharide Material for Pb 2+ Removal. Molecules 2017; 22:molecules22122093. [PMID: 29186073 PMCID: PMC6150026 DOI: 10.3390/molecules22122093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
Downstream waste from industry and other industrial processes could increase concentration of heavy metals in water. These pollutants are commonly removed by adsorption because it is an effective and economical method. Previously, we reported adsorption capacity of a chitosan/polyurethane/titanium dioxide (TiO2) composite for three ions in a dynamic wastewater system. There, increasing the chitosan concentration in composite increased the cation removal as well; however, for ratios higher than 50% of chitosan/TiO2, the manufacturing cost increased significantly. In this work, we address the manufacturing cost problem by proposing a new formulation of the composite. Our hypothesis is that inulin could replace chitosan in the composite formulation, either wholly or in part. In this exploratory research, three blends were prepared with a polyurethane matrix using inulin or/and chitosan. Adsorption was evaluated using a colorimetric method and the Langmuir and Freundlich models. Fourier-transform infrared spectroscopy (FTIR) spectra, scanning electron microscopy (SEM) micrographs, differential scanning calorimetry and thermogravimetric analysis curves were obtained to characterize blends. Results indicate that blends are suitable for toxic materials removal (specifically lead II, Pb2+). Material characterization indicates that polysaccharides were distributed in polyurethane’s external part, thus improving adsorption. Thermal degradation of materials was found above 200 °C. Comparing the blends data, inulin could replace chitosan in part and thereby improve the cost efficiency and scalability of the production process of the polyurethane based-adsorbent. Further research with different inulin/chitosan ratios in the adsorbent and experiments with a dynamic system are justified.
Collapse
|
49
|
Ultrasound assisted adsorptive removal of hazardous dye Safranin O from aqueous solution using crosslinked graphene oxide-chitosan (GO CH) composite and optimization by response surface methodology (RSM) approach. Carbohydr Polym 2017; 175:509-517. [DOI: 10.1016/j.carbpol.2017.07.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 11/20/2022]
|
50
|
Soares SF, Rodrigues MI, Trindade T, Daniel-da-Silva AL. Chitosan-silica hybrid nanosorbents for oil removal from water. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|