1
|
Bina M, Coats JP, Skowicki M, Malekovic M, Mihali V, Palivan CG. Hybrid Planar Copolymer Membranes with Dual Functionality against Bacteria Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39453821 DOI: 10.1021/acs.langmuir.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Antibacterial surfaces can be classified into two categories: passive surfaces, which repel bacteria by affecting surface wettability, and active surfaces, which have bactericidal properties that disrupt cell membranes upon contact. With the increasing demand for effective antibacterial solutions that combine these properties, advanced strategies are concentrating on developing surfaces with dual antimicrobial functionalities. Here, we present surfaces with nanotexture resulting from the phase separation of two different amphiphilic block copolymers displaying efficient dual functionality against bacteria growth. This approach combines the inherent antifouling properties of poly(ethylene oxide) as the hydrophilic domain of one copolymer with the antimicrobial effect of a peptide covalently attached to the hydrophilic domain of the second copolymer. The planar membranes are generated by self-assembly of the amphiphilic copolymer mixture deposited by Langmuir-Blodgett and Langmuir-Schaffer methods on a solid support, followed by covalent attachment of the antimicrobial peptides to one of the copolymers, specifically functionalized. Combining both copolymers, in terms of their properties and functionalities on the same surface, significantly limitsEscherichia colibiofilm formation and effectively eradicates bacteria during short-term incubation. While such multifunctional antimicrobial planar polymer membranes show promising potential in the design of fine coatings for small surgical or implantable devices, they are not limited to this application. Their use can be completely changed by attaching other active molecules or assemblies to induce specific multifunctionality for the targeted application.
Collapse
Affiliation(s)
- Maryame Bina
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - John P Coats
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Mirela Malekovic
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| |
Collapse
|
2
|
Lu Q, Wang Z, Zhang S, Wang J, Mao X, Xie L, Liu Q, Zeng H. Molecular interaction mechanism for humic acids fouling resistance on charged, zwitterion-like and zwitterionic surfaces. J Colloid Interface Sci 2024; 666:393-402. [PMID: 38603881 DOI: 10.1016/j.jcis.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Humic acids (HA) are ubiquitous in surface waters, leading to significant fouling challenges. While zwitterion-like and zwitterionic surfaces have emerged as promising candidates for antifouling, a quantitative understanding of molecular interaction mechanism, particularly at the nanoscale, still remains elusive. In this work, the intermolecular forces between HA and charged, zwitterion-like or zwitterionic monolayers in aqueous environments were quantified using atomic force microscope. Compared to cationic MTAC ([2-(methacryloyloxy)ethyl]trimethylammonium chloride), which exhibited an adhesion energy of ∼1.342 mJ/m2 with HA due to the synergistic effect of electrostatic attraction and possible cation-π interaction, anionic SPMA (3-sulfopropyl methacrylate) showed a weaker adhesion energy (∼0.258 mJ/m2) attributed to the electrostatic repulsion. Zwitterion-like MTAC/SPMA mixture, driven by electrostatic attraction between opposite charges, formed a hydration layer that prevented the interaction with HA, thereby considerably reducing adhesion energy to ∼0.123 mJ/m2. In contrast, zwitterionic MPC (2-methacryloyloxyethyl phosphorylcholine) and DMAPS ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) displayed ultralow adhesion energy (0.06-0.07 mJ/m2) with HA, arising from their strong dipole moments which could induce a tight hydration layer that effectively inhibited HA fouling. The pH-mediated electrostatic interaction resulted in the increased adhesion energy for MTAC but decreased adhesion energy for SPMA with elevated pH, while the adhesion energy for zwitterion-like and zwitterionic surfaces was independent of environmental pH. Density functional theory (DFT) simulation confirmed the strong binding capability of MPC and DMAPS with water molecules (∼-12 kcal mol-1). This work provides valuable insights into the molecular interaction mechanisms underlying humic-substance-fouling resistance of charged, zwitterion-like and zwitterionic materials at the nanoscale, shedding light on developing more effective strategy for HA antifouling in water treatment.
Collapse
Affiliation(s)
- Qiuyi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhoujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | - Shishuang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China.
| | - Qi Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
3
|
Megahed S, Wutke N, Liu Y, Klapper M, Schulz F, Feliu N, Parak WJ. Encapsulation of Nanoparticles with Statistical Copolymers with Different Surface Charges and Analysis of Their Interactions with Proteins and Cells. Int J Mol Sci 2024; 25:5539. [PMID: 38791579 PMCID: PMC11122285 DOI: 10.3390/ijms25105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains.
Collapse
Affiliation(s)
- Saad Megahed
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Nicole Wutke
- Max Planck Institute für Polymerforschung, 55128 Mainz, Germany; (N.W.); (M.K.)
| | - Yang Liu
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| | - Markus Klapper
- Max Planck Institute für Polymerforschung, 55128 Mainz, Germany; (N.W.); (M.K.)
| | - Florian Schulz
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany;
| | - Wolfgang J. Parak
- Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (S.M.); (Y.L.); (F.S.)
| |
Collapse
|
4
|
Wiesner Née Diehl F, Petri C, Hageneder S, Kunzler C, Klees S, Frank P, Pertiller M, Dostalek J, Knoll W, Jonas U. Thermoresponsive and Photocrosslinkable Poly(2-alkyl-2-oxazoline) Toolbox - Customizable Ultralow-Fouling Hydrogel Coatings for Blood Plasma Environments. Macromol Rapid Commun 2024; 45:e2300549. [PMID: 37983912 DOI: 10.1002/marc.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Indexed: 11/22/2023]
Abstract
This study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. This approach combines thermoresponsive poly(2-alkyl-2-oxazoline)s, known for their inherent protein-repellent characteristics, with established antifouling motifs based on betaines. The polymer framework is constructed from various monomer types, including a novel benzophenone-modified 2-oxazoline for photocrosslinking and an azide-functionalized 2-oxazoline, allowing subsequent modification with alkyne-substituted antifouling motifs through copper(I)-catalyzed azide-alkyne cycloaddition. From these polymers surface-attached networks are created on benzophenone-modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2-alkyl-2-oxazoline)s can exhibit a lower critical solution temperature in water, their temperature-dependent solubility is compared to the swelling behavior of the surface-attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma is further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrate extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allow efficient penetration by plasma components, which can then be easily removed by rinsing with buffer.
Collapse
Affiliation(s)
- Fiona Wiesner Née Diehl
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Christian Petri
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau, 3430, Austria
| | - Cleiton Kunzler
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Sven Klees
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Petra Frank
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Matthias Pertiller
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau, 3430, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau, 3430, Austria
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague, 182 21, Czech Republic
- Laboratory for Life Sciences and Technology (LiST), Danube Private University, Konrad-Lorenz-Straße 24, Tulln an der Donau, 3430, Austria
| | - Wolfgang Knoll
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau, 3430, Austria
- Laboratory for Life Sciences and Technology (LiST), Danube Private University, Konrad-Lorenz-Straße 24, Tulln an der Donau, 3430, Austria
| | - Ulrich Jonas
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| |
Collapse
|
5
|
Horne R, Ben-Shlomo N, Jensen M, Ellerman M, Escudero C, Hua R, Bennion D, Guymon CA, Hansen MR. Reducing the foreign body response on human cochlear implants and their materials in vivo with photografted zwitterionic hydrogel coatings. Acta Biomater 2023; 166:212-223. [PMID: 37187301 PMCID: PMC10330692 DOI: 10.1016/j.actbio.2023.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The foreign body response to implanted materials often complicates the functionality of sensitive biomedical devices. For cochlear implants, this response can reduce device performance, battery life and preservation of residual acoustic hearing. As a permanent and passive solution to the foreign body response, this work investigates ultra-low-fouling poly(carboxybetaine methacrylate) (pCBMA) thin film hydrogels that are simultaneously photo-grafted and photo-polymerized onto polydimethylsiloxane (PDMS). The cellular anti-fouling properties of these coatings are robustly maintained even after six-months subcutaneous incubation and over a broad range of cross-linker compositions. On pCBMA-coated PDMS sheets implanted subcutaneously, capsule thickness and inflammation are reduced significantly in comparison to uncoated PDMS or coatings of polymerized poly(ethylene glycol dimethacrylate) (pPEGDMA). Further, capsule thickness is reduced over a wide range of pCBMA cross-linker compositions. On cochlear implant electrode arrays implanted subcutaneously for one year, the coating bridges over the exposed platinum electrodes and dramatically reduces the capsule thickness over the entire implant. Coated cochlear implant electrode arrays could therefore lead to persistent improved performance and reduced risk of residual hearing loss. More generally, the in vivo anti-fibrotic properties of pCBMA coatings also demonstrate potential to mitigate the fibrotic response on a variety of sensing/stimulating implants. STATEMENT OF SIGNIFICANCE: This article presents, for the first time, evidence of the in vivo anti-fibrotic effect of zwitterionic hydrogel thin films photografted to polydimethylsiloxane (PDMS) and human cochlear implant arrays. The hydrogel coating shows no evidence of degradation or loss of function after long-term implantation. The coating process enables full coverage of the electrode array. The coating reduces fibrotic capsule thickness 50-70% over a broad range of cross-link densities for implantations from six weeks to one year.
Collapse
Affiliation(s)
- Ryan Horne
- University of Iowa Carver College of Medicine, United States of America; University of Iowa Department of Chemical and Biochemical Engineering, United States of America
| | - Nir Ben-Shlomo
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - Megan Jensen
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - Morgan Ellerman
- University of Iowa Department of Chemical and Biochemical Engineering, United States of America
| | - Caleb Escudero
- University of Iowa Carver College of Medicine, United States of America
| | - Rong Hua
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - Douglas Bennion
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America
| | - C Allan Guymon
- University of Iowa Department of Chemical and Biochemical Engineering, United States of America
| | - Marlan R Hansen
- University of Iowa Hospitals and Clinics Department of Otolaryngology, United States of America.
| |
Collapse
|
6
|
Pham TT, Yusa SI. Thermo-Responsive Polyion Complex of Polysulfobetaine and a Cationic Surfactant in Water. Polymers (Basel) 2022; 14:polym14153171. [PMID: 35956686 PMCID: PMC9370920 DOI: 10.3390/polym14153171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Poly(4-((3-methacrylamidopropyl)dimethylammonium)butane-1-sulfonate) (PSBP) was prepared via controlled radical polymerization. PSBP showed upper critical solution temperature (UCST) behavior in aqueous solutions, which could be controlled by adjusting the polymer and NaCl concentrations. Owing to its pendant sulfonate anions, PSBP exhibited a negative zeta potential of −7.99 mV and formed a water-soluble ion complex with the cationic surfactant cetyltrimethylammonium bromide (CTAB) via attractive electrostatic interaction. A neutral PSBP/CTAB complex was formed under equimolar concentrations of the pendant sulfonate group in PSBP and the quaternary ammonium group in CTAB. Transmittance electron microscopic images revealed the spherical shape of the complex. The stoichiometrically neutral-charge PSBP/CTAB complex exhibited UCST behavior in aqueous solutions. Similar to PSBP, the phase transition temperature of the PSBP/CTAB complex could be tuned by modifying the polymer and NaCl concentrations. In 0.1 M aqueous solution, the PSBP/CTAB complex showed UCST behavior at a low complex concentration of 0.084 g/L, whereas PSBP did not exhibit UCST behavior at concentrations below 1.0 g/L. This observation suggests that the interaction between PSBP and CTAB in the complex was stronger than the interpolymer interaction of PSBP.
Collapse
Affiliation(s)
| | - Shin-ichi Yusa
- Correspondence: ; Tel.: +81-79-267-4954; Fax: +81-79-266-8868
| |
Collapse
|
7
|
Valdeperez D, Wutke N, Ackermann LM, Parak WJ, Klapper M, Pelaz B. Colloidal stability of polymer coated zwitterionic Au nanoparticles in biological media. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Huang H, Zhang C, Crisci R, Lu T, Hung HC, Sajib MSJ, Sarker P, Ma J, Wei T, Jiang S, Chen Z. Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO. J Am Chem Soc 2021; 143:16786-16795. [PMID: 34582683 DOI: 10.1021/jacs.1c08280] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zwitterionic polymers exhibit excellent nonfouling performance due to their strong surface hydrations. However, salt molecules may severely reduce the surface hydrations of typical zwitterionic polymers, making the application of these polymers in real biological and marine environments challenging. Recently, a new zwitterionic polymer brush based on the protein stabilizer trimethylamine N-oxide (TMAO) was developed as an outstanding nonfouling material. Using surface-sensitive sum frequency generation (SFG) vibrational spectroscopy, we investigated the surface hydration of TMAO polymer brushes (pTMAO) and the effects of salts and proteins on such surface hydration. It was discovered that exposure to highly concentrated salt solutions such as seawater only moderately reduced surface hydration. This superior resistance to salt effects compared to other zwitterionic polymers is due to the shorter distance between the positively and negatively charged groups, thus a smaller dipole in pTMAO and strong hydration around TMAO zwitterion. This results in strong bonding interactions between the O- in pTMAO and water, and weaker interaction between O- and metal cations due to the strong repulsion from the N+ and hydration water. Computer simulations at quantum and atomistic scales were performed to support SFG analyses. In addition to the salt effect, it was discovered that exposure to proteins in seawater exerted minimal influence on the pTMAO surface hydration, indicating complete exclusion of protein attachment. The excellent nonfouling performance of pTMAO originates from its extremely strong surface hydration that exhibits effective resistance to disruptions induced by salts and proteins.
Collapse
Affiliation(s)
| | | | | | | | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Md Symon Jahan Sajib
- Department of Chemical Engineering, Howard University, Washington D.C. 20059, United States
| | - Pranab Sarker
- Department of Chemical Engineering, Howard University, Washington D.C. 20059, United States
| | - Jinrong Ma
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, Washington D.C. 20059, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
9
|
Lebga‐Nebane JL, Sankarasubramanian M, Chojecki G, Ning B, Yuya PA, Moosbrugger JC, Rasmussen DH, Krishnan S. Polyetheretherketone, hexagonal boron nitride, and tungsten carbide cobalt chromium composite coatings: Mechanical and tribological properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Janice L. Lebga‐Nebane
- Department of Chemical & Biomolecular Engineering Clarkson University Potsdam New York USA
- Presently at Elinor Coatings Fargo North Dakota USA
| | - Malavarayan Sankarasubramanian
- Department of Chemical & Biomolecular Engineering Clarkson University Potsdam New York USA
- Materials Science & Engineering Ph.D. program Clarkson University Potsdam New York USA
- Presently at Intel Corporation Chandler Arizona USA
| | - Gregory Chojecki
- Materials Science & Engineering Ph.D. program Clarkson University Potsdam New York USA
- Presently at S‐E‐A Ltd. Columbus Ohio USA
| | - Bo Ning
- Oilfield Equipment Division Baker Hughes, a GE Company Houston Texas USA
| | - Philip A. Yuya
- Department of Mechanical & Aeronautical Engineering Clarkson University Potsdam New York USA
| | - John C. Moosbrugger
- Department of Mechanical & Aeronautical Engineering Clarkson University Potsdam New York USA
| | - Don H. Rasmussen
- Department of Chemical & Biomolecular Engineering Clarkson University Potsdam New York USA
| | - Sitaraman Krishnan
- Department of Chemical & Biomolecular Engineering Clarkson University Potsdam New York USA
| |
Collapse
|
10
|
Fan Y, Huang Y, Linthicum W, Liu F, Beringhs AO, Dang Y, Xu Z, Chang SY, Ling J, Huey BD, Suib SL, Ma AWK, Gao PX, Lu X, Lei Y, Shaw MT, Li B. Toward Long-Term Accurate and Continuous Monitoring of Nitrate in Wastewater Using Poly(tetrafluoroethylene) (PTFE)-Solid-State Ion-Selective Electrodes (S-ISEs). ACS Sens 2020; 5:3182-3193. [PMID: 32933249 DOI: 10.1021/acssensors.0c01422] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Long-term accurate and continuous monitoring of nitrate (NO3-) concentration in wastewater and groundwater is critical for determining treatment efficiency and tracking contaminant transport. Current nitrate monitoring technologies, including colorimetric, chromatographic, biometric, and electrochemical sensors, are not feasible for continuous monitoring. This study addressed this challenge by modifying NO3- solid-state ion-selective electrodes (S-ISEs) with poly(tetrafluoroethylene) (PTFE, (C2F4)n). The PTFE-loaded S-ISE membrane polymer matrix reduces water layer formation between the membrane and electrode/solid contact, while paradoxically, the even more hydrophobic PTFE-loaded S-ISE membrane prevents bacterial attachment despite the opposite approach of hydrophilic modifications in other antifouling sensor designs. Specifically, an optimal ratio of 5% PTFE in the S-ISE polymer matrix was determined by a series of characterization tests in real wastewater. Five percent of PTFE alleviated biofouling to the sensor surface by enhancing the negative charge (-4.5 to -45.8 mV) and lowering surface roughness (Ra: 0.56 ± 0.02 nm). It simultaneously mitigated water layer formation between the membrane and electrode by increasing hydrophobicity (contact angle: 104°) and membrane adhesion and thus minimized the reading (mV) drift in the baseline sensitivity ("data drifting"). Long-term accuracy and durability of 5% PTFE-loaded NO3- S-ISEs were well demonstrated in real wastewater over 20 days, an improvement over commercial sensor longevity.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yuankai Huang
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Will Linthicum
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Fangyuan Liu
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | - Yanliu Dang
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zhiheng Xu
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shing-Yun Chang
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jing Ling
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bryan D. Huey
- Department of Materials Science & Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven L. Suib
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anson W. K. Ma
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Pu-Xian Gao
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xiuling Lu
- School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Montgomery T. Shaw
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil & Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Mayuri PV, Bhatt A, Parameswaran R. Investigation of the potency of leukodepletion filter membranes immobilized with bovine serum albumin via polydopamine spacer. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03515-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
D'Agata R, Bellassai N, Giuffrida MC, Aura AM, Petri C, Kögler P, Vecchio G, Jonas U, Spoto G. A new ultralow fouling surface for the analysis of human plasma samples with surface plasmon resonance. Talanta 2020; 221:121483. [PMID: 33076094 DOI: 10.1016/j.talanta.2020.121483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023]
Abstract
Surface plasmon resonance (SPR) has been widely used to detect a variety of biomolecular systems, but only a small fraction of applications report on the analysis of patients' samples. A critical barrier to the full implementation of SPR technology in molecular diagnostics currently exists for its potential application to analyze blood plasma or serum samples. Such capability is mostly hindered by the non-specific adsorption of interfering species present in the biological sample at the functional interface of the biosensor, often referred to as fouling. Suitable polymeric layers having a thickness ranging from 15 and about 70 nm are usually deposited on the active surface of biosensors to introduce antifouling properties. A similar approach is not fully adequate for SPR detection where the exponential decay of the evanescent plasmonic field limits the thickness of the layer beyond the SPR metallic sensor surface for which a sensitive detection can be obtained. Here, a triethylene glycol (PEG(3))-pentrimer carboxybetaine system is proposed to fabricate a new surface coating bearing excellent antifouling properties with a thickness of less than 2 nm, thus compatible with sensitive SPR detection. The high variability of experimental conditions described in the literature for the quantitative assessment of the antifouling performances of surface layers moved us to compare the superior antifouling capacity of the new pentrimeric system with that of 4-aminophenylphosphorylcholine, PEG-carboxybetaine and sulfobetaine-modified surface layers, respectively, using undiluted and diluted pooled human plasma samples. The use of the new coating for the immunologic SPRI biosensing of human arginase 1 in plasma is also presented.
Collapse
Affiliation(s)
- Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Maria Chiara Giuffrida
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Angela Margherita Aura
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Christian Petri
- Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076, Siegen, Germany
| | - Peter Kögler
- Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076, Siegen, Germany
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy
| | - Ulrich Jonas
- Department Chemistry - Biology, University of Siegen, Adolf-Reichwein-Strasse 2, D-57076, Siegen, Germany
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
13
|
Hierarchically targetable fiber rods decorated with dual targeting ligands and detachable zwitterionic coronas. Acta Biomater 2020; 110:231-241. [PMID: 32380183 DOI: 10.1016/j.actbio.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The shapes of drug carriers have significant effects on the drug's blood circulation lifetime and tumor accumulation levels. In this study, nonspherical drug carriers of fiber rods are enhanced with hierarchically targeting capabilities to achieve long circulation in blood, on-demand recovery of cell targeting ligands in tumor tissues and dual ligands-mediated cellular uptake. Zwitterionic polymers are conjugated on fiber rods via acid-labile linkers as stealth coronas to reduce the capture by macrophages and shield the targeting ligands. Compared with commonly used poly(ethylene glycol), the zwitterionic grafts show significantly higher inhibition of protein adsorption and lower internalization by macrophages, leading to around 2 folds longer blood circulation and over 2.5 folds higher drug accumulation in tumors than pristine fiber rods. To address the conflicts between blood circulation and cellular uptake, the zwitterionic coronas are efficiently removed in the slightly acidic tumor microenvironment. The exposure of targeting ligands could activate the internalization by tumor cells, resulting in higher cytotoxicity and tumor accumulation than those with stable linkers. Fiber rods are grafted with dual ligands of folate and biotin, and the optimal ligand densities and ratios are determined to maximize the tumor cell uptake. Compared with other treatment, fiber rods with decorated zwitterionic coronas and acid-liable exposure of dual targeting ligands enhance the suppression of tumor growth, prolong animal survival, and cause less lung metastasis. The development of fiber rods with hierarchically targeting capabilities shows great potential in improving the blood circulation, tumor accumulation and cellular uptake, and eventually promoting therapeutic efficacy. STATEMENT OF SIGNIFICANCE: The targeted delivery of chemotherapeutic agents will encounter a series of biological and pathological barriers. In this study, fiber rods were empowered with hierarchically targeting capabilities to resolve the conflict between blood circulation and cellular uptake. This strategy has shown several advantages over the existing methods. Firstly, zwitterionic polymers were used as blood circulation ligands, and concrete evidence was provided via head-to-head comparison with commonly used poly(ethylene glycol) ligands in the macrophage uptake and in vivo tissue distribution. Secondly, the depletion of circulation ligands and on-demand exposure of targeting ligands in tumor tissues showed crucial effects on the uptake by tumor cells. Thirdly, the densities and ratios of the dual targeting ligands were initially determined for a maximal cellular internalization.
Collapse
|
14
|
Lim J, Matsuoka H, Saruwatari Y. Effects of pH on the Stimuli-Responsive Characteristics of Double Betaine Hydrophilic Block Copolymer PGLBT- b-PSPE. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1727-1736. [PMID: 31983203 DOI: 10.1021/acs.langmuir.9b03682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the pH-responsive behavior of the carboxybetaine-sulfobetaine diblock copolymer poly(2-(2-(methacryloyloxy)ethyl)dimethylammonio)acetate-block-3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate (PGLBT-b-PSPE) in aqueous solution under varying temperatures. Alongside the temperature-responsive PSPE block which induces self-assembly of polymer micelles under the upper critical solution temperature, the PGLBT motifs having protonation sites caused additional changes in the phase behaviors. In acidic conditions where the pH is lower than the pKa of PGLBT-b-PSPE, the transmittance of polymer solutions more abruptly dropped and became cloudy at higher temperatures compared to the case of salt-free solutions. There were two simultaneous diffusive modes in the turbid solutions equivalent to unimers or micelles and large aggregates over a few hundred nanometers. Unlike in neutral and basic conditions, those large aggregates did not disappear after the emergence of the polymer micelles. The trend of the temperature-responsive behavior hardly changed in the alkaline solutions; however, the critical temperature significantly decreased. The surface charge of the unimers and self-assembled objects determined by zeta potential measurement varied from neutral or negative to positive with proton addition and further positively increased below the micelle formation temperature. This indicates the cationization of PGLBT moieties and their arrangement in the outer layer of the polymer micelle surface. In spite of the positively charged outer surface, two fast and slow diffusive modes representing micelles and large clusters were repeatedly observed in acidic solutions, and to some extent, size-grown particles eventually precipitated.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd. , 7-20 Azuchi-machi, 1chome , Chuo-ku, Osaka 541-0052 , Japan
| |
Collapse
|
15
|
Roeven E, Scheres L, Smulders MMJ, Zuilhof H. Design, Synthesis, and Characterization of Fully Zwitterionic, Functionalized Dendrimers. ACS OMEGA 2019; 4:3000-3011. [PMID: 30847431 PMCID: PMC6398351 DOI: 10.1021/acsomega.8b03521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Dendrimers are interesting candidates for various applications because of the high level of control over their architecture, the presence of internal cavities, and the possibility for multivalent interactions. More specifically, zwitterionic dendrimers modified with an equal number of oppositely charged groups have found use in in vivo biomedical applications. However, the design and control over the synthesis of these dendrimers remains challenging, in particular with respect to achieving full modification of the dendrimer. In this work, we show the design and subsequent synthesis of dendrimers that are highly charged while having zero net charge, that is zwitterionic dendrimers that are potential candidates for biomedical applications. First, we designed and fully optimized the synthesis of charge-neutral carboxybetaine and sulfobetaine zwitterionic dendrimers. Following their synthesis, the various zwitterionic dendrimers were extensively characterized. In this study, we also report for the first time the use of X-ray photoelectron spectroscopy as an easy-to-use and quantitative tool for the compositional analysis of this type of macromolecules that can complement techniques such as nuclear magnetic resonance and gel permeation chromatography. Finally, we designed and synthesized zwitterionic dendrimers that contain a variable number of alkyne and azide groups that allow straightforward (bio)functionalization via click chemistry.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix BV, Bronland
12 B-1, 6708 WH Wageningen, The Netherlands
| | - Luc Scheres
- Surfix BV, Bronland
12 B-1, 6708 WH Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of
Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Gong L, Xiang L, Zhang J, Han L, Wang J, Wang X, Liu J, Yan B, Zeng H. Interaction Mechanisms of Zwitterions with Opposite Dipoles in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2842-2853. [PMID: 30691265 DOI: 10.1021/acs.langmuir.8b04091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zwitterionic groups have been widely used in antibiofouling surfaces to resist nonspecific adsorption of proteins and other biomolecules. The interactions among zwitterionic groups have attracted considerable attention in bioengineering, whereas the understanding of their nanomechanical mechanism still remains limited. In this work, the interaction mechanisms between two zwitterionic groups with opposite dipoles, i.e., phosphorylcholine (PC) and sulfobetaine (SB), have been investigated via direct force measurements using an atomic force microscope (AFM) and dynamic adsorption tests using the quartz crystal microbalance with dissipation monitoring technique (QCM-D) in aqueous solutions. The AFM force measurements show that the adhesive forces between contacted zwitterionic surfaces during separation in both symmetric and asymmetric configurations were close, mainly due to the enforced alignment of opposing dipole pairs via complementary orientations under confinement. The solution salinity and pH had almost negligible influence on the adhesion measured during surface separation. The QCM-D adsorption tests of PC-headed lipid on PC and SB surfaces showed some degree of adsorption of lipid molecules on the SB surface, whereas not on the PC surface. The different adsorption behaviors indicate that because the outermost negatively charged sulfonic group on the SB faced the aqueous solution, this configuration could facilitate it to form an attractive electrostatic interaction with the PC head of lipid molecules in the solution. This work shows that in addition to hydration and steric interactions, the zwitterionic dipole-induced interactions play an important role in the adhesion and antifouling behaviors of the zwitterionic molecules and surfaces. The improved fundamental understanding provides useful insights into the development of new functional materials and coatings with antifouling applications.
Collapse
Affiliation(s)
- Lu Gong
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Linbo Han
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| | - Jingyi Wang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Xiaogang Wang
- College of Material Science & Engineering, Heavy Machinery Engineering Research Center of Education Ministry , Taiyuan University of Science and Technology , Taiyuan 030024 , China
| | - Jifang Liu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 510700 , China
| | - Bin Yan
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu 610065 , China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
17
|
Yi S, Lee WK, Park JH, Lee JS, Seo JH. One-Pot Synthesis of a Zwitterionic Small Molecule Bearing Disulfide Moiety for Antibiofouling Macro- and Nanoscale Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1768-1777. [PMID: 30103611 DOI: 10.1021/acs.langmuir.8b01532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of this study is to develop a simple one-pot method for the synthesis of a zwitterionic small molecule bearing disulfide moiety, which can effectively inhibit nonspecific protein adsorption on macroscopic and nanoscopic gold surfaces. To this end, the optimal molecular structure of a pyridine disulfide derivative was explored and a zwitterionic small molecule was successfully synthesized from the tertiary amine residue on the pyridine ring through a one-pot method. The coating conditions of the synthesized zwitterionic molecules on the gold surface were optimized through contact angle measurements, and the strong interactions between the gold surface and the disulfide moiety of the zwitterion small molecule were confirmed by surface plasmon resonance (SPR) analysis and X-ray photoelectron spectroscopy. The antibiofouling properties of the coated gold surface were analyzed by fluorescence microscopic observations after contacting with FITC-labeled bovine serum albumin (BSA) and SPR sensor as contacting with BSA solution. In addition, the effect of zwitterion-coating on the salt stability of and protein adsorption on nanoscopic gold surfaces were examined through a NaCl stability test and BSA adsorption test, respectively. From the obtained results, it was confirmed that the simply synthesized zwitterionic small molecule was effective in inhibiting nonspecific protein adsorption on macroscopic and nanoscopic gold surfaces; further, it enhanced the salt stability of gold nanoparticle surfaces.
Collapse
Affiliation(s)
- Seungjoo Yi
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| | - Won Kyu Lee
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| | - Ji-Ho Park
- Department of Chemistry , Sogang University , 35 Baekbeom-ro , Mapo-gu , Seoul 04107 , Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| | - Ji-Hun Seo
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu , Seoul 02841 , Korea
| |
Collapse
|
18
|
Developing a thermal grafting process for zwitterionic polymers on cross-linked polyethylene with geometry-independent grafting thickness. Acta Biomater 2019; 85:180-191. [PMID: 30583111 DOI: 10.1016/j.actbio.2018.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
To overcome the drawbacks of the UV grafting method, an alternative, thermal grafting process is suggested. The uniform and geometry-independent grafting of zwitterionic polymers on curved cross-linked polyethylene (CLPE), which is used in artificial hip joints, surface was successfully achieved. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(2-(methacryloyloxy)ethyl)dimethyl(3-sulfopropyl)ammonium hydroxide) (PMEDSAH) were grafted on the CLPE by two methods: a UV-based process and a thermal process. The thermal method yielded zwitterionic surfaces with similar hydrophilicities and graft layer thicknesses to those prepared via the UV grafting method. The X-ray photoelectron spectra and surface zeta potential results showed that the PMPC and PMEDSAH layers were successfully grafted onto the CLPE surface. In addition, 3-D confocal microscopy, as well as friction and wear volume tests, confirmed that there was a significant decrease in the friction coefficient and wear, which indicates that the thermal grafting method can successfully substitute the UV grafting method. The thermally grafted polymer showed uniform graft layer thickness on the curved CLPE surface, whereas the UV-grafted polymer showed a geometry-dependent heterogeneous graft layer thickness. Thus, we confirmed that the thermal grafting method is advantageous for the preparation of uniform grafting layers on artificial joint surfaces with complicated shapes. STATEMENT OF SIGNIFICANCE: Formation of uniform grafting thickness of the zwitterionic polymers on the implant materials is a very important issue in the field of biomaterials. In this study, a thermal grafting process was developed for the formation of the uniform grafting thickness of the zwitterionic polymers on the curved cross-linked polyethylene (CLPE) surface used in artificial hip-joint. This method yielded zwitterionized CLPE surfaces with similar hydrophilicities and friction coefficient to those prepared via the UV grafting method which has been widely used process to modify the implant surfaces. Furthermore, the thermally grafted CLPE surface showed geometry-independent uniform grafting thickness on the curved CLPE surface while UV-grafted one showed uneven grafting thickness. This grafting method could help the development of complex, personalized, and biocompatible artificial liner surfaces.
Collapse
|
19
|
Vasantha VA, Rusli W, Junhui C, Wenguang Z, Sreekanth KV, Singh R, Parthiban A. Highly monodisperse zwitterion functionalized non-spherical polymer particles with tunable iridescence. RSC Adv 2019; 9:27199-27207. [PMID: 35529225 PMCID: PMC9070653 DOI: 10.1039/c9ra05162g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/14/2019] [Indexed: 02/03/2023] Open
Abstract
A facile and simple synthetic route towards functionalized non-spherical polymer particles (NSP) with tunable morphologies and iridescence is presented. Monodisperse particles with unique zwitterionic functionality were synthesized via emulsifier-free emulsion polymerization in a single step process. The sulfobetaine comonomer was utilized to induce phase separation in the course of polymerization to achieve anisotropic NSP with controlled morphologies such as quasi-spherical with protruding structures like bulge, eye-ball, and snowman-like nanostructures. Both SEM and TEM analyses revealed anisotropic particles, and phase-separated protrusion morphology with a small increase in aspect ratio. By taking advantage of the monodisperse, colloidally stable NSPs, template free photonic crystal arrays were fabricated through a bottom-up approach. The particles readily self-assemble and exhibit a photonic bandgap with vivid structural colors that arise from ordered structures of different morphologies. Additionally, the salt-responsive photonic crystals also possess tunable color-changing characteristics. A convenient method to fabricate functional photonic crystal arrays using self-assembled non-spherical particles that form tunable iridescent polymer opal by changing size and morphologies, thereby producing new responsive photonic material.![]()
Collapse
Affiliation(s)
- Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Wendy Rusli
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Chen Junhui
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Zhao Wenguang
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| | - Kandammathe Valiyaveedu Sreekanth
- Division of Physics and Applied Physics
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Centre for Disruptive Photonic Technologies
| | - Ranjan Singh
- Division of Physics and Applied Physics
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Centre for Disruptive Photonic Technologies
| | - Anbanandam Parthiban
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science, Technology and Research (A*STAR)
- Jurong Island
- Singapore 627833
| |
Collapse
|
20
|
Pan W, Wallin TJ, Odent J, Yip MC, Mosadegh B, Shepherd RF, Giannelis EP. Optical stereolithography of antifouling zwitterionic hydrogels. J Mater Chem B 2019; 7:2855-2864. [DOI: 10.1039/c9tb00278b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the rapid 3D printing of tough (toughness, UT, up to 141.6 kJ m−3), highly solvated (ϕwater ∼ 60 v/o), and antifouling hybrid hydrogels for potential uses in biomedical, smart materials, and sensor applications, using a zwitterionic photochemistry compatible with stereolithography (SLA).
Collapse
Affiliation(s)
- Wenyang Pan
- Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | | | - Jérémy Odent
- Materials Science & Engineering
- Cornell University
- Ithaca
- USA
| | - Mighten C. Yip
- Dalio Institute of Cardiovascular Imaging
- New York-Presbyterian Hospital and Weill Cornell Medicine
- New York
- USA
- Department of Radiology
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging
- New York-Presbyterian Hospital and Weill Cornell Medicine
- New York
- USA
- Department of Radiology
| | - Robert F. Shepherd
- Sibley School of Mechanical & Aerospace Engineering
- Cornell University
- Ithaca
- USA
| | | |
Collapse
|
21
|
Ghoussoub YE, Fares HM, Delgado JD, Keller LR, Schlenoff JB. Antifouling Ion-Exchange Resins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41747-41756. [PMID: 30456944 DOI: 10.1021/acsami.8b12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large quantities of organic ion-exchange resins are used worldwide for water decontamination and polishing. Fouling by microorganisms and decomposition products of natural organic matter severely limits the lifetime of these resins. Much research has thus been invested in polymer-based antifouling coatings. In the present study, poly(4-styrenesulfonate) (PSS) and a co-polymer of PSS and a zwitterionic group were used to spontaneously coat commercial Dowex 1X8 anion-exchange resin. UV-visible spectroscopy provided a precise measure of the kinetics and amount of PSS sorbed onto or into resin beads. When challenged with Chlamydomonas reinhardtii algae, uncoated resin was rapidly fouled by algae. Coating the resin with either the homopolymer of PSS or the co-polymer with zwitterion eliminated fouling. Using narrow- and wide-molecular-weight distribution PSS, a cutoff molecular weight of about 240 repeat units was found, above which PSS was unable to diffuse into the resin. Thus, only one monolayer of added PSS was sufficient to confer a highly desirable antifouling property on this resin while consuming less than 0.1% of the exchanger capacity. Radioactive sulfate ions were used to probe the kinetics of (self)exchange, which were virtually unaffected by the PSS coating. This resin treatment is a fast, ultra-low-cost step for potentially enhancing the lifetime of ion exchangers.
Collapse
|
22
|
Davari S, Omidkhah M, Abdollahi M. Improved antifouling ability of thin film composite polyamide membrane modified by a pH-sensitive imidazole-based zwitterionic polyelectrolyte. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Chou YN, Venault A, Cho CH, Sin MC, Yeh LC, Jhong JF, Chinnathambi A, Chang Y, Chang Y. Epoxylated Zwitterionic Triblock Copolymers Grafted onto Metallic Surfaces for General Biofouling Mitigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9822-9835. [PMID: 28830143 DOI: 10.1021/acs.langmuir.7b02164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Titanium and stainless steel materials are widely used in numerous devices or in custom parts for their excellent mechanical properties. However, their lack of biocompatibility seriously limits their usage in the biomedical field. This study focuses on the grafting of triblock copolymers on titanium and stainless steel metal susbtrates for improving their general biofouling resistance. The series of copolymers that we designed is composed of two blocks of zwitterionic sulfobetaine (SBMA) monomers and one block of glycidyl methacrylate (GMA). The number of repeat units forming each block, n, was finely tuned and controlled to 25, 50, 75, or 100, permitting regulation of the grafting thickness, the morphology, and the dependent properties such as the surface hydrophilicity and biofouling resistance. It was shown that the copolymer possessing n = 50 repeat units in each block, corresponding to a molecular weight of about 15.2 kDa, led to the best nonfouling properties, assessed using plasma proteins, blood cells, fibroblasts cells, and various bacteria. This was explained by an optimized grafting degree and chain organization of the copolymer. Lower value (n = 25) and higher values (n = 75, 100) led to low surface coverage and the formation of aggregates, respectively. The best copolymer was grafted onto scalpels (steel) and dental roots (titanium), and antifouling properties demonstrated using Escherichia coli and HT1080 cells. Results of this work show that this unique triblock copolymer holds promise as a potential material for surface modification of biomedical metallic devices, provided a fine-tuning of the blocks organization and length.
Collapse
Affiliation(s)
- Ying-Nien Chou
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
| | - Chia-Ho Cho
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
| | - Mei-Chan Sin
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
| | - Lu-Chen Yeh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
| | - Jheng-Fong Jhong
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yu Chang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University , Kaohsiung City 82445, Taiwan, R.O.C
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Chung-Li, Taoyuan 320, Taiwan, R.O.C
- Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Knowles BR, Wagner P, Maclaughlin S, Higgins MJ, Molino PJ. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18584-18594. [PMID: 28523917 DOI: 10.1021/acsami.7b04840] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.
Collapse
Affiliation(s)
- Brianna R Knowles
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
- ARC Research Hub for Australian Steel Manufacturing, University of Wollongong , Wollongong, NSW 2522, Australia
- BlueScope Innovation Laboratories , Old Port Road, Port Kembla, NSW 2505, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
| | - Shane Maclaughlin
- ARC Research Hub for Australian Steel Manufacturing, University of Wollongong , Wollongong, NSW 2522, Australia
- BlueScope Innovation Laboratories , Old Port Road, Port Kembla, NSW 2505, Australia
| | - Michael J Higgins
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
- ARC Research Hub for Australian Steel Manufacturing, University of Wollongong , Wollongong, NSW 2522, Australia
| | - Paul J Molino
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
- ARC Research Hub for Australian Steel Manufacturing, University of Wollongong , Wollongong, NSW 2522, Australia
| |
Collapse
|
25
|
Wang L, Wen S, Li Z. Synthesis of amphiphilic ABA triblock oligomer via ATRP and its surface properties. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of novel amphiphilic ABA-type poly(tridecafluorooctylacrylate)-poly(ethylene glycol)-poly(tridecafluorooctylacrylate) (henceforth referred to as p-TDFA-PEG-p-TDFA) triblock oligomers were successfully synthesized via atom transfer radical polymerization (ATRP) using well-defined Br-PEG-Br as macroinitiator and copper as catalyst. The block oligomers were characterized by Fourier transform infrared (FTIR) spectroscopy and 1H and 19F nuclear magnetic resonances (NMR). Gel permeation chromatography (GPC) showed that the block oligomers have been obtained with narrow molecular weight distributions of 1.22–1.33. X-ray photoelectron spectroscopy (XPS) was carried out to confirm the attachment of p-TDFA-PEG-p-TDFA onto the silicon substrate, together with the chemical compositions of p-TDFA-PEG-p-TDFA. The wetabilities of the oligomer films were measured by water contact angles (CAs). Water CAs of p-TDFA-PEG-p-TDFA film were measured and their morphologies were tested by atomic force microscopy (AFM). The result showed that the CAs of the oligomer films, which possess fluoroalkyl groups assembled on the outer surface, increase after heating due to the migration of fluoroalkyl groups and the resulted microphase separation of the p-TDFA-PEG-p-TDFA.
Collapse
Affiliation(s)
- Lei Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| | - Shaoqing Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| | - Zhanxiong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| |
Collapse
|
26
|
Biomimetic Principles to Develop Blood Compatible Surfaces. Int J Artif Organs 2017; 40:22-30. [DOI: 10.5301/ijao.5000559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
Functionalized biomaterial surface patterns capable of resisting nonspecific adsorption while retaining their bioactivity are crucial in the advancement of biomedical technologies, but currently available biomaterials intended for use in whole blood frequently suffer from nonspecific adsorption of proteins and cells, leading to a loss of activity over time. In this review, we address two concepts for the design and modification of blood compatible biomaterial surfaces, zwitterionic modification and surface functionalization with glycans – both of which are inspired by the membrane structure of mammalian cells – and discuss their potential for biomedical applications.
Collapse
|
27
|
Lange SC, van Andel E, Smulders MMJ, Zuilhof H. Efficient and Tunable Three-Dimensional Functionalization of Fully Zwitterionic Antifouling Surface Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10199-10205. [PMID: 27687696 DOI: 10.1021/acs.langmuir.6b02622] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To enhance the sensitivity and selectivity of surface-based (bio)sensors, it is of crucial importance to diminish background signals that arise from the nonspecific binding of biomolecules, so-called biofouling. Zwitterionic polymer brushes have been shown to be excellent antifouling materials. However, for sensing purposes, antifouling does not suffice but needs to be combined with the possibility to efficiently modify the brush with recognition units. So far this has been achieved only at the expense of either antifouling properties or binding capacity. Herein we present a conceptually new approach by integrating both characteristics into a single tailor-made monomer: a novel sulfobetaine-based zwitterionic monomer equipped with a clickable azide moiety. Copolymerization of this monomer with a well-established standard sulfobetaine monomer results in highly antifouling surface coatings with a large yet tunable number of clickable groups present throughout the entire brush. Subsequent functionalization of the azido brushes via widely used strain-promoted alkyne azide click reactions yields fully zwitterionic 3D-functionalized coatings with a recognition unit of choice that can be tailored for any specific application. Here we show a proof of principle with biotin-functionalized brushes on Si3N4 that combine excellent antifouling properties with specific avidin binding from a protein mixture. The signal-to-noise ratio is significantly improved over that of traditional chain-end modification of sulfobetaine polymer brushes, even if the azide content is lowered to 1%. This therefore offers a viable approach to the development of biosensors with greatly enhanced performance on any surface.
Collapse
Affiliation(s)
- Stefanie C Lange
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Esther van Andel
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Cell Biology and Immunology Group, Wageningen University , 6709 PG Wageningen, The Netherlands
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University , 92 Weijin Road, Tianjin, OR China
| |
Collapse
|
28
|
You M, Wang P, Xu M, Yuan T, Meng J. Fouling resistance and cleaning efficiency of stimuli-responsive reverse osmosis (RO) membranes. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Chou YN, Sun F, Hung HC, Jain P, Sinclair A, Zhang P, Bai T, Chang Y, Wen TC, Yu Q, Jiang S. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media. Acta Biomater 2016; 40:31-37. [PMID: 27090589 DOI: 10.1016/j.actbio.2016.04.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 12/27/2022]
Abstract
UNLABELLED For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (<5ng/cm(2)). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. STATEMENT OF SIGNIFICANCE In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors.
Collapse
Affiliation(s)
- Ying-Nien Chou
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA; Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fang Sun
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Priyesh Jain
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Andrew Sinclair
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Peng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Tao Bai
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li, Taoyuan 320, Taiwan
| | - Ten-Chin Wen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Qiuming Yu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750, USA.
| |
Collapse
|
30
|
Chou YN, Wen TC, Chang Y. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomater 2016; 40:78-91. [PMID: 27045347 DOI: 10.1016/j.actbio.2016.03.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/11/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED Most biomaterials have a lack of a simple, efficient and robust antifouling modification approach that limits their potential for biomedical applications. The challenge is to develop a universal surface grafting solution to meet the antifouling requirement. In this work, a new formulation of zwitterionic sulfobetaine-based copolymer, ploy(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), is designed as a chemical for grafting onto material and is introduced for the surface zwitterionization of versatile biomaterials, including ceramic, metal, and plastics. The grafting principle used to stabilize the poly(GMA-co-SBMA) on the target surfaces is based the base-induced ring opening reaction between epoxied and hydroxyl groups. A universal surface modification procedure was developed and performed from an optimized sequence of ultra-violet ozone pretreatment and trimethylamine-catalyzed zwitterionization on a selective case of versatile surfaces including silicon wafer, ceramic glass, titanium, steel, and polystyrene. The prepared poly(GMA-co-SBMA) with an optimum PGMA/PSBMA ratio of 0.23 and a molecular weight of 25kDa exhibited the best resistance to fibrinogen adsorption with over 90% reduction as well as blood cell activation, tissue cell adhesion and bacterial attachment on the zwitterionic copolymer grafted surfaces. The developed antifouling grafting introduces a universal modification method to generate zwitterionic interfaces on versatile biomaterial substrates, providing great potential for application in medical device coating. STATEMENT OF SIGNIFICANCE A simple, efficient and robust antifouling modification approach is critical for many scientific interests and industrial applications. In current stage, the existing available zwitterionic modifications suffer from the lack of universal surface grafting solution to achieve the antifouling requirement on versatile biomaterial substrates. In this study, we synthesized and characterized a new zwitterionic sulfobetaine-based copolymer, ploy(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), which is designed as chemical grafting onto material and introduced for the surface zwitterionization of versatile biomaterials, including ceramic, metal, and plastics. This research have a promising opportunity for the application of stealth biomaterial interfaces on the next generation of medical devices.
Collapse
|
31
|
Demillo VG, Zhu X. Zwitterionic amphiphile coated magnetofluorescent nanoparticles - synthesis, characterization and tumor cell targeting. J Mater Chem B 2015; 3:8328-8336. [PMID: 26509038 PMCID: PMC4618671 DOI: 10.1039/c5tb01116g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetofluorescent nanoparticles (MFNPs) have recently attracted significant research interests due to their potential applications in biological manipulation and imaging. In this work, through a simple and fast self-assembling process, we first report the preparation of zwitterionic MFNPs (ZW-MFNPs) in the form of micelles using our newly synthesized zwitterionic amphiphiles, CuInS2/ZnS quantum dots, and MnFe2O4 magnetic nanoparticles. ZW-MFNPs integrate both MnFe2O4 magnetic nanoparticles and CuInS2/ZnS quantum dots in their hydrophobic cores and zwitterionic groups such as carboxybetaine and sulfobetaine on their hydrophilic shells. ZW-MFNPs possess dual imaging properties, high (Mn + Fe) recovery, excellent stability in aqueous solutions with a wide pH/ionic-strength range and physiological media, minimal cytotoxicity, and specific targeting to brain tumor cells after bioconjugation with chlorotoxin. The unique characteristics of ZW-MFNPs may open an avenue for these particles to be employed in broad biomedical applications.
Collapse
Affiliation(s)
- Violeta G. Demillo
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, USA
- Biomedical Engineering Program, University of Nevada, Reno, NV, USA
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno, NV, USA
- Biomedical Engineering Program, University of Nevada, Reno, NV, USA
| |
Collapse
|
32
|
Du H, Qian X. The hydration properties of carboxybetaine zwitterion brushes. J Comput Chem 2015; 37:877-85. [DOI: 10.1002/jcc.24234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Hongbo Du
- Department of Biomedical Engineering; University of Arkansas; Fayetteville Arkansas 72701
| | - Xianghong Qian
- Department of Biomedical Engineering; University of Arkansas; Fayetteville Arkansas 72701
| |
Collapse
|
33
|
Ramireddy RR, Prasad P, Finne A, Thayumanavan S. Zwitterionic Amphiphilic Homopolymer Assemblies. Polym Chem 2015; 6:6083-6087. [PMID: 26779289 PMCID: PMC4713042 DOI: 10.1039/c5py00879d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Zwitterionic amphiphilic homopolymers can be conveniently prepared in one-pot using activated ester-based polymer precursors. We show that these zwitterionic polymers can (i) spontaneously self-assemble to form micelle-like and inverse micelle-like assemblies depending on the solvent environment; (ii) act as hydrophilic and hydrophobic nanocontainers in apolar and polar solvents respectively; (iii) undergo pH-responsive surface charge and size variations; (iv) exhibit least cytotoxicity compared to structurally analogous amphiphilic homopolymers.
Collapse
Affiliation(s)
| | - P Prasad
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - A Finne
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
34
|
Jiménez ZA, Yoshida R. Temperature Driven Self-Assembly of a Zwitterionic Block Copolymer That Exhibits Triple Thermoresponsivity and pH Sensitivity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00769] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zulma A. Jiménez
- Department of Materials Engineering,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Koubková J, Macková H, Proks V, Trchová M, Brus J, Horák D. RAFT of sulfobetaine for modifying poly(glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jana Koubková
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovského Sq. 2, 162 06 Prague 6 Czech Republic
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology; University of Pardubice; Studentská 95, 532 10 Pardubice Czech Republic
| | - Hana Macková
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovského Sq. 2, 162 06 Prague 6 Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovského Sq. 2, 162 06 Prague 6 Czech Republic
| | - Miroslava Trchová
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovského Sq. 2, 162 06 Prague 6 Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovského Sq. 2, 162 06 Prague 6 Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovského Sq. 2, 162 06 Prague 6 Czech Republic
| |
Collapse
|
36
|
Guo S, Jańczewski D, Zhu X, Quintana R, He T, Neoh KG. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. J Colloid Interface Sci 2015; 452:43-53. [PMID: 25913777 DOI: 10.1016/j.jcis.2015.04.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. EXPERIMENTS Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. FINDINGS The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential.
Collapse
Affiliation(s)
- Shanshan Guo
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore
| | - Dominik Jańczewski
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore; Laboratory of Technological Processes, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Xiaoying Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore.
| | - Robert Quintana
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Tao He
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576, Singapore; Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260, Singapore.
| |
Collapse
|
37
|
Nurioglu AG, Esteves ACC, de With G. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J Mater Chem B 2015; 3:6547-6570. [DOI: 10.1039/c5tb00232j] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antifouling (AF) coatings bring economic benefits but raise environmental and health concerns. Non-toxic, non-biocide-release AF strategies are reviewed according to “detachment of biofoulants” and “prevention of attachment” approaches. Chemical and physical aspects of AF mechanisms and new amphiphilic, superhydrophilic and topographic AF strategies are discussed.
Collapse
Affiliation(s)
- Ayda G. Nurioglu
- Laboratory of Materials and Interface Chemistry
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| | - A. Catarina C. Esteves
- Laboratory of Materials and Interface Chemistry
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| | - Gijsbertus de With
- Laboratory of Materials and Interface Chemistry
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| |
Collapse
|
38
|
Ye T, Song Y, Zheng Q. Synthesis and solution property of acrylamide-sulfobetaine copolymers. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3467-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Kabiri M, Unsworth LD. Application of Isothermal Titration Calorimetry for Characterizing Thermodynamic Parameters of Biomolecular Interactions: Peptide Self-Assembly and Protein Adsorption Case Studies. Biomacromolecules 2014; 15:3463-73. [DOI: 10.1021/bm5004515] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maryam Kabiri
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Larry D. Unsworth
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
- NanoLife
Group, National Institute for Nanotechnology, National Research Council (Canada), Edmonton, Alberta T6G
2M9,Canada
| |
Collapse
|
40
|
Zhan X, Zhang G, Zhang Q, Chen F. Preparation, surface wetting properties, and protein adsorption resistance of well-defined amphiphilic fluorinated diblock copolymers. J Appl Polym Sci 2014. [DOI: 10.1002/app.41167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoli Zhan
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Guangfa Zhang
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Qinghua Zhang
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| | - Fengqiu Chen
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang 310027 People's Republic of China
| |
Collapse
|
41
|
Quintana R, Jańczewski D, Vasantha VA, Jana S, Lee SSC, Parra-Velandia FJ, Guo S, Parthiban A, Teo SLM, Vancso GJ. Sulfobetaine-based polymer brushes in marine environment: is there an effect of the polymerizable group on the antifouling performance? Colloids Surf B Biointerfaces 2014; 120:118-24. [PMID: 24907581 DOI: 10.1016/j.colsurfb.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/29/2014] [Accepted: 04/17/2014] [Indexed: 01/12/2023]
Abstract
Three different zwitterionic polymer brush coatings for marine biofouling control were prepared by surface-initiated atom transfer radical polymerization (ATRP) of sulfobetaine-based monomers including methacrylamide (SBMAm), vinylbenzene (SBVB) and vinylimidazolium (SBVI). None of these brush systems have been assessed regarding marine antifouling performance. Antifouling tests performed indicate that surfaces featuring these three brush systems substantially reduce the adhesion of the marine microalgae, Amphora coffeaeformis, and the settlement of cyprid larvae of the barnacle, Amphibalanus amphitrite, in a similar way, displaying comparable performance. Thus, it appears that the chemical structure of the polymerizable group has no substantial influence on marine antifouling performance.
Collapse
Affiliation(s)
- Robert Quintana
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore.
| | - Dominik Jańczewski
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore.
| | - Vivek Arjunan Vasantha
- Institute of Chemical and Engineering Science, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Satyasankar Jana
- Institute of Chemical and Engineering Science, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Serina Siew Chen Lee
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| | - Fernando Jose Parra-Velandia
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| | - Shifeng Guo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore.
| | - Anbanandam Parthiban
- Institute of Chemical and Engineering Science, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Serena Lay-Ming Teo
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.
| | - G Julius Vancso
- Institute of Chemical and Engineering Science, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore; MESA+ Institute for Nanotechnology, Materials Science and Technology of Polymers, University of Twente, PO Box 217 Enschede, 7500 AE The Netherlands.
| |
Collapse
|
42
|
Kang R, Oh SH, Kim DY. Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6227-6236. [PMID: 24650233 DOI: 10.1021/am500708k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, we synthesized water-soluble polyfluorene derivatives (WPFs) with anionic and/or cationic side chains, which were used as an indium tin oxide (ITO) cathode interfacial layer in inverted polymer solar cells. Three WPFs (WPFN+, WPFZW, and WPFS-) were obtained via Suzuki coupling reactions. Their solubility in polar solvents allowed the WPFs to be used as interfacial layers in inverted polymer solar cells (I-PSCs). Among the WPF-modified ITO electrodes, WPFN+ (with ammonium side chains)-modified ITO can be used as a cathode for electron extraction, while WPFS- (with sulfonate side chains)-modified ITO cannot extract electrons in I-PSCs based on poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM). The electron extraction of WPF-modified ITO can mainly be attributed to the different dipole formations at the WPF/ITO interfaces, based on the types of ionic groups on the side chains of the polyfluorene. In addition, we observed that the extent of ITO work-function modification was not always exactly correlated with the device performance based on the results obtained using a WPFZW (with ammonium and sulfonate side chains)-modified ITO electrode.
Collapse
Affiliation(s)
- Rira Kang
- Heeger Center for Advanced Materials (HCAM), School of Materials Science and Engineering and ‡Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology , 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | | | | |
Collapse
|
43
|
|
44
|
Liu Q, Li W, Wang H, Liu L. A facile method of using sulfobetaine-containing copolymers for biofouling resistance. J Appl Polym Sci 2014. [DOI: 10.1002/app.40789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qingsheng Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Wenchen Li
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Hua Wang
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering; University of Akron; Akron Ohio 44325
| |
Collapse
|
45
|
Vasantha VA, Jana S, Parthiban A, Vancso JG. Water swelling, brine soluble imidazole based zwitterionic polymers – synthesis and study of reversible UCST behaviour and gel–sol transitions. Chem Commun (Camb) 2014; 50:46-8. [DOI: 10.1039/c3cc44407d] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Quintana R, Gosa M, Jańczewski D, Kutnyanszky E, Vancso GJ. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10859-67. [PMID: 23876125 DOI: 10.1021/la402287a] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The successful implementation of zwitterionic polymeric brushes as antifouling materials for marine applications is conditioned by the stability of the polymer chain and the brush-anchoring segment in seawater. Here we demonstrate that robust, antifouling, hydrophilic polysulfobetaine-based brushes with diblock architecture can be fabricated by atom-transfer radical polymerization (ATRP) using initiator-modified surfaces. Sequential living-type polymerization of hydrophobic styrene or methyl methacrylate and commercially available hydrophilic sulfobetaine methacrylamide (SBMAm) monomer is employed. Stability enhancement is accomplished by protecting the siloxane anchoring bond of brushes on the substrate, grafted from silicon oxide surfaces. The degradation of unprotected PSBMAm brushes is clearly evident after a 3 month immersion challenge in sterilized artificial seawater. Ellipsometry and atomic force microscopy (AFM) measurements are used to follow changes in coating thickness and surface morphology. Comparative stability results indicate that surface-tethered poly(methyl methacrylate) and polystyrene hydrophobic blocks substantially improve the stability of zwitterionic brushes in an artificial marine environment. In addition, differences between the hydration of zwitterionic brushes in fresh and salt water are discussed to provide a better understanding of hydration and degradation processes with the benefit of improved design of polyzwitterionic coatings.
Collapse
Affiliation(s)
- Robert Quintana
- Institute of Materials Research and Engineering (IMRE), A*STAR, 3 Research Link, Singapore 117602
| | | | | | | | | |
Collapse
|
47
|
Matovu JB, Ong P, Leunissen LHA, Krishnan S, Babu SV. Use of Multifunctional Carboxylic Acids and Hydrogen Peroxide To Improve Surface Quality and Minimize Phosphine Evolution During Chemical Mechanical Polishing of Indium Phosphide Surfaces. Ind Eng Chem Res 2013. [DOI: 10.1021/ie400689q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John B. Matovu
- Department
of Chemical and Biomolecular
Engineering and the Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United
States
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001
Heverlee, Belgium
| | - Patrick Ong
- Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, 3001
Heverlee, Belgium
| | | | - Sitaraman Krishnan
- Department
of Chemical and Biomolecular
Engineering and the Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United
States
| | - S. V. Babu
- Department
of Chemical and Biomolecular
Engineering and the Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United
States
| |
Collapse
|
48
|
Tsibouklis J, Middleton AM, Patel N, Pratten J. Toward mucoadhesive hydrogel formulations for the management of xerostomia: the physicochemical, biological, and pharmacological considerations. J Biomed Mater Res A 2013; 101:3327-38. [PMID: 23529996 DOI: 10.1002/jbm.a.34626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 01/17/2023]
Abstract
Although hydrogel formulations that may be applied to many mucosal surfaces are now readily accessible, little research effort has been concentrated on the development of systems that may be usefully employed for the prolonged hydration of the oral cavity. To this end, and set within the context of oral care in general, this review considers the requirements for the design of hydrogel formulations with an affinity for buccal cells and details methods for evaluating the performance of these formulations as treatments for the management of xerostomia.
Collapse
Affiliation(s)
- John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT, United Kingdom
| | | | | | | |
Collapse
|
49
|
Toki I, Komatsu M, Shimizu Y, Hara Y. Surface modification of contact lenses using adsorption of ethylene oxide branched copolymers. J Appl Polym Sci 2012. [DOI: 10.1002/app.37966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Nunes SP, Car A. From Charge-Mosaic to Micelle Self-Assembly: Block Copolymer Membranes in the Last 40 Years. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202870y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suzana Pereira Nunes
- Water Desalination
and Reuse Center and ‡Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology,
23955-6900 Thuwal, Saudi Arabia
| | - Anja Car
- Water Desalination
and Reuse Center and ‡Advanced Membrane and Porous Materials Center, King Abdullah University of Science and Technology,
23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|