1
|
Costa J, Baratto MC, Spinelli D, Leone G, Magnani A, Pogni R. A Novel Bio-Adhesive Based on Chitosan-Polydopamine-Xanthan Gum for Glass, Cardboard and Textile Commodities. Polymers (Basel) 2024; 16:1806. [PMID: 39000661 PMCID: PMC11244100 DOI: 10.3390/polym16131806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based adhesive with improved properties. The polydopamine association with chitosan presents a significant increase in adhesiveness compared to pure chitosan. Polydopamine is synthesized by the enzymatic action of laccase from Trametes versicolor at pH = 4.5, in the absence or presence of chitosan. This pH facilitates chitosan's solubility and the occurrence of catechol in its reduced form (pH < 5.5), thereby increasing the final adhesive properties. To further enhance the adhesive properties, various crosslinking agents were tested. A multi-technique approach was used for the characterization of formulations. The formulation based on 3% chitosan, 50% polydopamine, and 3% xanthan gum showed a spectacular increase in adhesive properties when tested on glass, cardboard and textile. This formulation increased water resistance, maintaining the adhesion of a sample soaked in water for up to 10 h. For cardboard and textile, material rapture occurred, in mechanical tests, prior to adhesive bond failure. Furthermore, all the samples showed antiflame properties, expanding the benefits of their use. Comparison with commercial glues confirms the remarkable adhesive properties of the new formulation.
Collapse
Affiliation(s)
- Jessica Costa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Via del Gelso 13, 59100 Prato, Italy;
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.C.); (M.C.B.); (G.L.); (A.M.)
- Centre for Colloid and Surface Science (CSGI), Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Sharma A, Dutta T, Srivastava A. Underwater Adhesives from Redox-Responsive Polyplexes of Thiolated Polyamide Polyelectrolytes. Chemistry 2024; 30:e202302157. [PMID: 37751057 DOI: 10.1002/chem.202302157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
We report the fabrication of optically clear underwater adhesives using polyplexes of oppositely charged partially-thiolated polyamide polyelectrolytes (TPEs). The thiol content of the constituent PEs was varied to assess its influence on the adhesive properties of the resulting glues. These catechol-free, redox-responsive TPE-adhesives were formulated in aquo and exhibited high optical transparency and strong adhesion even on submerged or moist surfaces of diverse polar substrates such as glass, aluminium, wood, and bone pieces. The adhesives could be cured under water through oxidative disulphide crosslinking of the constituent TPEs. The polyamide backbone provided multi-site H-bonding interactions with the substrates while the disulphide crosslinking provided the cohesive strength to the glue. Strong adhesion of mammalian bones (load bearing capacity upto 7 kg/cm2 ) was achieved using the adhesive containing 30 mol % thiol residues. Higher pH and use of oxidants such as povidone-iodine solution enhanced the curing rate of the adhesives, and so did the use of Tris buffer instead of Phosphate buffer. The porous architecture of the adhesive and its progressive degradation in aqueous medium over the course of three weeks bode well for diverse biomedical applications where temporary adhesion of tissues is required.
Collapse
Affiliation(s)
- Aashish Sharma
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
- Current Affiliation: School of Medical and Allied Sciences, G.D. Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Tanmay Dutta
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, India
| |
Collapse
|
3
|
Tian Y, Huang X, Cheng Y, Niu Y, Ma J, Zhao Y, Kou X, Ke Q. Applications of adhesives in textiles: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Silvestre J, Delattre C, Michaud P, de Baynast H. Optimization of Chitosan Properties with the Aim of a Water Resistant Adhesive Development. Polymers (Basel) 2021; 13:polym13224031. [PMID: 34833330 PMCID: PMC8622511 DOI: 10.3390/polym13224031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a bio-sourced polysaccharide widely used in different fields from health to wastewater treatment through food supplements. Another important use of this polymer is adhesion. Indeed, the current demand to replace non-natural and hazardous polymers by greener ones is well present in the adhesive field and open good opportunities for chitosan and its derivatives. However, chitosan is water soluble and exhibits a poor water-resistance in the field of adhesion which reduces the possibilities of its utilization within the paste field. This review focuses on exploration of different ways available to modify the chitosan and transform it into a water-resistant adhesive. The first part concerns the chitosan itself and gives important information from the discovery of chitin to the pure chitosan ready to use. The second part reviews the background information relative to adhesion theories, ideal properties of adhesives and the characteristics of chitosan as an adhesive. The last part focuses on exploration of the possible modification of chitosan to make it a water-resistant chemical adhesive.
Collapse
Affiliation(s)
- Jeanne Silvestre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
| | - Hélène de Baynast
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
- Correspondence: ; Tel.: +33-473-405-265
| |
Collapse
|
5
|
Ghosh T, Singh R, Nesamma AA, Jutur PP. Marine Polysaccharides: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Bal-Ozturk A, Cecen B, Avci-Adali M, Topkaya SN, Alarcin E, Yasayan G, Ethan YC, Bulkurcuoglu B, Akpek A, Avci H, Shi K, Shin SR, Hassan S. Tissue Adhesives: From Research to Clinical Translation. NANO TODAY 2021; 36:101049. [PMID: 33425002 PMCID: PMC7793024 DOI: 10.1016/j.nantod.2020.101049] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sutures, staples, clips and skin closure strips are used as the gold standard to close wounds after an injury. In spite of being the present standard of care, the utilization of these conventional methods is precarious amid complicated and sensitive surgeries such as vascular anastomosis, ocular surgeries, nerve repair, or due to the high-risk components included. Tissue adhesives function as an interface to connect the surfaces of wound edges and prevent them from separation. They are fluid or semi-fluid mixtures that can be easily used to seal any wound of any morphology - uniform or irregular. As such, they provide alternatives to new and novel platforms for wound closure methods. In this review, we offer a background on the improvement of distinctive tissue adhesives focusing on the chemistry of some of these products that have been a commercial success from the clinical application perspective. This review is aimed to provide a guide toward innovation of tissue bioadhesive materials and their associated biomedical applications.
Collapse
Affiliation(s)
- Ayça Bal-Ozturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Zeytinburnu, Istanbul, Turkey
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpasa, Istanbul, Turkey
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpasa, Istanbul, Turkey
| | - Yi-Chen Ethan
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | - Ali Akpek
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze Kocaeli-Turkey
- Department of Bioengineering, Gebze Technical University, 41400, Gebze Kocaeli-Turkey
- Sabanci University Nanotechnology Research & Application Center, 34956, Tuzla Istanbul-Turkey
| | - Huseyin Avci
- Department of Metallurgical and Materials Engineering, Faculty of Engineering and Architecture Eskisehir Osmangazi University Eskisehir Turkey
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Marques AC, Mocanu A, Tomić NZ, Balos S, Stammen E, Lundevall A, Abrahami ST, Günther R, de Kok JMM, Teixeira de Freitas S. Review on Adhesives and Surface Treatments for Structural Applications: Recent Developments on Sustainability and Implementation for Metal and Composite Substrates. MATERIALS 2020; 13:ma13245590. [PMID: 33302442 PMCID: PMC7763528 DOI: 10.3390/ma13245590] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022]
Abstract
Using adhesives for connection technology has many benefits. It is cost-efficient, fast, and allows homogeneous stress distribution between the bonded surfaces. This paper gives an overview on the current state of knowledge regarding the technologically important area of adhesive materials, as well as on emergent related technologies. It is expected to fill some of the technological gaps between the existing literature and industrial reality, by focusing at opportunities and challenges in the adhesives sector, on sustainable and eco-friendly chemistries that enable bio-derived adhesives, recycling and debonding, as well as giving a brief overview on the surface treatment approaches involved in the adhesive application process, with major focus on metal and polymer matrix composites. Finally, some thoughts on the connection between research and development (R&D) efforts, industry standards and regulatory aspects are given. It contributes to bridge the gap between industry and research institutes/academy. Examples from the aeronautics industry are often used since many technological advances in this industry are innovation precursors for other industries. This paper is mainly addressed to chemists, materials scientists, materials engineers, and decision-makers.
Collapse
Affiliation(s)
- Ana C. Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Alexandra Mocanu
- Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 1-7 Gh. Polizu, 011061 Bucharest, Romania;
| | - Nataša Z. Tomić
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade Ltd., Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Sebastian Balos
- Department of Production Engineering, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia;
| | - Elisabeth Stammen
- Department Adhesive Bonding, Institute of Joining and Welding, Technische Universität Braunschweig, Langer Kamp 8, D-38106 Braunschweig, Germany;
| | - Asa Lundevall
- RISE IVF AB, Lindholmspiren 7 A, 417 56 Göteborg, Sweden;
| | - Shoshan T. Abrahami
- Research Group Electrochemical and Surface Engineering (SURF), Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Roman Günther
- Laboratory of Adhesives and Polymer Materials, Institute of Materials and Process Engineering, Zurich University of Applied Sciences, Technikumstrasse 9, 8401 Winterthur, Switzerland;
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - John M. M. de Kok
- GKN Fokker Aerostructures BV, Industrieweg 4, 3351 LB Papendrecht, The Netherlands;
| | - Sofia Teixeira de Freitas
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Alkyl-Chitosan-Based Adhesive: Water Resistance Improvement. Molecules 2019; 24:molecules24101987. [PMID: 31126129 PMCID: PMC6572013 DOI: 10.3390/molecules24101987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
A chemical modification by grafting alkyl chains using an octanal (C8) on chitosan was conducted with the aim to improve its water resistance for bonding applications. The chemical structure of the modified polymers was determined by NMR analyses revealing two alkylation degrees (10 and 15%). In this study, the flow properties of alkyl-chitosans were also evaluated. An increase in the viscosity was observed in alkyl-chitosan solutions compared with solutions of the same concentration based on native chitosan. Moreover, the evaluation of the adhesive strength (bond strength and shear stress) of both native and alkyl-chitosans was performed on two different double-lap adherends (aluminum and wood). Alkyl-chitosans (10 and 15%) maintain sufficient adhesive properties on wood and exhibit better water resistance compared to native chitosan.
Collapse
|
9
|
Modification of Chitosan for the Generation of Functional Derivatives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071321] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with the most notable growth and potential for applications in various fields. The progress in chitin chemistry and the need to replace additives and non-natural polymers with functional natural-based polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and biological properties can be obtained from this ubiquitous polysaccharide that is composed of β-(1,4)-2-acetamido-2-deoxy-d-glucose repeating units. This review is presented to share insights into multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional properties. An overview will be given on bioadhesive applications, antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments in medical fields or biodegradability.
Collapse
|
10
|
Reinforcement of Thermoplastic Corn Starch with Crosslinked Starch/Chitosan Microparticles. Polymers (Basel) 2018; 10:polym10090985. [PMID: 30960910 PMCID: PMC6403725 DOI: 10.3390/polym10090985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/30/2022] Open
Abstract
Microparticles of corn starch and chitosan crosslinked with glutaraldehyde, produced by the solvent exchange technique, are studied as reinforcement fillers for thermoplastic corn starch plasticized with glycerol. The presence of 10% w/w chitosan in the microparticles is shown to be essential to guaranteeing effective crosslinking, as demonstrated by water solubility assays. Crosslinked chitosan forms an interpenetrating polymer network with starch chains, producing microparticles with a very low solubility. The thermal stability of the microparticles is in agreement with their polysaccharide composition. An XRD analysis showed that they have crystalline fraction of 32% with Va-type structure, and have no tendency to undergo retrogradation. The tensile strength, Young’s modulus, and toughness of thermoplastic starch increased by the incorporation of the crosslinked starch/chitosan microparticles by melt-mixing. Toughness increased 360% in relation to unfilled thermoplastic starch.
Collapse
|
11
|
|
12
|
|
13
|
|