1
|
Yang Z, Wen J, Zhang G, Tang C, Deng Q, Ling J, Hu H. Mechanical Characteristics of Multi-Level 3D-Printed Silicone Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4097. [PMID: 39203275 PMCID: PMC11356099 DOI: 10.3390/ma17164097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024]
Abstract
Three-dimensional-printed silicone rubber foams, with their designable and highly ordered pore structures, have shown exceptional potential for engineering applications, particularly in areas requiring energy absorption and cushioning. However, optimizing the mechanical properties of these foams through structural design remains a significant challenge. This study addresses this challenge by formulating the research question: How do different 3D-printed topologies and printing parameters affect the mechanical properties of silicone rubber foams, and how can we design a novel topological structure? To answer this, we explored the mechanical behavior of two common structures-simple cubic (SC) and face-centered tetragonal (FCT)-by varying printing parameters such as filament spacing, filament diameter, and layer height. Furthermore, we proposed a novel two-level 3D-printed structure, combining SC and FCT configurations to enhance performance. The results demonstrated that the two-level SC-SC structure exhibited a specific energy absorption of 8.2 to 21.0 times greater than the SC structure and 2.3 to 7.2 times greater than the FCT structure. In conclusion, this study provides new insights into the design of 3D-printed silicone rubber foams, offering a promising approach to developing advanced cushioning materials with superior energy absorption capabilities.
Collapse
Affiliation(s)
- Zhirong Yang
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China; (Z.Y.); (J.W.); (G.Z.); (J.L.)
| | - Jinpeng Wen
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China; (Z.Y.); (J.W.); (G.Z.); (J.L.)
| | - Guoqi Zhang
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China; (Z.Y.); (J.W.); (G.Z.); (J.L.)
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China;
| | - Qingtian Deng
- School of Science, Chang’an University, Xi’an 710064, China;
| | - Jixin Ling
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China; (Z.Y.); (J.W.); (G.Z.); (J.L.)
| | - Haitao Hu
- Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China; (Z.Y.); (J.W.); (G.Z.); (J.L.)
| |
Collapse
|
2
|
Dimmock RL, Rotherham M, El Haj AJ, Yang Y. Fabrication and Characterisation of Hydrogels with Reversible Wrinkled Surfaces for Limbal Study and Reconstruction. Gels 2023; 9:915. [PMID: 37999005 PMCID: PMC10671082 DOI: 10.3390/gels9110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
In the biomedical field, there is a demand for the development of novel approaches for the investigation of optical epithelial anatomical features with biomimetic materials. These materials are not only required to replicate structures but also enable dynamic modelling for disease states such as limbal stem cell deficiency and ageing. In the present study, the effective generation of reversible wrinkled polydimethylsiloxane (PDMS) substrates was undertaken to mimic the undulating anatomy of the limbal epithelial stem cell niche. This undulating surface pattern was formed through a dual treatment with acid oxidation and plasma using an innovatively designed stretching frame. This system enabled the PDMS substrate to undergo deformation and relaxation, creating a reversible and tuneable wrinkle pattern with cell culture applications. The crypt-like pattern exhibited a width of 70-130 µm and a depth of 17-40 µm, resembling the topography of a limbal epithelial stem cell niche, which is characterised by an undulating anatomy. The cytocompatibility of the patterned substrate was markedly improved using a gelatin methacrylate polymer (GelMa) coating. It was also observed that these wrinkled PDMS surfaces were able to dictate cell growth patterns, showing alignment in motile cells and colony segregation in colony-forming cells when using human and porcine limbal cells, respectively.
Collapse
Affiliation(s)
- Ryan L. Dimmock
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Michael Rotherham
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Alicia J. El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK
| |
Collapse
|
3
|
Cazacu M, Dascalu M, Stiubianu GT, Bele A, Tugui C, Racles C. From passive to emerging smart silicones. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Amassing remarkable properties, silicones are practically indispensable in our everyday life. In most classic applications, they play a passive role in that they cover, seal, insulate, lubricate, water-proof, weather-proof etc. However, silicone science and engineering are highly innovative, seeking to develop new compounds and materials that meet market demands. Thus, the unusual properties of silicones, coupled with chemical group functionalization, has allowed silicones to gradually evolve from passive materials to active ones, meeting the concept of “smart materials”, which are able to respond to external stimuli. In such cases, the intrinsic properties of polysiloxanes are augmented by various chemical modifications aiming to attach reactive or functional groups, and/or by engineering through proper cross-linking pattern or loading with suitable fillers (ceramic, magnetic, highly dielectric or electrically conductive materials, biologically active, etc.), to add new capabilities and develop high value materials. The literature and own data reflecting the state-of-the art in the field of smart silicones, such as thermoplasticity, self-healing ability, surface activity, electromechanical activity and magnetostriction, thermo-, photo-, and piezoresponsivity are reviewed.
Collapse
Affiliation(s)
- Maria Cazacu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Mihaela Dascalu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - George-Theodor Stiubianu
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Adrian Bele
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Codrin Tugui
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| | - Carmen Racles
- Department of Inorganic Polymers , “Petru Poni” Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A , 700487 Iasi , Romania
| |
Collapse
|
4
|
Racles C, Bele A, Vasiliu AL, Sacarescu L. Emulsion Gels as Precursors for Porous Silicones and All-Polymer Composites-A Proof of Concept Based on Siloxane Stabilizers. Gels 2022; 8:377. [PMID: 35735721 PMCID: PMC9222695 DOI: 10.3390/gels8060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/05/2022] Open
Abstract
In spite of its versatility, the emulsion templating method is rather uncommon for the preparation of porous silicones. In this contribution, two siloxane-containing stabilizers, designed to be soluble in polar (water) and non-polar (toluene) solvents, respectively, were used in low concentrations to produce stable emulsions, wherein polysiloxane gels were obtained by UV-photoinitiated thiol-ene click cross-linking. The stabilizers exhibited negative interfacial tension, as measured by Wilhelmy plate tensiometry. The emulsion gels evolved into porous silicones (xerogels), with tunable morphology and properties. According to TEM and SEM investigations, the emulsion template was preserved in the final materials. Several parameters (e.g., the structure of the polysiloxane precursors, composition of the emulsion gels, nature of the continuous phase, cross-linking conditions, or additives) can be varied in order to obtain porous elastic materials with desired properties, such as Janus membranes, absorbent monoliths, all-polymer porous composites, or silicone-swollen gels. The feasibility of these types of materials was tested, and exemplary porous silicones were briefly characterized by contact angle measurements, mechanical testing, and absorption tests. The proposed method is simple, fast, and economic, uses very little amounts of stabilizers, and can be adjusted as a green technique. In this contribution, all the silicon-based materials with a convenient design were prepared in house.
Collapse
Affiliation(s)
- Carmen Racles
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.B.); (L.S.)
| | - Adrian Bele
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.B.); (L.S.)
| | - Ana-Lavinia Vasiliu
- Mihai Dima Laboratory of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania;
| | - Liviu Sacarescu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania; (A.B.); (L.S.)
| |
Collapse
|
5
|
Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass Microspheres. MATERIALS 2022; 15:ma15051652. [PMID: 35268882 PMCID: PMC8910890 DOI: 10.3390/ma15051652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
Polydimethylsiloxane (PDMS) is the most widely used silicon-based polymer due to its versatility and its various attractive properties. The fabrication of PDMS involves liquid phase cross-linking to obtain hydrophobic and mechanically flexible material in the final solid form. This allows to add various fillers to affect the properties of the resulting material. PDMS has a relatively low Thermal Conductivity (TC), in the order of 0.2 W/mK, which makes it attractive for thermal insulation applications such as sealing in construction. Although a further decrease in the TC of PDMS can be highly beneficial for such applications, most research on the thermal properties of PDMS composites have focused on fillers that increase the TC rather than decrease it. In the present work, we propose a simple and reliable method for making a PDMS-based composite material with significantly improved thermal insulation properties, by adding hollow glass microspheres (HGMs) to the mixture of the liquid base and the cross-linker (10:1 ratio), followed by degassing and heat-assisted crosslinking. We obtained a 31% reduction of thermal conductivity and a 60% increase in the elastic modulus of samples with HGM content of 17% by weight. At the same time, the sound insulation capacity of the PDMS-HGM composite is slightly decreased in comparison to pure PDMS, as a result of its lower density. Finally, the wettability of the samples had no dependence on HGM content.
Collapse
|
6
|
Ariati R, Sales F, Souza A, Lima RA, Ribeiro J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers (Basel) 2021; 13:polym13234258. [PMID: 34883762 PMCID: PMC8659928 DOI: 10.3390/polym13234258] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is one of the most promising elastomers due its remarkable proprieties such as good thermal stability, biocompatibility, corrosion resistance, flexibility, low cost, ease of use, chemically inertia, hyperplastic characteristics, and gas permeability. Thus, it can be used in areas such as microfluidic systems, biomedical devices, electronic components, membranes for filtering and pervaporation, sensors, and coatings. Although pure PDMS has low mechanical properties, such as low modulus of elasticity and strength, it can be improved by mixing the PDMS with other polymers and by adding particles or reinforcements. Fiber-reinforced PDMS has proved to be a good alternative to manufacturing flexible displays, batteries, wearable devices, tactile sensors, and energy harvesting systems. PDMS and particulates are often used in the separation of liquids from wastewater by means of porosity followed by hydrophobicity. Waxes such as beeswax and paraffin have proved to be materials capable of improving properties such as the hydrophobic, corrosion-resistant, thermal, and optical properties of PDMS. Finally, when blended with polymers such as poly (vinyl chloride-co-vinyl acetate), PDMS becomes a highly efficient alternative for membrane separation applications. However, to the best of our knowledge there are few works dedicated to the review and comparison of different PDMS composites. Hence, this review will be focused on PDMS composites, their respective applications, and properties. Generally, the combination of elastomer with fibers, particles, waxes, polymers, and others it will be discussed, with the aim of producing a review that demonstrates the wide applications of this material and how tailored characteristics can be reached for custom applications.
Collapse
Affiliation(s)
- Ronaldo Ariati
- ESTiG, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (R.A.); (F.S.); (J.R.)
| | - Flaminio Sales
- ESTiG, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (R.A.); (F.S.); (J.R.)
| | - Andrews Souza
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- CEFT, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
- Correspondence:
| | - João Ribeiro
- ESTiG, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal; (R.A.); (F.S.); (J.R.)
- CIMO, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| |
Collapse
|
7
|
Razavi M, Primavera R, Vykunta A, Thakor AS. Silicone-based bioscaffolds for cellular therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111615. [DOI: 10.1016/j.msec.2020.111615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
|
8
|
Primavera R, Razavi M, Kevadiya BD, Wang J, Vykunta A, Di Mascolo D, Decuzzi P, Thakor AS. Enhancing islet transplantation using a biocompatible collagen-PDMS bioscaffold enriched with dexamethasone-microplates. Biofabrication 2021; 13. [PMID: 33455953 DOI: 10.1088/1758-5090/abdcac] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023]
Abstract
Islet transplantation is a promising approach to enable type 1 diabetic patients to attain glycemic control independent of insulin injections. However, up to 60% of islets are lost immediately following transplantation. To improve this outcome, islets can be transplanted within bioscaffolds, however, synthetic bioscaffolds induce an intense inflammatory reaction which can have detrimental effects on islet function and survival. In the present study, we first improved the biocompatibility of polydimethylsiloxane (PDMS) bioscaffolds by coating them with collagen. To reduce the inflammatory response to PDMS bioscaffolds, we then enriched the bioscaffolds with dexamethasone-loaded microplates (DEX-µScaffolds). These DEX-microplates have the ability to release DEX in a sustained manner over 7 weeks within a therapeutic range that does not affect the glucose responsiveness of the islets but which minimizes inflammation in the surrounding microenvironment. The bioscaffold showed excellent mechanical properties that enabled it to resist pore collapse thereby helping to facilitate islet seeding and its handling for implantation, and subsequent engraftment, within the epididymal fat pad (EFP). Following the transplantation of islets into the EFP of diabetic mice using DEX-µScaffolds there was a return in basal blood glucose to normal values by day 4, with normoglycemia maintained for 30 days. Furthermore, these animals demonstrated a normal dynamic response to glucose challenges with histological evidence showing reduced pro-inflammatory cytokines and fibrotic tissue surrounding DEX-µScaffolds at the transplantation site. In contrast, diabetic animals transplanted with either islets alone or islets in bioscaffolds without DEX microplates were not able to regain glycemic control during basal conditions with overall poor islet function. Taken together, our data show that coating PDMS bioscaffolds with collagen, and enriching them with DEX-microplates, significantly prolongs and enhances islet function and survival.
Collapse
Affiliation(s)
- Rosita Primavera
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94305-5119, UNITED STATES
| | - Mehdi Razavi
- University of Central Florida, 6900 Lake Nona Blvd, Orlando, Florida, 32827, UNITED STATES
| | - Bhavesh D Kevadiya
- PEN, University of Nebraska Medical Center, Lab-3064,DRC-1,department of pharmacology and experimental neuroscience, Omaha, Nebraska, 68198, UNITED STATES
| | - Jing Wang
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94304, UNITED STATES
| | - Akshara Vykunta
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94304, UNITED STATES
| | - Daniele Di Mascolo
- Central Research Labs Genova, Istituto Italiano di Tecnologia, Via Morego, 30, Genova, Liguria, 16163, ITALY
| | - Paolo Decuzzi
- Istituto Italiano di Tecnologia, Via Morego, 30, Genova, Liguria, 16163, ITALY
| | - Avnesh S Thakor
- Radiology, Stanford University School of Medicine, 3155 Porter Drive, Stanford, California, 94304, UNITED STATES
| |
Collapse
|
9
|
Antibacterial Drug-Release Polydimethylsiloxane Coating for 3D-Printing Dental Polymer: Surface Alterations and Antimicrobial Effects. Pharmaceuticals (Basel) 2020; 13:ph13100304. [PMID: 33053829 PMCID: PMC7600417 DOI: 10.3390/ph13100304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
Polymers are the most commonly used material for three-dimensional (3D) printing in dentistry; however, the high porosity and water absorptiveness of the material adversely influence biofilm formation on the surface of the 3D-printed dental prostheses. This study evaluated the effects of a newly developed chlorhexidine (CHX)-loaded polydimethylsiloxane (PDMS)-based coating material on the surface microstructure, surface wettability and antibacterial activity of 3D-printing dental polymer. First, mesoporous silica nanoparticles (MSN) were used to encapsulate CHX, and the combination was added to PDMS to synthesize the antibacterial agent-releasing coating substance. Then, a thin coating film was formed on the 3D-printing polymer specimens using oxygen plasma and thermal treatment. The results show that using the coating substance significantly reduced the surface irregularity and increased the hydrophobicity of the specimens. Remarkably, the culture media containing coated specimens had a significantly lower number of bacterial colony formation units than the noncoated specimens, thereby indicating the effective antibacterial activity of the coating.
Collapse
|
10
|
Tang W, Bai J, Liao X, Xiao W, Luo Y, Yang Q, Li G. Carbon nanotube-reinforced silicone rubber nanocomposites and the foaming behavior in supercritical carbon dioxide. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Rinaldi A, Tamburrano A, Fortunato M, Sarto MS. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. SENSORS 2016; 16:s16122148. [PMID: 27999251 PMCID: PMC5191128 DOI: 10.3390/s16122148] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 01/23/2023]
Abstract
The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges.
Collapse
Affiliation(s)
- Andrea Rinaldi
- Nanotechnology Research Center Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy.
- Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy.
| | - Alessio Tamburrano
- Nanotechnology Research Center Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy.
- Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy.
| | - Marco Fortunato
- Nanotechnology Research Center Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy.
- Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy.
| | - Maria Sabrina Sarto
- Nanotechnology Research Center Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy.
- Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy.
| |
Collapse
|