1
|
Li D, Li M, Jia Z, Wei Z. A biomass phosphonamide enables biodegradable polylactide with favorable flame retardancy and rapid crystallization. Int J Biol Macromol 2024; 274:133365. [PMID: 38914410 DOI: 10.1016/j.ijbiomac.2024.133365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
PLA is widely known as biodegradable plastics whose further application in fields such as automotive and architectural is still constrained by its flammability and unsatisfactory crystallization properties. To address the aforementioned concerns, a novel biomass phosphonamide PDPA was synthesized with chemical structure confirmed by FTIR, NMR and elemental analysis tests. Immediately thereafter, PLA/PDPA composites were prepared by melting blending, with a focus on flame retardancy, crystallization properties and flame-retardant mechanism. As expected, PDPA efficiently enhanced both the flame retardancy and crystallization properties of PLA. Specifically, the PLA/4.0PDPA obtained UL-94 V-0 grade and the LOI value increased to 28.6 % with only 4 wt% PDPA added, which comes down to the superior free radical capture and dilution effect of PDPA in the vapor phase and the melting droplet effect. More appealingly, the crystallinity of PLA/4.0PDPA was significantly enhanced to 43.4 % from 2.5 % of PLA, and the shortest t1/2 was 4 mins in the isothermal crystallization process due to the excellent heterogeneous nucleation of PDPA. Moreover, PLA/PDPA composites maintain almost the same mechanical performance as pure PLA. In brief, this work provides a green strategy for the preparation of PLA composites with excellent comprehensive performance and shows great potential in engineering materials.
Collapse
Affiliation(s)
- Dongsheng Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Minglong Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zihan Jia
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Srihanam P, Pakkethati K, Srisuwan Y, Phromsopha T, Manphae A, Phinyocheep P, Yamaguchi M, Baimark Y. Utilization of bamboo biochar as a multi-functional filler of flexible poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) bioplastic. Sci Rep 2024; 14:17601. [PMID: 39080452 PMCID: PMC11289244 DOI: 10.1038/s41598-024-68638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer could potentially be used in bioplastic applications because it is more flexible than PLLA. However, investigations into modifying PLLA-PEG-PLLA with effective fillers are still required. In this work, bamboo biochar (BC) was used as an eco-friendly and cost-effective filler for the flexible PLLA-PEG-PLLA. The influences of BC addition on crystallization properties, thermal stability, hydrophilicity, and mechanical properties of the PLLA-PEG-PLLA were explored and compared to those of the PLLA. The PLLA-PEG-PLLA matrix and BC filler were found to have strong interfacial adhesion and good phase compatibility, while the PLLA/BC composites displayed weak interfacial adhesion and poor phase compatibility. For the PLLA-PEG-PLLA, the addition of BC induced a nucleation effect that was characterized by a decrease in the cold crystallization temperature from 76 to 71-75 °C and an increase in the crystallinity from 18.6 to 21.8-24.0%; however, this effect was not observed for the PLLA. When compared to pure PLLA-PEG-PLLA, the PLLA-PEG-PLLA/BC composites displayed greater thermal stability, tensile stress, and Young's modulus. Temperature at maximum decomposition rate (Td,max) of PLLA end-blocks increased from 315 to 319-342 °C. Ultimate tensile stress of PLLA-PEG-PLLA matrix improved from 14.5 to 16.2-22.6 MPa and Young's modulus increased from 220 to 280-340 MPa. Based on the findings, the crystallizability, thermal stability, and mechanical properties of the flexible PLLA-PEG-PLLA bioplastic were all enhanced by the use of BC as a multi-functional filler.
Collapse
Affiliation(s)
- Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Kansiri Pakkethati
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Yaowalak Srisuwan
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Theeraphol Phromsopha
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Apirada Manphae
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
- Scientific Instrument Academic Service Unit, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Pranee Phinyocheep
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Payathai, Bangkok, 10400, Thailand
| | - Masayuki Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.
| |
Collapse
|
3
|
Wang Y, Cheng F, Liu J, Cai W, Ji J, Cai C, Fu Y. "Flexible-strong" polylactic acid porous membrane via tailored polymerization degree of lactic acid side-chains grafting for passive daytime radiative cooler. Int J Biol Macromol 2024; 267:131653. [PMID: 38631568 DOI: 10.1016/j.ijbiomac.2024.131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Aerogel possesses the advantages of high specific surface area, low density, and high porosity, which have shown great application in thermal regulation due to its efficient light scattering capability. However, traditional polymer-based aerogels have poor mechanical properties and lack ductility in outdoor applications, the cooling efficiency of the material is easily affected by damage during transportation, installation, and environmental factors. In this work, combining the porous nature of aerogels and the high ductility of membranes, a polylactic acid-based porous membrane cooler was developed by combining a regular honeycomb surface porous structure design and physical/chemical modification to enhance flexibility, using a simple non-solvent induced phase separation method. This porous membrane exhibits both super-flexibility (116 % elongation at break) and porous characteristics. It achieves a sub-ambient temperature decrease of 4-6 °C under direct sunlight. The optimized porous membrane demonstrates high solar reflectance (94 % of peak reflectivity, 90 % of average reflectivity) and strong infrared emissivity (96 % of peak emissivity, 91 % of average emissivity), it also maintains a solar peak reflectivity of 91 % under 100 % tensile strain and 1000 bending cycles, the cooler still maintains a cooling effect of 2-5 °C below ambient temperature. This work paves the way for developing mechanical flexible and strong radiative coolers for thermal regulation.
Collapse
Affiliation(s)
- Yibo Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Fulin Cheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Wanquan Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiawen Ji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenyang Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yu Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
4
|
Pakkethati K, Srihanam P, Manphae A, Rungseesantivanon W, Prakymoramas N, Lan PN, Baimark Y. Improvement in Crystallization, Thermal, and Mechanical Properties of Flexible Poly(L-lactide)- b-poly(ethylene glycol)- b-poly(L-lactide) Bioplastic with Zinc Phenylphosphate. Polymers (Basel) 2024; 16:975. [PMID: 38611233 PMCID: PMC11014285 DOI: 10.3390/polym16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) shows promise for use in bioplastic applications due to its greater flexibility over PLLA. However, further research is needed to improve PLLA-PEG-PLLA's properties with appropriate fillers. This study employed zinc phenylphosphate (PPZn) as a multi-functional filler for PLLA-PEG-PLLA. The effects of PPZn addition on PLLA-PEG-PLLA characteristics, such as crystallization and thermal and mechanical properties, were investigated. There was good phase compatibility between the PPZn and PLLA-PEG-PLLA. The addition of PPZn improved PLLA-PEG-PLLA's crystallization properties, as evidenced by the disappearance of the cold crystallization temperature, an increase in the crystallinity, an increase in the crystallization temperature, and a decrease in the crystallization half-time. The PLLA-PEG-PLLA's thermal stability and heat resistance were enhanced by the addition of PPZn. The PPZn addition also enhanced the mechanical properties of the PLLA-PEG-PLLA, as demonstrated by the rise in ultimate tensile stress and Young's modulus. We can conclude that the PPZn has potential for use as a multi-functional filler for the PLLA-PEG-PLLA composite due to its nucleating-enhancing, thermal-stabilizing, and reinforcing ability.
Collapse
Affiliation(s)
- Kansiri Pakkethati
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (K.P.); (P.S.); (A.M.)
| | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (K.P.); (P.S.); (A.M.)
| | - Apirada Manphae
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (K.P.); (P.S.); (A.M.)
- Scientific Instrument Academic Service Unit, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Wuttipong Rungseesantivanon
- National Metal and Materials Technology Centre (MTEC), 114 Thailand Science Park (TSP), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.R.); (N.P.)
| | - Natcha Prakymoramas
- National Metal and Materials Technology Centre (MTEC), 114 Thailand Science Park (TSP), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.R.); (N.P.)
| | - Pham Ngoc Lan
- Faculty of Chemistry, University of Science, Vietnam National University-Hanoi, 19 Le Thanh Tong Street, Phan Chu Trinh Ward, Hoan Kiem District, Hanoi 10000, Vietnam;
| | - Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (K.P.); (P.S.); (A.M.)
| |
Collapse
|
5
|
Liffland S, Kumler M, Hillmyer MA. High Performance Star Block Aliphatic Polyester Thermoplastic Elastomers Using PDLA- b-PLLA Stereoblock Hard Domains. ACS Macro Lett 2023; 12:1331-1338. [PMID: 37721994 DOI: 10.1021/acsmacrolett.3c00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Star block (ABC)4 terpolymers consisting of a rubbery poly(γ-methyl-ε-caprolactone) (PγMCL) (C) core and hard poly(l-lactide) (PLLA) (B) and poly(d-lactide) (PDLA) (A) end-blocks with varying PDLA to PLLA block ratios were explored as high-performance, sustainable, aliphatic polyester thermoplastic elastomers (APTPEs). The stereocomplexation of the PDLA/PLLA blocks within the hard domains provided the APTPEs with enhanced thermal stability and an increased resistance to permanent deformation compared to nonstereocomplex analogs. Variations in the PDLA:PLLA block ratio yielded tunable mechanical properties likely due to differences in the extent and location of stereocomplex crystallite formation as a result of architectural constraints. This work highlights the improvements in mechanical performance due to stereocomplexation within the hard domains of these APTPEs and the tunable nature of the hard domains to significantly impact material properties, furthering the development of sustainable materials that are competitive with current industry standard materials.
Collapse
Affiliation(s)
- Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States of America
| | - Margaret Kumler
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States of America
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States of America
| |
Collapse
|
6
|
Gu Z, Zhang J, Cao W, Liu X, Wang J, Zhang X, Chen W, Bao J. Extraordinary toughness and heat resistance enhancement of biodegradable PLA/PBS blends through the formation of a small amount of interface-localized stereocomplex crystallites during melt blending. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Fan T, Qin J, Meng X, Li J, Liu Q, Wang G. Biodegradable membrane of poly(l-lactide acid-dioxanone-glycolide) and stereocomplex poly(lactide) with enhanced crystallization and biocompatibility. Front Bioeng Biotechnol 2022; 10:1021218. [PMID: 36246351 PMCID: PMC9561826 DOI: 10.3389/fbioe.2022.1021218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The membranes of poly(l-lactide acid-p-dioxanone-glycolide) (PLPG) with stereocomplex poly(lactic acid) (sc-PLA) were prepared by the solution blending way. It was observed that sc-PLA significantly heightened the crystallizing behavior of PLLA segments of the PLPG matrix. The crystallizing behavior displayed that the temperature of crystallization shifted to a higher range than that of PLPG. Moreover, the half-time of crystallization sharply decreased in value as the sc-PLA content increased in value on account of the pre-eminent nucleation ability of sc-PLA. TGA results revealed the thermal stability of the samples with the increase of sc-PLA compared to PLPG. Meanwhile, enzymatic degradation results indicated that the mass loss rate of the membrane decreased with the introduction of sc-PLA, but the overall degradation ability was still greater than that of PLLA. In the meantime, the biological experiment indicated that the membrane possessed low cytotoxicity.
Collapse
Affiliation(s)
- Tiantang Fan
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, China
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Xiao Meng
- College of Materials Science and Engineering, North China Electric Power University, Beijing, China
| | - Jiafeng Li
- China Coal Research Institute, Beijing, China
| | - Qing Liu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qing Liu, ; Guannan Wang,
| | - Guannan Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, China
- *Correspondence: Qing Liu, ; Guannan Wang,
| |
Collapse
|
8
|
Enhancement in Crystallizability of Poly(L-Lactide) Using Stereocomplex-Polylactide Powder as a Nucleating Agent. Polymers (Basel) 2022; 14:polym14194092. [PMID: 36236039 PMCID: PMC9571414 DOI: 10.3390/polym14194092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-molecular-weight poly(L-lactide) (HMW-PLLA) is a promising candidate for use as a bioplastic because of its biodegradability and compostability. However, the applications of HMW-PLLA have been limited due to its poor crystallizability. In this work, stereocomplex polylactide (scPLA) powder was prepared by precipitation of a low-molecular-weight poly(L-lactide)/poly(D-lactide) (LMW-PLLA/LMW-PDLA) blend solution and investigated for use as a fully-biodegradable nucleating agent for HMW-PLLA compared to LMW-PLLA powder. The obtained LMW-PLLA and scPLA powders with a nearly spherical shape showed complete homo- and stereocomplex crystallites, respectively. HMW-PLLA/LMW-PLLA powder and HMW-PLLA/scPLA powder blends were prepared by melt blending. The LMW-PLLA powder was homogeneously melted in the HMW-PLLA matrices, whereas the scPLA powder had good phase compatibility and was well-dispersed in the HMW-PLLA matrices, as detected by scanning electron microscopy (SEM). It was shown that the enthalpies of crystallization (ΔHc) upon cooling scans for HMW-PLLA largely increased and the half crystallization time (t1/2) dramatically decreased as the scPLA powder content increased; however, the LMW-PLLA powder did not exhibit the same behavior, as determined by differential scanning calorimetry (DSC). The crystallinity content of the HMW-PLLA/scPLA powder blends significantly increased as the scPLA powder content increased, as determined by DSC and X-ray diffractometry (XRD). In conclusion, the fully biodegradable scPLA powder showed good potential for use as an effective nucleating agent to improve the crystallization properties of the HMW-PLLA bioplastic.
Collapse
|
9
|
Liu Y, Wang R, Zhang X, Zhang J, Dong Z, Cui T, Wang S, Wei J. Simultaneously Enhancing the Fire Retardancy and Heat Resistance of Stereo-Complex-Type Polylactic Acid. ACS OMEGA 2022; 7:22149-22160. [PMID: 35811907 PMCID: PMC9260761 DOI: 10.1021/acsomega.1c07025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Polylactic acid (PLA) is considered to be the material with great application potential in the 21st century which has aroused wide research interest. However, PLA is a highly flammable material and exhibits low heat distortion temperature, which greatly limits its application in many fields. In this work, aluminum diethyl phosphinate (ADP) and poly (d-lactic acid) (PDLA) are used to improve fire retardancy and heat resistance of poly (l-lactic acid) (PLLA). PLLA/PDLA with the presence of 15 wt % ADP exhibited the limiting oxygen index (LOI) value at 26%, and the peak heat release rate (pHRR) and total heat release decreased, respectively, by 14.03 and 24.42% from 500 to 429 kW/m2 and 86 to 65 MJ/m2. The melt dripping phenomenon was suppressed obviously. The addition of ADP realized the flame-retardant effect from both the condensed phase and gas phase. Moreover, the results showed that the addition of ADP promoted the formation of stereo crystals and increased the crystallization temperature to 175 °C. The heat distortion temperature (HDT) of the PLLA/PDLA sample with 15 wt % ADP can be as high as 170.4 °C, which marks significant improvement in the heat resistance of PLA. The mechanical property test results showed that ADP has little effect on the mechanical properties of the composites. This work opens a window to realize the heat-resistant and anti-dripping fire-retardant PLA.
Collapse
Affiliation(s)
- Yanlin Liu
- Beijing
Institute of Fashion Technology, Beijing 10029, China
| | - Rui Wang
- Beijing
Institute of Fashion Technology, Beijing 10029, China
- Beijing
Key Laboratory of Clothing Materials R&D and Assessment, Beijing
Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Xiuqin Zhang
- Beijing
Institute of Fashion Technology, Beijing 10029, China
- Beijing
Key Laboratory of Clothing Materials R&D and Assessment, Beijing
Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jing Zhang
- Beijing
Institute of Fashion Technology, Beijing 10029, China
- Beijing
Key Laboratory of Clothing Materials R&D and Assessment, Beijing
Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Zhenfeng Dong
- Beijing
Institute of Fashion Technology, Beijing 10029, China
- Beijing
Key Laboratory of Clothing Materials R&D and Assessment, Beijing
Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Tongyan Cui
- Beijing
Institute of Fashion Technology, Beijing 10029, China
| | - Shuilian Wang
- Beijing
Institute of Fashion Technology, Beijing 10029, China
| | - Jianfei Wei
- Beijing
Institute of Fashion Technology, Beijing 10029, China
- Beijing
Key Laboratory of Clothing Materials R&D and Assessment, Beijing
Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
| |
Collapse
|
10
|
Srisuwan Y, Baimark Y. Synergistic effects of PEG middle-blocks and talcum on crystallizability and thermomechanical properties of flexible PLLA- b-PEG- b-PLLA bioplastic. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, talcum was melt-blended with a flexible poly(l-lactide)-b-polyethylene glycol-b-poly(l-lactide) triblock copolymer (PLLA-PEG-PLLA) with 1, 2, 4, and 8 wt% talcum, for improvement of the crystallization and thermomechanical properties of PLLA-PEG-PLLA compared with PLLA. The crystallizability of PLLA-PEG-PLLA/talcum composites was better than that of PLLA/talcum composites as determined from differential scanning calorimetry. X-ray diffractometry showed that the PLLA-PEG-PLLA/talcum films had a higher degree of crystallinity than the PLLA/talcum films. PEG middle-blocks and talcum showed a synergistic effect for crystallization of PLLA end-blocks. The PLLA-PEG-PLLA/talcum films showed better thermomechanical properties than those of the PLLA/talcum films as determined from dynamic mechanical analysis. This was confirmed from the results of dimensional stability to heat. In summary, the PLLA-PEG-PLLA/talcum composites have potential for use as flexible bioplastics with good dimensional stability to heat.
Collapse
Affiliation(s)
- Yaowalak Srisuwan
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Biodegradable Polymers Research Unit, Faculty of Science, Mahasarakham University , Mahasarakham 44150 , Thailand
| | - Yodthong Baimark
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Biodegradable Polymers Research Unit, Faculty of Science, Mahasarakham University , Mahasarakham 44150 , Thailand
| |
Collapse
|
11
|
Nucleating Agents to Enhance Poly(l-Lactide) Fiber Crystallization during Industrial-Scale Melt Spinning. Polymers (Basel) 2022; 14:polym14071395. [PMID: 35406268 PMCID: PMC9002846 DOI: 10.3390/polym14071395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
The nucleating agent N,N′-bis(2-hydroxyethyl)-terephthalamide (BHET) has promising effects on poly(l-lactide) (PLA) under quiescent conditions and for injection molding applications, but its suitability for industrial-scale fiber melt spinning is unclear. We therefore determined the effects of 1% and 2% (w/w) BHET on the crystallinity, tenacity, and elongation at break of PLA fibers compared to pure PLA and PLA plus talc as a reference nucleating agent. Fibers were spun at take-up velocities of 800, 1400 and 2000 m/min and at drawing at ratios of 1.1–4.0, reaching a final winding speed of 3600 m/min. The fibers were analyzed by differential scanning calorimetry, wide-angle X-ray diffraction, gel permeation chromatography and tensile testing. Statistical analysis of variance was used to determine the combined effects of the spin-line parameters on the material properties. We found that the fiber draw ratio and take-up velocity were the most important factors affecting tenacity and elongation, but the addition of BHET reduced the mechanical performance of the fibers. The self-organizing properties of BHET were not expressed due to the rapid quenching of the fibers, leading to the formation of α′-crystals. Understanding the behavior of BHET in the PLA matrix provides information on the performance of nucleation agents during high-speed processing that will allow processing improvements in the future.
Collapse
|
12
|
Zhang X, Yang B, Fan B, Sun H, Zhang H. Enhanced Nonisothermal Crystallization and Heat Resistance of Poly(l-lactic acid) by d-Sorbitol as a Homogeneous Nucleating Agent. ACS Macro Lett 2021; 10:154-160. [PMID: 35548982 DOI: 10.1021/acsmacrolett.0c00830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on enhancing crystallization and heat resistance of poly(l-lactic acid) (PLLA) by d-sorbitol as a small molecule nucleating agent via melt blending. During the reheating process, the cold crystallization disappeared and the crystallinity of nucleated PLLA exceeded 50%. The heat deflection temperature of PLLA was elevated from 56 to 132 °C by simply increasing the mold temperature (90 °C) without an additional annealing treatment. We also observed the polymorphic crystals of PLLA during melt crystallization, i.e., the coexistence of hexagonal and lenticular crystals, along with their various geometrical aggregates in addition to plenty of conventional spherulites. On the basis of the fact that the nonisothermal crystallization temperature of PLLA (110 °C at a cooling rate of 10 °C/min) was higher than the melting point of d-sorbitol (about 93 °C), we speculated that d-sorbitol promoted the crystallization of PLLA through a homogeneous nucleation mechanism.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Biao Yang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Baomin Fan
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huijuan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
13
|
Chen J, Deng C, Hong R, Fu Q, Zhang J. Effect of thermal annealing on crystal structure and properties of PLLA/PCL blend. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Polymers (Basel) 2019; 11:polym11071193. [PMID: 31319454 PMCID: PMC6680981 DOI: 10.3390/polym11071193] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022] Open
Abstract
Polylactide (PLA), poly(butylene succinate) (PBS) and blends thereof have been researched in the last two decades due to their commercial availability and the upcoming requirements for using bio-based chemical building blocks. Blends consisting of PLA and PBS offer specific material properties. However, their thermodynamically favored biphasic composition often restricts their applications. Many approaches have been taken to achieve better compatibility for tailored and improved material properties. This review focuses on the modification of PLA/PBS blends in the timeframe from 2007 to early 2019. Firstly, neat polymers of PLA and PBS are introduced in respect of their origin, their chemical structure, thermal and mechanical properties. Secondly, recent studies for improving blend properties are reviewed mainly under the focus of the toughness modification using methods including simple blending, plasticization, reactive compatibilization, and copolymerization. Thirdly, we follow up by reviewing the effect of PBS addition, stereocomplexation, nucleation, and processing parameters on the crystallization of PLA. Next, the biodegradation and disintegration of PLA/PBS blends are summarized regarding the European and International Standards, influencing factors, and degradation mechanisms. Furthermore, the recycling and application potential of the blends are outlined.
Collapse
|
15
|
Improvement in Mechanical Properties and Heat Resistance of PLLA-b-PEG-b-PLLA by Melt Blending with PDLA-b-PEG-b-PDLA for Potential Use as High-Performance Bioplastics. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/8690650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ecofriendly poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-b-PEG-b-PLLA) are flexible bioplastics. In this work, the blending of poly(D-lactide)-b-poly(ethylene glycol)-b-poly(D-lactide) (PDLA-b-PEG-b-PDLA) with various blend ratios for stereocomplex formation has been proved to be an effective method for improving the mechanical properties and heat resistance of PLLA-b-PEG-b-PLLA films. The PLLA-b-PEG-b-PLLA/PDLA-b-PEG-b-PLDA blend films were prepared by melt blending followed with compression molding. The stereocomplexation of PLLA and PDLA end-blocks were characterized by differential scanning calorimetry and X-ray diffraction (XRD). The content of stereocomplex crystallites of blend films increased with the PDLA-b-PEG-b-PDLA ratio. From XRD, the blend films exhibited only stereocomplex crystallites. The stress and strain at break of blend films obtained from tensile tests were enhanced by melt blending with the PDLA-b-PEG-b-PDLA. The heat resistance of blend films determined from testing of dimensional stability to heat and dynamic mechanical analysis were improved with the PDLA-b-PEG-b-PDLA ratio. The sterecomplex PLLA-b-PEG-b-PLLA/PDL-b-PEG-b-PDLA films prepared by melt processing could be used as flexible and good heat-resistance packaging bioplastics.
Collapse
|
16
|
Baimark Y, Kittipoom S. Influence of Chain-Extension Reaction on Stereocomplexation, Mechanical Properties and Heat Resistance of Compressed Stereocomplex-Polylactide Bioplastic Films. Polymers (Basel) 2018; 10:E1218. [PMID: 30961143 PMCID: PMC6290629 DOI: 10.3390/polym10111218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
Stereocomplex polylactide (scPLA) films were prepared by melt blending of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with and without an epoxy-based chain extender before compression molding. The obtained scPLA films were characterized through differential scanning calorimetry, X-ray diffractometry (XRD), tensile testing and dimensional stability to heat. XRD patterns revealed that all the scPLA films had only stereocomplex crystallites. The obtained results showed that the chain-extension reaction improved mechanical properties of the scPLA films, however, it suppressed stereocomplexation and heat resistance.
Collapse
Affiliation(s)
- Yodthong Baimark
- Biodegradable Polymers Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.
| | - Sumet Kittipoom
- Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
17
|
Effect of PDLA and Amide Compounds as Mixed Nucleating Agents on Crystallization Behaviors of Poly (l-lactic Acid). MATERIALS 2018; 11:ma11071139. [PMID: 29976863 PMCID: PMC6073930 DOI: 10.3390/ma11071139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
Abstract
The improvement of the rate of crystallization and crystallinity of poly (l-lactic acid) (PLLA) is one of the key performance elements for PLLA to perform better at the higher temperature than its heat deflection temperature (around 60 °C). The organic nucleating agent compounds are one of the interesting choice as they can offer the clarity of products. On the other hand, the nucleated PLLA can be prepared using a low molecular weight poly (d-lactic acid) (PDLA). The aim of this work was to explore the effect of an unsaturated amide compound and PDLA as single and mixed nucleating agents used for PLLA. The crystallization rate and kinetics were investigated and compared for the synthetic unsaturated amide compound (N,N′-ethylenebis (10-undecenamide) (EBU)) and commercial hydrazide compound (tetramethylenedicarboxylic dibenzoylhydrazide (TMC-306)). PLLA samples was prepared by melt-mixing with TMC or EBU incorporated with peroxide. The influence of different nucleating agents loading on thermal properties, crystallization behaviors, and rheological properties of PLLA were explored by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The results showed that the addition of EBU or TMC 0.5 phr could pronouncedly increase the crystallinity of PLLA from 3.80% to 24.84% and 8.61%, respectively. The crystallization peak appeared at 112.3 °C in the cooling scan at the rate 7 °C/min when addition EBU and peroxide into PLLA. This indicated that EBU acted as an efficient nucleating agent for PLLA. In isothermal crystallization run at 110 °C, it was found that the overall crystallization rate of nucleated PLLA with TMC or EBU was much faster than neat PLLA. The crystallization half-time indicated that the existence of TMC or EBU could slightly decrease to 2.90 and 1.96 min, respectively compared to neat PLLA (4.60 min). Finally, a low molecular weight PDLA with different contents between 3 and 7 wt % was added in PLLA with EBU and peroxide to investigate the effect of mixed nucleating agents. The crystallization rate of the incorporation of PDLA/EBU/peroxide into PLLA was discussed with the proposed crystallization mechanism. The results revealed the stereocomplex temperature peak at 207 °C as well as normal melting temperature of PLLA. The kinetics of growth crystallization, the crystallization half-time of PLLA at 110 °C was reduced from 4.60 min to 1.96 min (when adding EBU alone) and to 2.62 min (when using mixed PDLA and EBU).
Collapse
|
18
|
Lu X, Lv Q, Huang X, Song Z, Xu N, Pang S, Pan L, Li T. Isothermal melt crystallization and performance evaluation of polylactide/thermoplastic polyester blends with multi-functional epoxy. J Appl Polym Sci 2018. [DOI: 10.1002/app.46343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xueli Lu
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Qiaoqiang Lv
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Xiulong Huang
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Zijian Song
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Nai Xu
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Sujuan Pang
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Lisha Pan
- College of Materials and Chemical Engineering; Hainan University; Hainan, Haikou 570228 People's Republic of China
| | - Tan Li
- Shiner National & Local Joint Engineering & Research Center; Shiner Industrial Co., Ltd.; Haikou 570125 People's Republic of China
| |
Collapse
|
19
|
Kovalcik A, Pérez-Camargo RA, Fürst C, Kucharczyk P, Müller AJ. Nucleating efficiency and thermal stability of industrial non-purified lignins and ultrafine talc in poly(lactic acid) (PLA). Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|