1
|
You C, Lin H, Ning L, Ma N, Wei W, Ji X, Wei S, Xu P, Zhang D, Wang F. Advances in the Design of Functional Cellulose Based Nanopesticide Delivery Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11295-11307. [PMID: 38717296 DOI: 10.1021/acs.jafc.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The advancement of science and technology, coupled with the growing environmental consciousness among individuals, has led to a shift in pesticide development from traditional methods characterized by inefficiency and misuse toward a more sustainable and eco-friendly approach. Cellulose, as the most abundant natural renewable resource, has opened up a new avenue in the field of biobased drug carriers by developing cellulose-based drug delivery systems. These systems offer unique advantages in terms of deposition rate enhancement, modification facilitation, and environmental impact reduction when designing nanopesticides. Consequently, their application in the field of nanoscale pesticides has gained widespread recognition. The present study provides a comprehensive review of cellulose modification methods, carrier types for cellulose-based nanopesticides delivery systems (CPDS), and various stimulus-response factors influencing pesticide release. Additionally, the main challenges in the design and application of CPDS are summarized, highlighting the immense potential of cellulose-based materials in the field of nanopesticides.
Collapse
Affiliation(s)
- Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Like Ning
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu P. R. China
| | - Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wei Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xinyue Ji
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shuangyu Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Peng Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, P. R. China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
2
|
Zuo J, Lan R, Lv N, Lin Y, Hao L, Zhou X, Zhou H. A Promising Plant-Based Eugenol-Loaded Nano Delivery System (EUG@CMC-PGMA-CS) for Enhanced Antibacterial and Insect Repellent Behavior. ACS APPLIED BIO MATERIALS 2024; 7:1643-1655. [PMID: 38366996 DOI: 10.1021/acsabm.3c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Pathogens and pests pose significant threats to global crop productivity and plant immunity, necessitating urgent measures from researchers to prevent pathogen contamination and pest damage to crops. A natural plant-based antibacterial agent, eugenol (EUG), has demonstrated excellent antimicrobial and insect repellent capabilities, but the characteristics of volatilization and poor dissolution limit the practical application. The nanoization of pesticide formulations holds promise in the development of highly effective pesticides for antibacterial and insecticidal purposes. Herein, a eugenol-loaded nano delivery system (EUG@CMC-PGMA-CS) was synthesized using glycidyl methacrylate (GMA) as a functional monomer to connect carrier core structure carboxymethyl cellulose (CMC) with shell structure chitosan (CS), and EUG was encapsulated within the carrier. EUG@CMC-PGMA-CS demonstrated excellent leaf affinity, with minimum contact angles (CAs) of 37.83 and 70.52° on hydrophilic and hydrophobic vegetable leaf surfaces, respectively. Moreover, the maximum liquid holding capacity (LHC) of EUG@CMC-PGMA-CS on both hydrophilic and hydrophobic vegetable leaf surfaces demonstrates a noteworthy 55.24% enhancement compared to the LHC of pure EUG. The in vitro release curve of EUG@CMC-PGMA-CS exhibited an initial burst followed by stable sustained release. It is with satisfaction that the nano delivery system demonstrated exceptional antibacterial properties against S. aureus and satisfactory insecticidal efficacy against Spodoptera litura. The development of this eugenol-loaded nano delivery system holds significant potential for enhanced antibacterial and insect repellents in agriculture, paving the way for the application of volatile bioactive substances.
Collapse
Affiliation(s)
- Jihao Zuo
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Ruopeng Lan
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Ningning Lv
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Yitong Lin
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Li Hao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Xinhua Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Hongjun Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| |
Collapse
|
3
|
Silva OA, Pellá MG, Sabino RM, Popat KC, Kipper MJ, Rubira AF, Follmann HDM, Silva R, Martins AF. Carboxymethylcellulose hydrogels crosslinked with keratin nanoparticles for efficient prednisolone delivery. Int J Biol Macromol 2023; 241:124497. [PMID: 37080405 DOI: 10.1016/j.ijbiomac.2023.124497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Carboxymethylcellulose (CMC) and keratin nanoparticle (KNP) hydrogels were obtained, characterized, and applied as drug delivery systems (DDSs) for the first time. Lyophilized CMC/KNP mixtures containing 10, 25, and 50 wt% of KNPs were kept at 170 °C for 90 min to crosslink CMC chains through a solid-state reaction with the KNPs. The hydrogels were characterized by infrared spectroscopy, thermal analyses, X-ray diffraction, mechanical measurements, and scanning electron microscopy. The infrared spectra indicated the formation of ester and amide linkages between crosslinked CMC and KNPs. The elastic modulus of the hydrogel containing 10 wt% KNPs was 2-fold higher than that of the hydrogel containing 50 wt% KNPs. The mechanical properties influenced the hydrogel stability and water uptake. The anti-inflammatory prednisolone (PRED) drug was incorporated into the hydrogels, and the release mechanism was investigated. The hydrogels supported PRED release by drug desorption for approximately 360 h. A sustained release mechanism was achieved. The CMC/KNP and CMC/KNP/PRED hydrogels were cytocompatible toward mammalian cells. The CMC/KNP/PRED set imparted the highest cell viability after 7 days of incubation. This study showed a straightforward procedure to create DDSs (chemically crosslinked) based on polysaccharides and proteins for efficient PRED delivery.
Collapse
Affiliation(s)
- Otavio A Silva
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Michelly G Pellá
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Roberta M Sabino
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Matt J Kipper
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO, USA; Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, USA
| | - Adley F Rubira
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Heveline D M Follmann
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Rafael Silva
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Alessandro F Martins
- Group of Polymers and Composite Materials, Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology-Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO, USA.
| |
Collapse
|
4
|
Stimuli-Responsive and Antibacterial Cellulose-Chitosan Hydrogels Containing Polydiacetylene Nanosheets. Polymers (Basel) 2023; 15:polym15051062. [PMID: 36904304 PMCID: PMC10005511 DOI: 10.3390/polym15051062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Herein, we report a stimuli-responsive hydrogel with inhibitory activity against Escherichia coli prepared by chemical crosslinking of carboxymethyl chitosan (CMCs) and hydroxyethyl cellulose (HEC). The hydrogels were prepared by esterification of chitosan (Cs) with monochloroacetic acid to produce CMCs which were then chemically crosslinked to HEC using citric acid as the crosslinking agent. To impart a stimuli responsiveness property to the hydrogels, polydiacetylene-zinc oxide (PDA-ZnO) nanosheets were synthesized in situ during the crosslinking reaction followed by photopolymerization of the resultant composite. To achieve this, ZnO was anchored on carboxylic groups in 10,12-pentacosadiynoic acid (PCDA) layers to restrict the movement of the alkyl portion of PCDA during crosslinking CMCs and HEC hydrogels. This was followed by irradiating the composite with UV radiation to photopolymerize the PCDA to PDA within the hydrogel matrix so as to impart thermal and pH responsiveness to the hydrogel. From the results obtained, the prepared hydrogel had a pH-dependent swelling capacity as it absorbed more water in acidic media as compared to basic media. The incorporation of PDA-ZnO resulted in a thermochromic composite responsive to pH evidenced by a visible colour transition from pale purple to pale pink. Upon swelling, PDA-ZnO-CMCs-HEC hydrogels had significant inhibitory activity against E. coli attributed to the slow release of the ZnO nanoparticles as compared to CMCs-HEC hydrogels. In conclusion, the developed hydrogel was found to have stimuli-responsive properties and inhibitory activity against E. coli attributed to zinc nanoparticles.
Collapse
|
5
|
Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Utama-Ang N, Kuatrakul I, Walter P, Rattanapitigorn P, Kawee-Ai A. Effect of instant jasmine rice coating combining Spirulina with edible polymers on physicochemical properties, textural properties and sensory acceptance. Sci Rep 2022; 12:7699. [PMID: 35546344 PMCID: PMC9095722 DOI: 10.1038/s41598-022-11759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Coating is an effective and economic strategy to increase the functional property of food products. This study investigated the technical feasibility of adding Spirulina platensis to edible polymers, namely carboxymethyl cellulose (CMC) and maltodextrin (MD), in the coating of instant jasmine rice, using a central composite design (CCD). A total of 10 edible coating formulations comprising CMC (10-30% w/v) and MD (1-5% w/v) were evaluated to optimize the most suitable combination of physicochemical properties, textural attributes, and sensory acceptance. The resulting rice fortified with S. platensis and hydrocolloids showed improved textural and functional properties favourable for consumer acceptance. Among these, the optimum (20.0% MD, 1.0% CMC, and 2.0% S. platensis powder) increased the physicochemical properties and decreased textural properties compared with those of uncoated rice. This condition showed phycocyanin content of 1.4 mg/g, chlorophyll a of 181.5 µg/g, total phenolic compound (TPC) of 137.3 µg gallic acid equivalent (GAE)/g, and ferric reducing antioxidant power (FRAP) of 3.8 mg ferrous (Fe2+)/g with overall acceptability of 7.1 (like moderately). It can be stated that masking the colour and flavour of Spirulina with an edible coating could be a healthy alternative to commercial rice and used to fortify cereal products with algae.
Collapse
Affiliation(s)
- Niramon Utama-Ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of High Value Product from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Ittikorn Kuatrakul
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Ponjan Walter
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Panida Rattanapitigorn
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Arthitaya Kawee-Ai
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
7
|
Chen K, Yuan S, Wang D, Liu Y, Chen F, Qi D. Basic Amino Acid-Modified Lignin-Based Biomass Adjuvants: Synthesis, Emulsifying Activity, Ultraviolet Protection, and Controlled Release of Avermectin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12179-12187. [PMID: 34632776 DOI: 10.1021/acs.langmuir.1c02113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Avermectin (AVM) is a highly effective and safe biopesticide but is very sensitive to ultraviolet (UV) light and exhibits poor water solubility. Developing green and multifunctional adjuvants is important for the protection and controlled release of AVM. In this work, a number of water-soluble enzymatic hydrolysis lignins (W-EHLs) were prepared via grafting basic amino acids and used as emulsifiers with co-surfactants to prepare high-internal phase emulsions (HIPEs). The results showed that W-EHLs with co-surfactants could be prepared with HIPEs that contained 90 vol % green oil phases such as turpentine, and the stability of the HIPEs first increased and then decreased when the rate of grafting of basic amino acids on lignin increased from 0.26 to 1.46 mmol/g. The more polar oil droplets were less deformable due to their higher viscosity, thereby affording a stability advantage to HIPEs. Subsequently, the relations between the stability and interfacial viscoelasticity of the emulsion were effectively correlated by interfacial rheology, droplet size, and physical stability tests. The results showed that HIPEs with smaller droplets had poor fluidity and strong interfacial viscoelasticity due to their higher droplet packing density, which resulted in good macroscopic stability. Like the AVM carrier, the retention rate of AVM in HIPEs was 80.1% after UV radiation for 72 h, which represented the highest UV protection efficiency in AVM delivery systems. The release curves showed that the rate of release of AVM from HIPEs was adjusted by controlling the pH value of the medium. In addition, the release of HIPEs is completely in accord with both diffusion and the matrix erosion mechanism. The strategy could be extended to other sensitive pesticides and used to promote the development of sustainable agriculture.
Collapse
Affiliation(s)
- Kai Chen
- College or Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengrong Yuan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- College or Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yinli Liu
- College or Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- College or Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Smart nanomaterial and nanocomposite with advanced agrochemical activities. NANOSCALE RESEARCH LETTERS 2021; 16:156. [PMID: 34664133 PMCID: PMC8523620 DOI: 10.1186/s11671-021-03612-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Conventional agriculture solely depends upon highly chemical compounds that have negatively ill-affected the health of every living being and the entire ecosystem. Thus, the smart delivery of desired components in a sustainable manner to crop plants is the primary need to maintain soil health in the upcoming years. The premature loss of growth-promoting ingredients and their extended degradation in the soil increases the demand for reliable novel techniques. In this regard, nanotechnology has offered to revolutionize the agrotechnological area that has the imminent potential over conventional agriculture and helps to reform resilient cropping systems withholding prominent food security for the ever-growing world population. Further, in-depth investigation on plant-nanoparticles interactions creates new avenues toward crop improvement via enhanced crop yield, disease resistance, and efficient nutrient utilization. The incorporation of nanomaterial with smart agrochemical activities and establishing a new framework relevant to enhance efficacy ultimately help to address the social acceptance, potential hazards, and management issues in the future. Here, we highlight the role of nanomaterial or nanocomposite as a sustainable as well stable alternative in crop protection and production. Additionally, the information on the controlled released system, role in interaction with soil and microbiome, the promising role of nanocomposite as nanopesticide, nanoherbicide, nanofertilizer, and their limitations in agrochemical activities are discussed in the present review.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | |
Collapse
|
9
|
Zhao M, Zhou H, Chen L, Hao L, Chen H, Zhou X. Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide. Carbohydr Polym 2020; 243:116433. [DOI: 10.1016/j.carbpol.2020.116433] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/16/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
|
10
|
Enzyme cum pH dual-responsive controlled release of avermectin from functional polydopamine microcapsules. Colloids Surf B Biointerfaces 2020; 186:110699. [DOI: 10.1016/j.colsurfb.2019.110699] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023]
|
11
|
Donato RK, Mija A. Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers (Basel) 2019; 12:E32. [PMID: 31878054 PMCID: PMC7023547 DOI: 10.3390/polym12010032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Among the biopolymers from animal sources, keratin is one the most abundant, with a major contribution from side stream products from cattle, ovine and poultry industry, offering many opportunities to produce cost-effective and sustainable advanced materials. Although many reviews have discussed the application of keratin in polymer-based biomaterials, little attention has been paid to its potential in association with other polymer matrices. Thus, herein, we present an extensive literature review summarizing keratin's compatibility with other synthetic, biosynthetic and natural polymers, and its effect on the materials' final properties in a myriad of applications. First, we revise the historical context of keratin use, describe its structure, chemical toolset and methods of extraction, overview and differentiate keratins obtained from different sources, highlight the main areas where keratin associations have been applied, and describe the possibilities offered by its chemical toolset. Finally, we contextualize keratin's potential for addressing current issues in materials sciences, focusing on the effect of keratin when associated to other polymers' matrices from biomedical to engineering applications, and beyond.
Collapse
Affiliation(s)
- Ricardo K. Donato
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Alice Mija
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice CEDEX 2, France
| |
Collapse
|
12
|
Ma X, Xiang S, Xie H, He L, Sun X, Zhang Y, Huang J. Fabrication of pH-Sensitive Tetramycin Releasing Gel and Its Antibacterial Bioactivity against Ralstonia solanacearum. Molecules 2019; 24:E3606. [PMID: 31591309 PMCID: PMC6804146 DOI: 10.3390/molecules24193606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023] Open
Abstract
Ralstonia solanacearum (R. solanacearum)-induced bacterial wilt of the nightshade family causes a great loss in agricultural production annually. Although there has been some efficient pesticides against R. solanacearum, inaccurate pesticide releasing according to the onset time of bacterial wilt during the use of pesticides still hinders the disease management efficiency. Herein, on the basis of the soil pH change during R. solanacearum growth, and pH sensitivity of the Schiff base structure, a pH-sensitive oxidized alginate-based double-crosslinked gel was fabricated as a pesticide carrier. The gel was prepared by crosslinking oxidized sodium alginate (OSA) via adipic dihydrazide (ADH) and Ca2+. After loading tetramycin into the gel, it showed a pH-dependent pesticide releasing behavior and anti-bacterial activity against R. solanacearum. Further study also showed that the inhibition rate of the tetramycin-loaded gel was higher than that of industrial pesticide difenoconazole. This work aimed to reduce the difficulty of pesticide administration in the high incidence period of bacterial wilt and we believe it has a great application potential in nightshade production.
Collapse
Affiliation(s)
- Xiaozhou Ma
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
| | - Shunyu Xiang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Huijun Xie
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Linhai He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Yongqiang Zhang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400715 China.
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715 China.
| |
Collapse
|
13
|
Xiang S, Lv X, He L, Shi H, Liao S, Liu C, Huang Q, Li X, He X, Chen H, Wang D, Sun X. Dual-Action Pesticide Carrier That Continuously Induces Plant Resistance, Enhances Plant Anti-Tobacco Mosaic Virus Activity, and Promotes Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10000-10009. [PMID: 31442045 DOI: 10.1021/acs.jafc.9b03484] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Improving plant resistance against systemic diseases remains a challenging research topic. In this study, we developed a dual-action pesticide-loaded hydrogel with the capacity to significantly induce plant resistance against tobacco mosaic virus (TMV) infection and promote plant growth. We produced an alginate-lentinan-amino-oligosaccharide hydrogel (ALA-hydrogel) by coating the surface of an alginate-lentinan drug-loaded hydrogel (AL-hydrogel) with amino-oligosaccharide using electrostatic action. We determined the formation of the amino-oligosaccharide film using various approaches, including Fourier transform infrared spectrometry, the ζ potential test, scanning electron microscopy, and elemental analysis. It was found that the ALA-hydrogel exhibited stable sustained-release activity, and the release time was significantly longer than that of the AL-hydrogel. In addition, we demonstrated that the ALA-hydrogel was able to continuously and strongly induce plant resistance against TMV and increase the release of calcium ions to promote Nicotiana benthamiana growth. Meanwhile, the ALA-hydrogel maintained an extremely high safety to organisms. Our findings provide an alternative to the traditional approach of applying pesticide for controlling plant viral diseases. In the future, this hydrogel with the simple synthesis method, green synthetic materials, and its efficiency in the induction of plant resistance will attract increasing attention and have good potential to be employed in plant protection and agricultural production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haitao Chen
- Chongqing Tobacco Science Research Institute , Chongqing , 400715 , People's Republic of China
| | - Daibin Wang
- Chongqing Tobacco Science Research Institute , Chongqing , 400715 , People's Republic of China
| | | |
Collapse
|
14
|
Liu G, Lin G, Lin X, Zhou H, Chen H, Hao L, Zhou X. Enzyme and pH dual-responsive avermectin nano-microcapsules for improving its efficacy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25107-25116. [PMID: 31254196 DOI: 10.1007/s11356-019-05804-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
The overdosage use of pesticide was harmful to the environment and human health, which was mainly caused by the low utilization rate of the pesticide. However, the pesticide microcapsule with sustained-release and stimulating response properties could effectively solve this problem. Preparation of carboxymethyl cellulose grafting dimethyldiallylammonium chloride (CMC-g-PDMDAAC) through grafting polymerization and trapping as well as encapsulation of avermectin (AVM) via electrostatic interactions resulted in the formation of AVM/CMC-g-PDMDAAC microcapsules. The results showed that the particle size was 200~300 nm. The encapsulation efficiency was as high as 72.06%. Furthermore, the remaining rate of encapsulated AVM increased from 50.0 to 81.60% after UV irradiation for 359 min. The microcapsules exhibited significant enzyme and pH stimuli responsiveness. Finally, CMC-g-PDMDAAC had no significant difference effect on the toxicity of AVM, AVM could be found, and DMDAAC featured a synergistic effect on the toxicological effects of AVM. Graphical abstract.
Collapse
Affiliation(s)
- Guanghua Liu
- School of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
- Shaoguan Huashi Innovational Research Institute for Modern Agriculture, Shaoguan, People's Republic of China
| | - Guanquan Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Xida Lin
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Hongjun Zhou
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Guangzhou, People's Republic of China.
| | - Huayao Chen
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Guangzhou, People's Republic of China
| | - Li Hao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Hydrazone-linked soybean protein isolate-carboxymethyl cellulose conjugates for pH-responsive controlled release of pesticides. Polym J 2019. [DOI: 10.1038/s41428-019-0235-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Chen L, Zhou H, Hao L, Chen H, Zhou X. Soy protein isolate-carboxymethyl cellulose conjugates with pH sensitivity for sustained avermectin release. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190685. [PMID: 31417761 PMCID: PMC6689608 DOI: 10.1098/rsos.190685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/24/2019] [Indexed: 05/09/2023]
Abstract
Carboxymethyl cellulose (CMC) was grafted onto the surface of soy protein isolate (SPI) to obtain soy protein isolate-carboxymethyl cellulose conjugate (SPC). Avermectin (AVM) was hydrophobically encapsulated as a model drug to obtain SPC@AVM. The reaction between SPI and CMC was confirmed by infrared spectroscopy, thermal analysis and SDS-PAGE electrophoresis. The results of scanning electron microscopy showed that the average particle size of the drug-loaded microspheres was 129 nm and the shape of microspheres changed from block to spherical after the addition of AVM. After encapsulation of AVM, the absolute value of zeta potential was greater than 15 mV, which indicated better stability. Compared to AVM solution, SPC@AVM showed more wettability on the leaf surface and the contact angle on the leaves decreased from 71.64° to 57.33°. The maximum liquid holding capacity increased by 41.41%, from 8.85 to 12.52 mg cm-2, which effectively reduced leaf loss. SPC@AVM also prevented UV photolysis, wherein the half-life was extended from 18 to 68 min when exposed to UV light. Moreover, toxicity tests showed that the encapsulation of AVM was beneficial to retain the insecticidal effect of AVM in the presence of ultraviolet light. The release rate of AVM showed pH responsiveness and the release rate under neutral conditions was faster than acidic and alkaline conditions. Moreover, the process conformed to the Weibull model.
Collapse
Affiliation(s)
| | - Hongjun Zhou
- Authors for correspondence: Hongjun Zhou e-mail:
| | | | | | - Xinhua Zhou
- Authors for correspondence: Xinhua Zhou e-mail:
| |
Collapse
|