1
|
Yang H, Wang D, Bi H, Ren Z, Xu M, Huang Z, Cai L. Effect of Stabilizers and Thermoplastic Polyurethane on the Properties of Three-Dimensional Printed Photochromic Wood Flour/Polylactic Acid Composites. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1405-1413. [PMID: 38116224 PMCID: PMC10726182 DOI: 10.1089/3dp.2021.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
This study was aimed at investigating the photofatigue resistance and mechanical properties of photochromic wood-plastic composites using a stabilizer complex-AH (antioxidant 1010 and hindered amine light stabilizer HALS 770)-with different contents of thermoplastic polyurethane (TPU), which was prepared by the melt-blending extrusion process and three-dimensional (3D) printing. Photofatigue resistance, mechanical property, microtopography, and thermal analyses of 3D printed samples were performed. The results showed that the difference in surface color of composites improved by 26.7% with addition of AH after 10 days of accelerated aging, whereas the mechanical strength decreased. Upon adding TPU, composites' impact strength significantly increased by 25.48% and 87.87% with 10% and 20% addition, respectively. Meanwhile, the interface compatibilities between the components were enhanced. The differential scanning calorimetry and thermogravimetric analysis results indicated that 10% TPU could improve the thermal stability of composites.
Collapse
Affiliation(s)
- Haiying Yang
- Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Dong Wang
- Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Hongjie Bi
- Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Zechun Ren
- Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Min Xu
- Key Laboratory of Bio-Based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Zhenhua Huang
- College of Engineering, University of North Texas, Denton, Texas, USA
| | - Liping Cai
- College of Engineering, University of North Texas, Denton, Texas, USA
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Bernardes GP, Andrade MP, Poletto M, Luiz NR, Santana RMC, Forte MMDC. Evaluation of Thermal Decomposition Kinetics of Poly (Lactic Acid)/Ethylene Elastomer (EE) Blends. Polymers (Basel) 2023; 15:4324. [PMID: 37960004 PMCID: PMC10648464 DOI: 10.3390/polym15214324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The influences of ethylene-based elastomer (EE) and the compatibilizer agent ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) on the thermal degradation of PLA/EE blends were evaluated by the thermal degradation kinetics and thermodynamic parameters using thermogravimetry. The presence of EE and EBAGMA synergistically improved the PLA thermal stability. The temperature of 10% of mass loss (T10%) of PLA was around 365 °C, while in the compatibilized PLA/EE blend, this property increased to 370 °C. The PLA average activation energy (Ea¯) reduced in the PLA/EE blend (from 96 kJ/mol to 78 kJ/mol), while the presence of EBAGMA in the PLA/EE blend increased the Ea¯ due to a better blend compatibilization. The solid-state thermal degradation of the PLA and PLA/EE blends was classified as a D-type degradation mechanism. In general, the addition of EE increased the thermodynamic parameters when compared to PLA and the compatibilized blend due to the increase in the collision rate between the components over the thermal decomposition.
Collapse
Affiliation(s)
- Giordano P. Bernardes
- Department of Mechatronic Engineering, Atlantic Technological University (ATU) Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Matheus P. Andrade
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias Do Sul (UCS), Caxias Do Sul 95070-560, Brazil;
| | - Matheus Poletto
- Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias Do Sul (UCS), Caxias Do Sul 95070-560, Brazil;
| | - Nathália R. Luiz
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| | - Ruth M. C. Santana
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| | - Maria M. de C. Forte
- Laboratory of Polymeric Materials (LAPOL), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil; (N.R.L.); (R.M.C.S.); (M.M.d.C.F.)
| |
Collapse
|
3
|
Klute M, Piontek A, Heim HP, Kabasci S. Effects of blending poly(lactic acid) and thermoplastic polyester polyurethanes on the mechanical and adhesive properties in two-component injection molding. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One possible way to increase the use of bioplastics and thus contribute to a more resource-efficient and sustainable economy is to broaden the application range of such bioplastics. Poly(lactic acid) (PLA) is a promising and commercially available bio-based and biologically degradable polymer, which exhibits a high strength and stiffness but is very brittle. Blending with other polymers can lead to an enhancement of the ductility of the PLA. The goal of this work was to show that blending of PLA with a bio-based thermoplastic polyester-urethane elastomer (TPU) increases the ductility of the compound and also affects the adhesion of the layers when the materials – the modified PLA compound and the TPU – are processed via two-component (2C) injection molding to form corresponding composite parts. The results show that both goals – the increased ductility as well as the increased adhesion between the polymeric phases in 2C parts – can be reached by compounding PLA with two different bio-based polyester-based TPUs. Tensile strength and Young’s modulus of the compounds decrease according to a linear mixing rule with the addition of TPU. Elongation at break and notched Charpy impact strength increase by 750 and 200%, respectively. By addition of the TPU, the surface free energies of the compounds were increased, especially the polar parts. This led to reduced interfacial tensions between the produced compounds and the neat TPUs and thus increased the adhesion between them. For the softer TPU the adhesion was so strong that the TPU showed a cohesive failure in the 90° peel test and thus could not be separated from the compound substrate at all. For the harder TPU the bonding strength increased by 140% upon the addition of this TPU inside the hard component.
Collapse
Affiliation(s)
- Marco Klute
- University of Kassel, Institute of Material Engineering–Polymer Engineering , Mönchebergstr. 3, 34125 Kassel , Germany
| | - Alexander Piontek
- Fraunhofer UMSICHT, Institute for Environmental , Safety and Energy Technology, Osterfelder Str. 3, 46047 Oberhausen , Germany
| | - Hans-Peter Heim
- University of Kassel, Institute of Material Engineering–Polymer Engineering , Mönchebergstr. 3, 34125 Kassel , Germany
| | - Stephan Kabasci
- Fraunhofer UMSICHT, Institute for Environmental , Safety and Energy Technology, Osterfelder Str. 3, 46047 Oberhausen , Germany
| |
Collapse
|
4
|
Wang XZ, Wang JW, Wang HQ, Zhuang GC, Yang JB, Ma YJ, Zhang Y, Ren H. Effects of a new compatibilizer on the mechanical properties of TPU/PEBA blends. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Mairpady A, Mourad AHI, Mozumder MS. Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers (Basel) 2022; 14:polym14091802. [PMID: 35566970 PMCID: PMC9104973 DOI: 10.3390/polym14091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
In designing successful cartilage substitutes, the selection of scaffold materials plays a central role, among several other important factors. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate the physical, mechanical, and biological properties that might be suitable for cartilage tissue engineering. Hence, the objective of this study is to implement an inverse design approach to predict the best polymer(s)/blend(s) for cartilage repair by using a machine-learning algorithm (i.e., multinomial logistic regression (MNLR)). Initially, a systematic bibliometric analysis on cartilage repair has been performed by using the bibliometrix package in the R program. Then, the database was created by extracting the mechanical properties of the most frequently used polymers/blends from the PoLyInfo library by using data-mining tools. Then, an MNLR algorithm was run by using the mechanical properties of the polymers, which are similar to the cartilages, as the input and the polymer(s)/blends as the predicted output. The MNLR algorithm used in this study predicts polyethylene/polyethylene-graftpoly(maleic anhydride) blend as the best candidate for cartilage repair.
Collapse
Affiliation(s)
- Anusha Mairpady
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
6
|
Fang H, Zhang L, Chen A, Wu F. Improvement of Mechanical Property for PLA/TPU Blend by Adding PLA-TPU Copolymers Prepared via In Situ Ring-Opening Polymerization. Polymers (Basel) 2022; 14:polym14081530. [PMID: 35458279 PMCID: PMC9031752 DOI: 10.3390/polym14081530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA)-thermoplastic polyurethane (TPU) copolymer (PTC) was prepared by melting TPU pellets in molten lactide, followed by in situ ring-opening coordination polymerization. The results from FTIR and 1H-NMR confirmed the formation of the copolymer. PLA/TPU blends with different TPU contents were prepared by melt blending method. SEM and mechanical properties showed a conspicuous phase separation between PLA and TPU. In order to further improve the mechanical properties of the blend, PTC was used as the compatibilizer and the effects of the PTC content on the properties of the blend were investigated. The addition of PTC made TPU particles smaller in PLA matrix and improved the compatibility. With the loading of 5 wt.% PTC, the impact strength of the PLA/TPU blend reached 27.8 kJ/m2, which was 31.1% and 68.5% higher than that of the blend without PTC and pure PLA, respectively. As the content of PTC was more than 5 wt.%, the mechanical properties declined since the compatibilizer tended to form separate clusters, which could reduce the part distributed between the dispersed phase and the matrix, leading to a reduction in the compatibility of the blend. Moreover, the DMA results confirmed PTC could improve the compatibility between PLA and TPU.
Collapse
Affiliation(s)
- Hui Fang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou 350011, China
| | - Lingjie Zhang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Anlin Chen
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Fangjuan Wu
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Correspondence:
| |
Collapse
|
7
|
Kahraman Y, Alkan Goksu Y, Özdemir B, Eker Gümüş B, Nofar M. Composition design of
PLA
/
TPU
emulsion blends compatibilized with multifunctional epoxy‐based chain extender to tackle high impact resistant ductile structures. J Appl Polym Sci 2022. [DOI: 10.1002/app.51833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf Kahraman
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Yonca Alkan Goksu
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Burcu Özdemir
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Beril Eker Gümüş
- Science and Technology Application and Research Center Yıldız Technical University Istanbul Turkey
| | - Mohammadreza Nofar
- Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
- Polymer Science and Technology Program, Institute of Science and Technology Istanbul Technical University Istanbul Turkey
| |
Collapse
|
8
|
Rodolfo MG, Costa LC, Marini J. Toughened poly(lactic acid)/thermoplastic polyurethane uncompatibilized blends. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(lactic acid), PLA, is a biodegradable polymer obtained from renewable sources with similar properties when compared with petroleum-based thermoplastics but with inherent brittleness. In this work, the use of thermoplastic polyurethane (TPU) as toughening agent was evaluated. PLA/TPU blends with 25 and 50 wt% of TPU were produced in an internal mixer without the use of compatibilizers. Their thermal, rheological, and mechanical properties were analyzed and correlated with the developed morphology. Immiscible blends with dispersed droplets morphology were obtained, and it was observed an inversion between the matrix and dispersed phases with the increase of the TPU content. The presence of TPU altered the elasticity and viscosity of the blends when compared to PLA, besides acting as a nucleating agent. Huge increments in impact resistance (up to 365%) were achieved, indicating a great potential of TPU to be used as a PLA toughening agent.
Collapse
Affiliation(s)
- Mateus Garcia Rodolfo
- Department of Materials Engineering , Universidade Federal de São Carlos , Rodovia Washington Luís , km 235, 13565-905 São Carlos , Brazil
| | - Lidiane Cristina Costa
- Department of Materials Engineering , Universidade Federal de São Carlos , Rodovia Washington Luís , km 235, 13565-905 São Carlos , Brazil
| | - Juliano Marini
- Department of Materials Engineering , Universidade Federal de São Carlos , Rodovia Washington Luís , km 235, 13565-905 São Carlos , Brazil
| |
Collapse
|
9
|
Xu Z, Zhang Y, Li A, Wang J, Wang G, He Q. Research progress on compounding agent and mechanical test method of fluororubber. J Appl Polym Sci 2021. [DOI: 10.1002/app.50913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zehua Xu
- School of Mechatronics Engineering Henan University of Science and Technology Luoyang China
- Key Laboratory of Aeronautical Special Rubber Anyang Institute of Technology Anyang China
| | - Yanbin Zhang
- School of Mechatronics Engineering Henan University of Science and Technology Luoyang China
| | - Anling Li
- Key Laboratory of Aeronautical Special Rubber Anyang Institute of Technology Anyang China
| | - Jiwen Wang
- School of Mechatronics Engineering Henan University of Science and Technology Luoyang China
| | - Guangfei Wang
- Key Laboratory of Aeronautical Special Rubber Anyang Institute of Technology Anyang China
| | - Qiang He
- Key Laboratory of Aeronautical Special Rubber Anyang Institute of Technology Anyang China
| |
Collapse
|
10
|
Duan R, Wang Y, Zhang Y, Wang Z, Du F, Du B, Su D, Liu L, Li X, Zhang Q. Blending with Poly(l-lactic acid) Improves the Printability of Poly(l-lactide- co-caprolactone) and Enhances the Potential Application in Cartilage Tissue Engineering. ACS OMEGA 2021; 6:18300-18313. [PMID: 34308061 PMCID: PMC8296602 DOI: 10.1021/acsomega.1c02190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Poly(l-lactide-co-caprolactone) (PLCL, 50:50) has been used in cartilage tissue engineering because of its high elasticity. However, its mechanical properties, including its rigidity and viscoelasticity, must be improved for compatibility with native cartilage. In this study, a set of PLCL/poly(l-lactic acid) (PLLA) blends was prepared by blending with different mass ratios of PLLA that range from 10 to 50%, using thermoplastic techniques. After testing the properties of these PLCL/PLLA blends, they were used to fabricate scaffolds by the 3D printing technology. The structures and viscoelastic behavior of the PLCL/PLLA scaffolds were determined, and then, the potential application of the scaffolds in cartilage tissue engineering was evaluated by chondrocytes culture. All blends demonstrate good thermal stability for the 3D printing technology. All blends show good toughness, while the rigidity of PLCL is increased through PLLA blending, and Young's modulus of blends with 10-20% PLLA is similar to that of native cartilage. Furthermore, blending with PLLA improves the processability of PLCL for 3D printing, and the compression modulus and viscoelasticity of 3D-printed PLCL/PLLA scaffolds are different from that of PLCL. Additionally, the stress relaxation time (t 1/2) of the PLCL/PLLA scaffolds, which is important for chondrogenesis, is dramatically shortened compared with the pure PLCL scaffold at the same 3D-printing filling rate. Consistently, the PLCL90PLLA10 scaffold at a 70% filling rate with much shorter t 1/2 is more conducive to the proliferation and chondrogenesis of in vitro seeded chondrocytes accompanied by upregulated expression of SOX9 than the PLCL scaffold. Taken together, these results demonstrate that blending with PLLA improves the printability of PLCL and enhances its potential application, particularly PLCL/PLLA scaffolds with a low ratio of PLLA, in cartilage tissue engineering.
Collapse
Affiliation(s)
- Ruiping Duan
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Yimeng Wang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Yiyun Zhang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Ziqiang Wang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Fuchong Du
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Bo Du
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Danning Su
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Lingrong Liu
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Xuemin Li
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
| | - Qiqing Zhang
- The
Key Laboratory of Biomedical Material of Tianjin, Biomedical Barriers
Research Center, Chinese Academy of Medical
Sciences & Peking Union Medical College Institute of Biomedical
Engineering, 236 Baidi Road, NanKai District, Tianjin 300192, P.R. China
- Institute
of Biomedical Engineering, the Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen 518020, Guangdong, P.R. China
| |
Collapse
|
11
|
Sun M, Huang S, Yu M, Han K. Toughening Modification of Polylactic Acid by Thermoplastic Silicone Polyurethane Elastomer. Polymers (Basel) 2021; 13:1953. [PMID: 34208303 PMCID: PMC8231260 DOI: 10.3390/polym13121953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
The melt blending of polylactic acid (PLA) and thermoplastic silicone polyurethane (TPSiU) elastomer was performed to toughen PLA. The molecular structure, crystallization, thermal properties, compatibility, mechanical properties and rheological properties of the PLA/TPSiU blends of different mass ratios (100/0, 95/5, 90/10, 85/15 and 80/20) were investigated. The results showed that TPSiU was effectively blended into PLA, but no chemical reaction occurred. The addition of TPSiU had no obvious effect on the glass transition temperature and melting temperature of PLA, but slightly reduced the crystallinity of PLA. The morphology and dynamic mechanical analysis results demonstrated the poor thermodynamic compatibility between PLA and TPSiU. Rheological behavior studies showed that PLA/TPSiU melt was typically pseudoplastic fluid. As the content of TPSiU increased, the apparent viscosity of PLA/TPSiU blends showed a trend of rising first and then falling. The addition of TPSiU had a significant effect on the mechanical properties of PLA/TPSiU blends. When the content of TPSiU was 15 wt%, the elongation at break of the PLA/TPSiU blend reached 22.3% (5.0 times that of pure PLA), and the impact strength reached 19.3 kJ/m2 (4.9 times that of pure PLA), suggesting the favorable toughening effect.
Collapse
Affiliation(s)
| | | | | | - Keqing Han
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (M.S.); (S.H.); (M.Y.)
| |
Collapse
|
12
|
Kahraman Y, Özdemir B, Kılıç V, Goksu YA, Nofar M. Super toughened and highly ductile
PLA
/
TPU
blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy‐based chain extender. J Appl Polym Sci 2021. [DOI: 10.1002/app.50457] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yusuf Kahraman
- Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Burcu Özdemir
- Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Volkan Kılıç
- Polymer Science and Technology Program Institute of Science and Technology, Istanbul Technical University Istanbul Turkey
| | - Yonca Alkan Goksu
- Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Mohammadreza Nofar
- Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
- Polymer Science and Technology Program Institute of Science and Technology, Istanbul Technical University Istanbul Turkey
| |
Collapse
|
13
|
Shu Y, Luo Q, Wang M, Ouyang Y, Lin H, Sheng L, Su S. Preparation and properties of poly(lactic acid)/lignin‐modified polyvinyl acetate composites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- You Shu
- Key Lab for Fine Processing of Resources and Advanced Materials of Hunan Province Hunan Normal University Changsha Hunan China
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material Huaihua University Huaihua Hunan China
- National and Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Hunan Normal University Changsha Hunan China
| | - Qionglin Luo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material Huaihua University Huaihua Hunan China
| | - Mingliang Wang
- Key Lab for Fine Processing of Resources and Advanced Materials of Hunan Province Hunan Normal University Changsha Hunan China
| | - Yuejun Ouyang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material Huaihua University Huaihua Hunan China
| | - Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material Huaihua University Huaihua Hunan China
| | - Liping Sheng
- Key Lab for Fine Processing of Resources and Advanced Materials of Hunan Province Hunan Normal University Changsha Hunan China
| | - Shengpei Su
- Key Lab for Fine Processing of Resources and Advanced Materials of Hunan Province Hunan Normal University Changsha Hunan China
- National and Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Hunan Normal University Changsha Hunan China
| |
Collapse
|
14
|
Nofar M, Mohammadi M, Carreau PJ. Effect of TPU hard segment content on the rheological and mechanical properties of PLA/TPU blends. J Appl Polym Sci 2020. [DOI: 10.1002/app.49387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mohammadreza Nofar
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical University Istanbul Turkey
| | - Mojtaba Mohammadi
- Department of Chemical Engineering, Center for High Performance Polymer and Composite Systems (CREPEC)Polytechnique Montreal Montreal Quebec Canada
| | - Pierre J. Carreau
- Department of Chemical Engineering, Center for High Performance Polymer and Composite Systems (CREPEC)Polytechnique Montreal Montreal Quebec Canada
| |
Collapse
|