1
|
Kim DG, Lee Y, Cho KY, Jeong YC. On-Demand Transient Paper Substrate for Selective Disposability of Thin-Film Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368509 DOI: 10.1021/acsami.3c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This study demonstrates a novel approach to creating a thin-film electronic device that offers selective or complete disposability only in on-demand conditions while maintaining stable operation reliability during everyday use. The approach involves a transient paper substrate, combined with phase change encapsulation and highly bendable planarization materials, achieved through a simple solution process. The substrate used in this study offers a smooth surface morphology that enables the creation of stable multilayers for thin-film electronic devices. It also exhibits superior waterproof properties, which allows the proof-of-concept organic light-emitting device to function even when submerged in water. Additionally, the substrate provides controlled surface roughness under repeated bending, demonstrating reliable folding stability for 1000 cycles at 10 mm of curvature. Furthermore, a specific component of the electronic device can be selectively made to malfunction through predetermined voltage input, and the entire device can be fully disposed of via Joule-heating-induced combustion.
Collapse
Affiliation(s)
- Do-Gwan Kim
- Digital Transformation R&D Department, KITECH, 143, Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Youngwoo Lee
- Digital Transformation R&D Department, KITECH, 143, Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Kuk Young Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yong-Cheol Jeong
- Digital Transformation R&D Department, KITECH, 143, Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea
- Semiconductor Display Research Center, KITECH, 143, Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
2
|
Zhang P, Zhang G, Pan J, Ma C, Zhang G. Non-isocyanate Polyurethane Coating with High Hardness, Superior Flexibility, and Strong Substrate Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5998-6004. [PMID: 36683575 DOI: 10.1021/acsami.2c22433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible hard coatings with strong adhesion are critical requirements for several foldable devices and marine applications; however, only a few such coatings have been reported. Herein, we report a non-isocyanate polyurethane (NIPU) coating prepared by the epoxy-oligosiloxane nanocluster-amine curing reaction and cyclic carbonate-amine polyaddition, where the former provides the coating with ceramic-like hardness and polymer-like flexibility while the latter polymerization results in NIPU with strong substrate adhesion. The coating is transparent (>92% transmittance), hard (5-7 H), and flexible (2 mm bending diameter). It has strong adhesion to various substrates including aluminum alloy, titanium, steel, glass, ceramic, epoxy, and polyethylene terephthalate (2-8 MPa), which can be attributed to the high density of polar groups in NIPU. Moreover, we can facilely endow the coating with anti-icing, self-cleaning, and anti-smudge capabilities by incorporating amine-terminated low-surface-tension polydimethylsiloxane (PDMS) to replace a part of the amine curing agent. Particularly, the mechanical properties of NIPU coatings are only slightly affected by the introduction of low-content PDMS since it intends to enrich on the surface. The novel coating has promising future for use in fields of foldable devices and marine applications.
Collapse
Affiliation(s)
- Pengli Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guoliang Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiansen Pan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Zhang D, Kanezashi M, Tsuru T, Yamamoto K, Gunji T, Adachi Y, Ohshita J. Preparation of thermally stable 3-glycidyloxypropyl-POSS-derived polysilsesquioxane RO membranes for water desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Qintian Gu, Hu J, Lin J, Zhao F, Mai C, Lv C, Yang L, Jiang Y, Zhang H. Study on the Performance of Micro-Nano Structured Coatings Containing Silsesquioxane. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Lai Z, Liu G. Facile Preparation of a Transparent and Rollable Omniphobic Coating with Exceptional Hardness and Wear Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35138-35147. [PMID: 35853098 DOI: 10.1021/acsami.2c10200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The encapsulating film for the touchscreen of a foldable smartphone consists of a flexible polymer layer covered by a hard coating and an antismudge coating, and the two coating layers are currently deposited via separate steps. This paper reports the preparation of a bilayer bifunctional coating via the deposition of a single polymer mixture. The base material for the coating is a ladder-like polysilsesquioxane (LASQ) that is derived from the sol-gel chemistry of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Reacting a limiting amount of the liquid antismudge agent FP-COOH, which is a perfluorinated poly(propylene oxide) bearing a terminal carboxyl group, with LASQ yields m-LASQ-FP, a mixture of unreacted LASQ, and a graft copolymer LASQ-FP. m-LASQ-FP at a fluorine mass fraction of 6.0% is photocured to yield a coating with a surface energy of 12.3 ± 1.5 mJ/m2. At a thickness of 40 μm, the coating has at 500 nm a transmittance of >99% measured against its glass substrate, a remarkable nanoindentation hardness H value of 1.4 GPa, and a pencil hardness of > 9H. After being abraded for 300 strokes under a pressure of 26 kPa with steel wool, the coating exhibits no noticeable degradation in its ink contraction properties. At a thickness of 10 μm on a poly(ethylene terephthalate) film, the coating can undergo inward (on the inner surface of the bend) and outward bending to radii <1 and <2 mm, respectively, without cracking. Aside from being a superb candidate as a protective antismudge coating for foldable smartphones, this marvelous material should also have many other applications.
Collapse
Affiliation(s)
- Ziruo Lai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Ontario, Canada
| | - Guojun Liu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston K7L 3N6, Ontario, Canada
| |
Collapse
|
6
|
Hamada T, Sugimoto T, Maeda T, Katsura D, Mineoi S, Ohshita J. Robust and Transparent Antifogging Polysilsesquioxane Film Containing a Hydroxy Group. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5829-5837. [PMID: 35451850 DOI: 10.1021/acs.langmuir.2c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Poly(glycidyloxypropyl)silsesquioxane (PGPS) was successfully synthesized by hydrolysis and polycondensation using the nitrogen flow method. A poly(3-(2,3-dihydroxypropoxypropyl)silsesquioxane) (PSQ-OH) film was prepared via two routes. In route A, PSQ-OH was prepared by the hydrolysis of the epoxy group of PGPS in an aqueous hydrochloric acid (HCl)/tetrahydrofuran solution, affording a diol group; then, PSQ-OH was coated on a glass substrate and heated. The antifogging performance of the PSQ-OH film was evaluated in terms of water uptake (WU) and scratch resistance. The obtained PSQ-OH film exhibited a low WU of 5% and a scratch resistance of 1.6. In route B, PGPS was coated on a glass substrate and immersed in a 0.5 mol/L aqueous sulfuric acid solution for 1-15 h at room temperature, producing a diol group. The solid-state 13C nuclear magnetic resonance spectrum indicated that the epoxy group was completely hydrolyzed after immersion for 15 h. The WU of the PSQ-OH film prepared via route B increased from 5 to 19% with the increase in the immersion time and was higher than that of the PSQ-OH film prepared via route A. The PSQ-OH film on a glass substrate retained transparency under water vapor exposure at 60 °C. The PSQ-OH film prepared via route B exhibited a high scratch resistance of 2.7-3.6, similar to that of a poly(3-(2-aminoethylaminopropyl)silsesquioxane) film. The scratch resistance of the PSQ-OH film was 5-7 times higher than that of the poly(vinyl alcohol) film. The PSQ-OH film was uniform with no pinholes and cracks. The PSQ-OH film was transparent and colorless and exhibited a high transmittance of >90% in the wavelength range of 400-800 nm. Overall, the prepared PSQ-OH film exhibits good antifogging, transparency, and mechanical properties.
Collapse
Affiliation(s)
- Takashi Hamada
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tetsuya Sugimoto
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tetsuya Maeda
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
| | - Daiji Katsura
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Susumu Mineoi
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Technical Research Center, Mazda Motor Corporation, 3-1 Shinchi, Fuchu-cho, Aki-gun, Hiroshima 730-8670, Japan
| | - Joji Ohshita
- Collaborative Research Laboratory, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
7
|
Zhang Y, Chen Z, Zheng H, Chen R, Ma C, Zhang G. Multifunctional Hard Yet Flexible Coatings Fabricated Using a Universal Step-by-Step Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200268. [PMID: 35274481 PMCID: PMC9109054 DOI: 10.1002/advs.202200268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Indexed: 05/05/2023]
Abstract
Hard yet flexible coatings with multi-functionalities are useful for foldable displays and marine industries but rare. In this study, a highly cross-linked multifunctional hybrid coating with ceramic-like hardness and polymer-like flexibility is reported. The coating is prepared via a step-by-step strategy, where two types of epoxy-oligosiloxane nanoclusters are first synthesized by sol-gel chemistry, and amine-terminated curing agents are used to cross-link them at room temperature. The coating is highly transparent (>92% transmittance), hard (6-7H), and flexible (10 mm bending diameter) because of the unique combination of siloxane nanoclusters and polymer networks. Meanwhile, since the coating contains fouling-resistant telomer and low-surface-tension liquid lubricant polydimethylsiloxane (PDMS), it exhibits excellent anti-biofouling and self-cleaning properties. The results indicate that the mechanical and antifouling properties of the coating can be easily tuned and prove that the step-by-step strategy is a promising and universal method. The novel coatings can meet the needs of applications in foldable displays, marine industries, and other fields.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zixin Chen
- Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Hao Zheng
- Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Runze Chen
- Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
8
|
Xie J, Jia D, Dirican M, Xia Y, Li C, Liu Y, Cui M, Yan C, Wan J, Liu H, Chen G, Zhang X, Tao J. Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16658-16668. [PMID: 35352547 DOI: 10.1021/acsami.2c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer cover windows are important components of flexible OLED displays but they easily generate wrinkles because of their weak folding resistance. Increasing the polymer thickness can improve the folding resistance but it decreases the touch sensitivity. Thus, fabricating highly foldable and supersensitive polymer cover windows is still challenging. Here, by incorporating cellulose nanocrystals (CNCs) and zirconia (ZrO2) into colorless polyimide (CPI), we developed a highly foldable and supersensitive hybrid cover window. Inspired by the theory of elasticity, we added rigid CNCs into CPI to improve the elastic modulus and hence the foldability. ZrO2 was introduced to improve dielectric properties, which leads to improved touch sensitivity. After these modifications, the elastic modulus of the cover windows was increased from 1432 to 2221 MPa, whereas its dielectric constant was increased from 2.95 to 3.46 (@1 × 106 Hz), resulting in significantly enhanced foldability and sensitivity. Meanwhile, because of the nano size of CNCs and ZrO2, the hybrid cover windows exhibit excellent optical properties with the transmittance of ∼88.1%@550 nm and haze of 2.39%. With improved and balanced mechanical, dielectric, and optical properties, these hybrid cover windows overcome current cover windows' defects and could be widely used in next-generation flexible displays.
Collapse
Affiliation(s)
- Jingyi Xie
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongmei Jia
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahmut Dirican
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Yi Xia
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chunxing Li
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Meng Cui
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaoyi Yan
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jiayu Wan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| | - Gang Chen
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| |
Collapse
|
9
|
Ma J, Kim JH, Na J, Min J, Lee GH, Jo S, Kim CS. Enhanced Polymerization and Surface Hardness of Colloidal Siloxane Films via Electron Beam Irradiation. ACS OMEGA 2021; 6:13384-13390. [PMID: 34056485 PMCID: PMC8158831 DOI: 10.1021/acsomega.1c01429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Electron beam (EB) curing is a foldable hard coating process and has attracted significant research attention in the field of flexible electronic devices. In this study, we report a method for enhancing material surface hardness with low-energy EB curing in a short time. The low-energy EB improved the coating hardness of films by inducing cross-linking polymerization of the silicon-containing monomer. The hardness of the cured coating layer was measured as 3 H using a pencil hardness tester, and the transparency of the coating was higher than 90%. Owing to a series of cross-linking reactions between Si-O-C and Si-OH groups under EB curing and the formation of Si-Si bonds, the cured layer exhibited remarkable durability in the 100000-flexible cycle test. Additionally, the natural oxidation of the C-O groups on the surface of the coating formed carboxyl groups that improved the hydrophilic properties of the coating layer. To the best of our knowledge, this is the first study to propose that the hardness of polyethylene terephthalate films can be improved using low-energy EBs to rapidly cure silicon-containing coatings. Our results provide a novel and commercially viable approach for improving the hardness of touch screens and foldable displays.
Collapse
Affiliation(s)
- Junfei Ma
- Department
of Nano-Bio Convergence, Korea Institute
of Materials Science (KIMS), Changwon 51508, South Korea
- School
of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Ji-Hyeon Kim
- Department
of Nano-Bio Convergence, Korea Institute
of Materials Science (KIMS), Changwon 51508, South Korea
| | - Jaehun Na
- Gimhae
Industry Promotion & Bio-medical Foundation, 701 Biomedical Techno Town, Goldenroot St. 80-59, Gimhae 50969, Gyeongnam, South Korea
| | - Junki Min
- Gimhae
Industry Promotion & Bio-medical Foundation, 701 Biomedical Techno Town, Goldenroot St. 80-59, Gimhae 50969, Gyeongnam, South Korea
| | - Ga-Hyun Lee
- Department
of Nano-Bio Convergence, Korea Institute
of Materials Science (KIMS), Changwon 51508, South Korea
- School
of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Sungjin Jo
- School
of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Chang Su Kim
- Department
of Nano-Bio Convergence, Korea Institute
of Materials Science (KIMS), Changwon 51508, South Korea
| |
Collapse
|
10
|
Hard Coating Materials Based on Photo-Reactive Silsesquioxane for Flexible Application: Improvement of Flexible and Hardness Properties by High Molecular Weight. Polymers (Basel) 2021; 13:polym13101564. [PMID: 34068278 PMCID: PMC8153148 DOI: 10.3390/polym13101564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
EPOSS of polyhedral oligomeric silsesquioxanes (POSS) mixture structure and LPSQ of ladder-like polysilsesquioxane (LPSQ) structure were synthesized via sol–gel reaction. EPSQ had a high molecular weight due to polycondensation by potassium carbonate. The EPSQ film showed uniform surface morphology due to regular double-stranded structure. In contrast, the EPOSS-coated film showed nonuniform surface morphology due to strong aggregation. Due to the aggregation, the EPOSS film had shorter d-spacing (d1) than the EPSQ film in XRD analysis. In pencil hardness and nanoindentation analysis, EPSQ film showed higher hardness than the EPOSS film due to regular double-stranded structure. In addition, in the in-folding (r = 0.5 mm) and out-folding (r = 5 mm) tests, the EPSQ film did not crack unlike the EPOSS coated film.
Collapse
|