1
|
Zschiebsch W, Sturm Y, Kucher M, Hedayati DP, Behnisch T, Modler N, Böhm R. Multifunctionality Analysis of Structural Supercapacitors- A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:739. [PMID: 38591598 PMCID: PMC10856288 DOI: 10.3390/ma17030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 04/10/2024]
Abstract
Structural supercapacitors (SSCs) are multifunctional energy storage composites (MESCs) that combine the mechanical properties of fiber-reinforced polymers and the electrochemical performance of supercapacitors to reduce the overall mass in lightweight applications with electrical energy consumption. These novel MESCs have huge potentials, and their properties have improved dramatically since their introduction in the early 2000's. However, the current properties of SSCs are not sufficient for complete energy supply of electrically driven devices. To overcome this drawback, the aim of the current study is to identify key areas for enhancement of the multifunctional performance of SSCs. Critical modification paths for the SSC constituents are systematically analyzed. Special focus is given to the improvement of carbon fiber-based electrodes, the selection of structural electrolytes and the implementation of separators for the development of more efficient SSCs. Finally, current SSCs are compared in terms of their multifunctionality including material combinations and modifications.
Collapse
Affiliation(s)
- Willi Zschiebsch
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Yannick Sturm
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Michael Kucher
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Davood Peyrow Hedayati
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Thomas Behnisch
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany;
| | - Niels Modler
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany;
| | - Robert Böhm
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| |
Collapse
|
2
|
Chikkatti BS, Sajjan AM, Banapurmath NR, Bhutto JK, Verma R, Yunus Khan TM. Fabrication of Flexible Films for Supercapacitors Using Halloysite Nano-Clay Incorporated Poly(lactic acid). Polymers (Basel) 2023; 15:4587. [PMID: 38231974 PMCID: PMC10708593 DOI: 10.3390/polym15234587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
In the past few years, significant research efforts have been directed toward improving the electrochemical capabilities of supercapacitors by advancing electrode materials. The present work signifies the development of poly(lactic acid)/alloysite nano-clay as an electrode material for supercapacitors. Physico-chemical characterizations were analyzed by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and a universal testing machine. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge techniques were employed to evaluate electrochemical characteristics. The optimized poly(lactic acid)/halloysite nano-clay film revealed the highest specific capacitance of 205.5 F g-1 at 0.05 A g-1 current density and showed 14.6 Wh kg-1 energy density at 72 W kg-1 power density. Capacitance retention of 98.48% was achieved after 1000 cycles. The microsupercapacitor device presented a specific capacitance of 197.7 mF g-1 at a current density of 0.45 mA g-1 with 10.8 mWh kg-1 energy density at 549 mW kg-1 power density.
Collapse
Affiliation(s)
- Bipin S. Chikkatti
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
| | - Ashok M. Sajjan
- Department of Chemistry, KLE Technological University, Hubballi 580031, India;
- Centre of Excellence in Material Science, School of Mechanical Engineering, KLE Technological University, Hubballi 580031, India;
| | - Nagaraj R. Banapurmath
- Centre of Excellence in Material Science, School of Mechanical Engineering, KLE Technological University, Hubballi 580031, India;
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (J.K.B.); (R.V.)
| | - Rajesh Verma
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; (J.K.B.); (R.V.)
| | - T. M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
3
|
Porosity Tunable Poly(Lactic Acid)-Based Composite Gel Polymer Electrolyte with High Electrolyte Uptake for Quasi-Solid-State Supercapacitors. Polymers (Basel) 2022; 14:polym14091881. [PMID: 35567050 PMCID: PMC9105037 DOI: 10.3390/polym14091881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
The growing popularity of quasi-solid-state supercapacitors inevitably leads to the unrestricted consumption of commonly used petroleum-derived polymer electrolytes, causing excessive carbon emissions and resulting in global warming. Also, the porosity and liquid electrolyte uptake of existing polymer membranes are insufficient for well-performed supercapacitors under high current and long cycles. To address these issues, poly(lactic acid) (PLA), a widely applied polymers in biodegradable plastics is employed to fabricate a renewable biocomposite membrane with tunable pores with the help of non-solvent phase inversion method, and a small amount of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is introduced as a modifier to interconnect with PLA skeleton for stabilizing the porous structure and optimizing the aperture of the membrane. Owing to easy film-forming and tunable non-solvent ratio, the porous membrane possesses high porosity (ca. 71%), liquid electrolyte uptake (366%), and preferable flexibility endowing the GPE with satisfactory electrochemical stability in coin and flexible supercapacitors after long cycles. This work effectively relieves the environmental stress resulted from undegradable polymers and reveals the promising potential and prospects of the environmentally friendly membrane in the application of wearable devices.
Collapse
|
4
|
Karakurt I, Ozaltin K, Vargun E, Kucerova L, Suly P, Harea E, Minařík A, Štěpánková K, Lehocky M, Humpolícek P, Vesel A, Mozetic M. Controlled release of enrofloxacin by vanillin-crosslinked chitosan-polyvinyl alcohol blends. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112125. [PMID: 34082942 DOI: 10.1016/j.msec.2021.112125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2021] [Accepted: 04/18/2021] [Indexed: 11/28/2022]
Abstract
In transdermal drug delivery applications uniform drug distribution and sustained release are of great importance to decrease the side effects. In this direction in the present research, vanillin crosslinked chitosan (CS) and polyvinyl alcohol (PVA) blend based matrix-type transdermal system was prepared by casting and drying of aqueous solutions for local delivery of enrofloxacin (ENR) drug. Subsequently, the properties including the morphology, chemical structure, thermal behavior, tensile strength, crosslinking degree, weight uniformity, thickness, swelling and drug release of the CS-PVA blend films before and after crosslinking were characterized. In vitro drug release profiles showed the sustained release of ENR by the incorporation of vanillin as a crosslinker into the CS-PVA polymer matrix. Furthermore, the release kinetic profiles revealed that the followed mechanism for all samples was Higuchi and the increase of vanillin concentration in the blend films resulted in the change of diffusion mechanism from anomalous transport to Fickian diffusion. Overall, the obtained results suggest that the investigated vanillin crosslinked CS-PVA matrix-type films are potential candidates for transdermal drug delivery system.
Collapse
Affiliation(s)
- Ilkay Karakurt
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Kadir Ozaltin
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Elif Vargun
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Department of Chemistry, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey.
| | - Liliana Kucerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Evghenii Harea
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Antonín Minařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Kateřina Štěpánková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Marian Lehocky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Petr Humpolícek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Miran Mozetic
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Arthi R, Jaikumar V, Muralidharan P. Comparative performance analysis of electrospun
TiO
2
embedded poly(vinylidene fluoride) nanocomposite membrane for supercapacitors. J Appl Polym Sci 2020. [DOI: 10.1002/app.50323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. Arthi
- Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai India
| | - V. Jaikumar
- Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Chennai India
| | - P. Muralidharan
- Department of Chemistry Centre for Advanced Materials Engineering Research and Applications (CAMERA), Rajiv Gandhi College of Engineering and Technology Puducherry India
| |
Collapse
|