1
|
Paez-Amieva Y, Mateo-Oliveras N, Martín-Martínez JM. Polyurethanes Synthesized with Blends of Polyester and Polycarbonate Polyols-New Evidence Supporting the Dynamic Non-Covalent Exchange Mechanism of Intrinsic Self-Healing at 20 °C. Polymers (Basel) 2024; 16:2881. [PMID: 39458709 PMCID: PMC11511022 DOI: 10.3390/polym16202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Polyurethanes (PUs) synthesized with blends of polycarbonate and polyester polyols (CD+PEs) showed intrinsic self-healing at 20 °C. The decrease in the polycarbonate soft segments content increased the self-healing time and reduced the kinetics of self-healing of the PUs. The percentage of C-O species decreased and the ones of C-N and C=O species increased by increasing the polyester soft segments in the PUs, due to higher micro-phase separation. All PUs synthetized with CD+PE blends exhibited free carbonate species and interactions between the polycarbonate and polyester soft segments to a somewhat similar extent in all PUs. By increasing the polyester soft segments content, the storage moduli of the PUs decreased and the tan delta values increased, which resulted in favored polycarbonate soft segments interactions, and this was related to slower kinetics of self-healing at 20 °C. Although the PU made with a mixture of 20 wt.% CD and 80 wt.% PE showed cold crystallization and important crystallinity of the soft segments, as well as high storage moduli, the intercalation of a small amount of polycarbonate soft segments disturbed the interactions between the polyester soft segments, so it exhibited self-healing at 20 °C. The self-healing of the PUs was attributed to the physical interactions between polycarbonate soft segments themselves and with polyester soft segments, and, to a minor extent, to the mobility of the polymeric chains. Finally, the PUs made with 40 wt.% or more polyester polyol showed acceptable mechanical properties.
Collapse
|
2
|
Ernzen JR, Covas JA, Marcos-Fernández A, Fiorio R, Bianchi O. Soybean-Based Polyol as a Substitute of Fossil-Based Polyol on the Synthesis of Thermoplastic Polyurethanes: The Effect of Its Content on Morphological and Physicochemical Properties. Polymers (Basel) 2023; 15:4010. [PMID: 37836059 PMCID: PMC10574837 DOI: 10.3390/polym15194010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Thermoplastic polyurethanes (TPUs) are remarkably versatile polymers due to the wide range of raw materials available for their synthesis, resulting in physicochemical characteristics that can be tailored according to the specific requirements of their final applications. In this study, a renewable bio-based polyol obtained from soybean oil is used for the synthesis of TPU via reactive extrusion, and the influence of the bio-based polyol on the multi-phase structure and properties of the TPU is studied. As raw materials, 4,4'-diphenylmethane (MDI), 1,4-butanediol, a fossil-based polyester polyol, and a bio-based polyol are used. The fossil-based to soybean-based polyol ratios studied are 100/0, 99/1, 95/5, 90/10, 80/20, and 50/50% by weight, respectively. The TPUs were characterized by size exclusion chromatography (SEC), gel content analysis, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), dynamic mechanical analysis (DMA), and contact angle measurements. The results reveal that incorporating the renewable polyol enhances the compatibility between the rigid and flexible segments of the TPU. However, due to its high functionality, the addition of soybean-based polyol can promote cross-linking. This phenomenon reduces the density of hydrogen bonds within the material, also reducing polarity and restricting macromolecular mobility, as corroborated by higher glass transition temperature (Tg) values. Remarkably, the addition of small amounts of the bio-based polyol (up to 5 wt.% of the total polyol content) results in high-molecular-weight TPUs with lower polarity, combined with suitable processability and mechanical properties, thus broadening the range of applications and improving their sustainability.
Collapse
Affiliation(s)
- Juliano R. Ernzen
- Mantoflex Poliuretanos, Caxias do Sul 95045175, Brazil;
- PGMAT, Universidade de Caxias do Sul (UCS), Caxias do Sul 95070560, Brazil
| | - José A. Covas
- Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal;
| | - Angel Marcos-Fernández
- Elastomers Group, Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Rudinei Fiorio
- Department of Circular Chemical Engineering, Maastricht University, 6200 MD Geleen, The Netherlands;
| | - Otávio Bianchi
- PGMAT, Universidade de Caxias do Sul (UCS), Caxias do Sul 95070560, Brazil
- Department of Materials Engineering, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90040040, Brazil
| |
Collapse
|
3
|
Sundang M, Nurdin NS, Saalah S, Singam YJ, Al Edrus SSO, Ismail NM, Sipaut CS, Abdullah LC. Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion. Polymers (Basel) 2022; 14:polym14183715. [PMID: 36145855 PMCID: PMC9500860 DOI: 10.3390/polym14183715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
The utilization of vegetable oil in the production of polymeric material has gained interest due to its proven ability to replace nonrenewable petroleum sources, as it is readily modified via chemical reaction to produce polyol and subsequently for polyurethane production. Jatropha oil (JO), a second-generation feedstock, is one of the suitable candidates for polyester polyol synthesis because it contains a high percentage of unsaturated fatty acids. In this study, jatropha-based polyester polyols (JOLs) with different hydroxyl values were successfully synthesized via a two-step method: epoxidation followed by oxirane ring-opening reaction. Ring-opening reagents; methanol, ethanol, and isopropanol were used to produce polyol with hydroxyl number of 166, 180, and 189 mg/KOH, respectively. All the synthesized JOLs exhibited a Newtonian to shear thinning behavior in the measured shear rate ranges from 10 to 1000 s−1 at 25 °C. The viscosity of a JOL ring-opened with methanol, isopropanol, and ethanol was 202, 213, and 666 mPa·s, respectively, at 20 °C and 100 s−1, which is within the range of commercially available polyols. Successively, the JOLs were reacted with isophorone diisocyanate (IPDI) to produce polyurethane prepolymer by utilizing 2,2-dimethylol propionic acid (DMPA) as an emulsifier. The prepolymer was then dispersed in water to produce a waterborne polyurethane dispersion. Colloidal stability of the jatropha-based polyurethane dispersions (JPUDs) were investigated by particle size analysis. A JPUD with a small particle size in the range of 6.39 to 43.83 nm was obtained, and the trend was associated with the soft segment of the polyol in the formulation. The zeta potentials of the JPUs ranged from −47.01 to −88.9 mV, indicating that all synthesized JPUs had high dispersity and stability. The efficient synthesis procedure, low cost, and excellent properties of the resulting product are thought to offer an opportunity to use jatropha oil as a sustainable resource for polyester polyol preparation.
Collapse
Affiliation(s)
- Murni Sundang
- Chemical Engineering Programme, Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (M.S.); (S.S.)
| | - Nur Sjanrah Nurdin
- Chemical Engineering Programme, Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence: (M.S.); (S.S.)
| | - Yamunah Jaibalah Singam
- Chemical Engineering Programme, Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Syeed SaifulAzry Osman Al Edrus
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Maizura Ismail
- Chemical Engineering Programme, Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Coswald Stephen Sipaut
- Chemical Engineering Programme, Faculty of Engineering, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Luqman Chuah Abdullah
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Ernzen JR, Romoaldo CH, Gommes C, Covas JA, Marcos-Fernández A, Fiorio R, Bianchi O. Tuning Thermal, Morphological, and Physicochemical Properties of Thermoplastic Polyurethanes (TPUs) by the 1,4-Butanediol (BDO)/Dipropylene Glycol (DPG) Ratio. Polymers (Basel) 2022; 14:polym14153164. [PMID: 35956679 PMCID: PMC9371192 DOI: 10.3390/polym14153164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Thermoplastic polyurethanes (TPUs) are versatile polymers presenting a broad range of properties as a result of their countless combination of raw materials—in essence, isocyanates, polyols, and chain extenders. This study highlights the effect of two different chain extenders and their combination on the structure−property relationships of TPUs synthesized by reactive extrusion. The TPUs were obtained from 4,4-diphenylmethane diisocyanate (MDI), polyester diols, and the chain extenders 1,4-butanediol (BDO) and dipropylene glycol (DPG). The BDO/DPG ratios studied were 100/0, 75/25, 50/50, 25/75, and 0/100 wt.%. The TPUs were characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), UV−vis spectroscopy, and physical-mechanical properties. The results indicate that DPG promotes compatibility between rigid (HS) and flexible (SS) segments of TPUs. Consequently, increasing DPG content (>75 wt.%) reduced the organization of the rigid segments and the degree of phase separation, increasing the polydispersity of the interdomain distance and the transparency in the UV−visible spectrum of the TPUs. Furthermore, increasing DPG content also reduced the amount of hydrogen bonds present in the rigid phase, reducing or extinguishing its glass transition temperature (TgHS) and melting temperature (Tm), and increasing the glass transition temperature of the flexible phase (TgSS). Therefore, increasing DPG content leads to a deterioration in mechanical properties and hydrolysis resistance.
Collapse
Affiliation(s)
- Juliano R. Ernzen
- Mantoflex Poliuretanos, Caxias do Sul 95045175, Brazil;
- Chemical Engineering Department, University of Caxias do Sul, Caxias do Sul 95070560, Brazil;
| | - Carlos H. Romoaldo
- Chemical Engineering Department, University of Caxias do Sul, Caxias do Sul 95070560, Brazil;
| | - Cedric Gommes
- Department of Chemical Engineering, University of Liège, B6C, Allée du Six Août 3, B-4000 Liège, Belgium;
| | - José A. Covas
- Institute for Polymers and Composites (IPC), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Angel Marcos-Fernández
- Elastomers Group, Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (A.M.-F.); (O.B.)
| | - Rudinei Fiorio
- Faculty of Science and Engineering, Maastricht University, 6200 MD Geleen, The Netherlands;
| | - Otávio Bianchi
- Chemical Engineering Department, University of Caxias do Sul, Caxias do Sul 95070560, Brazil;
- Department of Materials Engineering (DEMAT), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90040040, Brazil
- Correspondence: (A.M.-F.); (O.B.)
| |
Collapse
|
5
|
Favero D, Marcon V, Agnol LD, Gómez CM, Cros A, Garro N, Sanchis MJ, Carsí M, Figueroa CA, Bianchi O. Effect of chain extenders on the hydrolytic degradation of soybean polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Diana Favero
- Postgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Victória Marcon
- Postgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Lucas Dall Agnol
- Postgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Clara M. Gómez
- Instituto de Ciencia de los Materiales Universidad de Valencia València Spain
| | - Ana Cros
- Instituto de Ciencia de los Materiales Universidad de Valencia València Spain
| | - Nuria Garro
- Instituto de Ciencia de los Materiales Universidad de Valencia València Spain
| | - Maria J. Sanchis
- Department of Applied Thermodynamics, Institute of Electric Technology Universitat Politècnica de València Valencia Spain
| | - Marta Carsí
- Department of Applied Thermodynamics, Instituto de Automática e Informática Industrial Universitat Politècnica de Valencia Valencia Spain
| | - Carlos A. Figueroa
- Postgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Otávio Bianchi
- Postgraduate Program in Materials Science and Engineering (PGMAT) University of Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
- Department of Materials Engineering (DEMAT) Federal University of Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
6
|
Akram N, Saeed M, Usman M. Role of Macrodiols in the Synthesis and Thermo-Mechanical Behavior of Anti-Tack Water Borne Polyurethane Dispersions. Polymers (Basel) 2022; 14:polym14030572. [PMID: 35160561 PMCID: PMC8839335 DOI: 10.3390/polym14030572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
The texture and molecular weight of polymer drastically affect the adhesion or tack strength. Waterborne polyurethane dispersions (WBPU) have been prepared using two different macrodiols of hydroxyl terminated polybutadiene (HTPB; Mn = 2912 g/mol−1) and four compositions of Polypropylene glycol (PPG Mn = 425, 1000, 2000, 2700 g/mol−1). The contents of the macrodiols have been varied using HTPB as 5, 10 and 15 mol%. The prepolymer of HTPB and Poly propylene glycol (PPG) have been developed using 4,4-Methylene bis(cyclohexyl isocyanate) (H12MDI) which is extended using 1, 4 butanediol (BD) followed by the dispersion of polymers in deionized water. Fourier Transform Infra-red spectroscopy (FTIR) is used to confirm the desired PU linkage. The probe tack graphs for tack analysis have not shown any plateau indicating absence of fibrillation. Two different values of glass transition temperature (Tg) have been observed for each dispersion using Differential Scanning Calorimetry(DSC). Storage modulus (E′) up to 3.97 MPa and (tanδ/E′) from 0.01–0.30 MPa−1 has been observed via Dynamic Mechanical Analysis (DMA). Introducing the HTPB has resulted in a decrease in the values of (tanδ/E′). No adhesion favorable parameters have been retrieved, indicating the molar variation a key factor in the development of anti-tack dispersions.
Collapse
|
7
|
Synthesis of Mono Ethylene Glycol (MEG)-Based Polyurethane and Effect of Chain Extender on Its Associated Properties. Polymers (Basel) 2021; 13:polym13193436. [PMID: 34641251 PMCID: PMC8512123 DOI: 10.3390/polym13193436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
This study depicts the investigations of the effect of composition of aromatic polyester polyol produced from terephthalic acid (TPA) and different concentrations of mono ethylene glycol (mEG) as a chain extender on the mechanical properties of polyurethane (PU) elastomer. Aromatic polyester polyols are prepared via the poly-esterification of adipic acid, terephthalic acid, catalyst, and mono ethylene glycol; while a polyurethane elastomer is formulated via the pre-polymerization of polyol with pure monomeric Methylene diphenyl diisocyanate (MDI.) Mechanical properties of polyurethane elastomers are examined, such as hardness via shore A hardness, apparent density via ASTM (American Society for Testing and Materials) D1622–08, and abrasion wear resistance via a Deutches Institut fur Normung (DIN) abrasion wear resistance tester. Structural properties are investigated through Fourier-transform infrared spectroscopy (FTIR) analysis. Results reveal that the shore A hardness of the PU elastomer increases with an increasing concentration of mEG from 4g to 12g. Nevertheless, the elastomer’s density depicts a reduction with an increasing extender content. The abrasion wear resistance of polyurethane, however, increases with an increasing concentration of glycol. A structural analysis through FTIR confirms the formation of polyurethane elastomer through the characteristic peaks demonstrated.
Collapse
|
8
|
Construction of Mechanically Reinforced Thermoplastic Polyurethane from Carbon Dioxide-Based Poly(ether carbonate) Polyols via Coordination Cross-Linking. Polymers (Basel) 2021; 13:polym13162765. [PMID: 34451305 PMCID: PMC8399931 DOI: 10.3390/polym13162765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Using carbon dioxide-based poly(propylene ether carbonate) diol (PPCD), isophorone diisocyanate (IPDI), dimethylolbutyric acid (DMBA), ferric chloride (FeCl3), and ethylene glycol (EG) as the main raw materials, a novel thermoplastic polyurethane (TPU) is prepared through coordination of FeCl3 and DMBA to obtain TPU containing coordination enhancement directly. The Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, UV−Vis spectroscopy, tensile testing, dynamic mechanical analysis, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis were explored to characterize chemical structures and mechanical properties of as-prepared TPU. With the increasing addition of FeCl3, the tensile strength and modulus of TPU increase. Although the elongation at break decreases, it still maintains a high level. Dynamic mechanical analysis shows that the glass-transition temperature moves to a high temperature gradually along with the increasing addition of FeCl3. X-ray diffraction results indicate that TPUs reinforced with FeCl3 or not are amorphous polymers. That FeCl3 coordinates with DMBA first is an effective strategy of getting TPU, which is effective and convenient in the industry without the separation of intermediate products. This work confirms that such Lewis acids as FeCl3 can improve and adjust the properties of TPU contenting coordination structures with an in-situ reaction in a low addition amount, which expands their applications in industry and engineering areas.
Collapse
|