1
|
Yang Y, Liang Z, Zhang R, Zhou S, Yang H, Chen Y, Zhang J, Yin H, Yu D. Research Advances in Superabsorbent Polymers. Polymers (Basel) 2024; 16:501. [PMID: 38399879 PMCID: PMC10892691 DOI: 10.3390/polym16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Superabsorbent polymers are new functional polymeric materials that can absorb and retain liquids thousands of times their masses. This paper reviews the synthesis and modification methods of different superabsorbent polymers, summarizes the processing methods for different forms of superabsorbent polymers, and organizes the applications and research progress of superabsorbent polymers in industrial, agricultural, and biomedical industries. Synthetic polymers like polyacrylic acid, polyacrylamide, polyacrylonitrile, and polyvinyl alcohol exhibit superior water absorption properties compared to natural polymers such as cellulose, chitosan, and starch, but they also do not degrade easily. Consequently, it is often necessary to modify synthetic polymers or graft superabsorbent functional groups onto natural polymers, and then crosslink them to balance the properties of material. Compared to the widely used superabsorbent nanoparticles, research on superabsorbent fibers and gels is on the rise, and they are particularly notable in biomedical fields like drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| | | | | | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Z.L.); (R.Z.); (S.Z.); (H.Y.); (Y.C.); (J.Z.); (H.Y.)
| |
Collapse
|
2
|
Gundu S, Sahi AK, Kumari P, Vishwakarma NK, Mahto SK. Assessment of various forms of cellulose-based Luffa cylindrica (mat, flakes and powder) reinforced polydimethylsiloxane composites for oil sorption and organic solvents absorption. Int J Biol Macromol 2023; 240:124416. [PMID: 37060975 DOI: 10.1016/j.ijbiomac.2023.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Oil spillage has damaged public health noticeably and contributed to significant environmental deterioration. As a result, a significant amount of effort has been spent on investigating and developing the sorbent materials capable of separating oil from water. Thus, the sorbent materials that could be effective particularly in oil spill disposal and resolve such environmental issue remain to be explored. We have proposed luffa cylindrica (LC)-polydimethylsiloxane (PDMS) composite forms to remove the oil and organic components that might be hazardous to aquatic organisms. The scaffolds were fabricated using hand lay-up method with various forms of luffa cylindrica i.e., LC mat, flakes and powder. Various characterizations such as scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), effective porosity, surface wettability, mechanical stability, cytotoxicity and sorption behavior with respect to oil, phosphate buffer saline (PBS) and few organic solvents were performed. The results showed that the scaffold in combination with P-L flakes was highly effective in eradicating oil spills and removing harmful components of crude oil. Scaffolds composed of P-L mat, P-L flakes, P-L powder, and PDMS (P) exhibited oil absorption efficacy around 16.09 ± 4.62 %, 24.49 ± 3.55 %, 15.52 ± 2.67 % and 5.52 ± 1.44 %, respectively. We anticipate that the proposed scaffolds have the tremendous potential to provide a solution to this significant environmental remediation issue and to serve as a cost-effective method for removing oil spills and hazardous crude oil components.
Collapse
Affiliation(s)
- Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Niraj K Vishwakarma
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Facile preparation of novel Fe-BTC@PAN nanofibrous aerogel membranes for highly efficient continuous flow degradation of organic dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Tong H, Chen H, Zhao Y, Liu M, Cheng Y, Lu J, Tao Y, Du J, Wang H. Robust PDMS-based porous sponge with enhanced recyclability for selective separation of oil-water mixture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Gao Q, Cheng S, Wang X, Tang Y, Yuan Y, Li A, Guan S. Three‐dimensional hierarchical nanostructured porous epoxidized natural rubber latex/poly(vinyl alcohol) material for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiangmin Gao
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Shangru Cheng
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Xincheng Wang
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yaokai Tang
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Yingxin Yuan
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Anqi Li
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| | - Shanshan Guan
- Key Laboratory of Rubber‐Plastics, Ministry of Education, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
6
|
Jiang G, Zhang C, Xie S, Wang X, Li W, Cai J, Lu F, Han Y, Ye X, Xue L. Facile Fabrication of Electrospun Nanofibrous Aerogels for Efficient Oil Absorption and Emulsified Oil-Water Separation. ACS OMEGA 2022; 7:6674-6681. [PMID: 35252662 PMCID: PMC8892654 DOI: 10.1021/acsomega.1c06080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Developing superabsorbents for efficiently separating immiscible oil-water mixtures and oil-water emulsions are highly desirable for addressing oily wastewater pollution problems, but it remains a challenge. Ultralight nanofibrous aerogels (NFAs) with unique wetting properties show great potential in oily wastewater treatment. In this study, a facile and efficient method for producing hierarchical porous structured NFAs with hydrophobicity for high efficiency oil-water separation was developed. The synthesis included three steps: wet electrospinning, freeze drying, and in situ polymerization. The obtained NFA demonstrated outstanding oil absorption capacity toward numerous oils and organic solvents, as well as efficient surfactant-stabilized water-in-oil emulsion separation with high separation flux and excellent separation efficiency. Furthermore, these NFAs displayed excellent corrosion resistance and outstanding recoverability. We assume that the resultant NFAs fabricated by this facile strategy are highly promising as ideal oil absorbents for practical oily wastewater treatment under harsh conditions.
Collapse
Affiliation(s)
- Guojun Jiang
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Caidan Zhang
- Key
Laboratory of Yarn Materials Forming and Composite Processing Technology
of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Sheng Xie
- Key
Laboratory of Yarn Materials Forming and Composite Processing Technology
of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaohong Wang
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Weiwei Li
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Jiajie Cai
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Fei Lu
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Yuhang Han
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Xiangyu Ye
- Zhejiang
Light Industrial Products Inspection and Research Institute, Hangzhou 310020, China
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Lixin Xue
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
The Influence of Self-Heating Iron on the Thermal, Mechanical, and Swelling Properties of PDMS Composites for Organic Solvents Removal. Polymers (Basel) 2021; 13:polym13234231. [PMID: 34883733 PMCID: PMC8659732 DOI: 10.3390/polym13234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/27/2021] [Indexed: 12/01/2022] Open
Abstract
Volatile organic compounds pollute the environment and pose a serious threat to human health due to their toxicity, mutagenicity, and carcinogenicity. In this context, it is highly desirable to fabricate high-performance poly (dimethylsiloxane) (PDMS) composites to remove organic solvents from the environment using a simple technique. Therefore, in the present study, Fe-PDMS composites were fabricated using a technique based on magnetic induction heating with iron particles serving as a self-heating agent. Under an alternating magnetic field, the iron particles served as a thermal source that assisted in the progression of PDMS crosslinking. The influence of self-heating iron on the properties of the fabricated Fe-PDMS composites was also investigated. The hydrosilation reaction occurring during the crosslinking process was controlled using FT-IR. The heating efficiency of PDMS 1, PDMS 2, and PDMS 3 was studied as the function of induction time (0–5 min) and the function of iron content (0%, 1%, and 30% wt.%). The results revealed that the mechanical properties of the PDMS 2 composite were enhanced compared to those of the PDMS 1 and PDMS 3 composites. The mechanical properties of PDMS 3 were the least efficient due to cluster formation. PDMS 3 exhibited the highest thermal stability among all composites. Furthermore, the swelling behavior of different materials in various organic solvents was studied. PDMS was observed to swell to the greatest extent in chloroform, while swelling to a large extent was observed in toluene, pentane, and petroleum ether. PDMS swelling was the least in n-butanol. The elastomeric behavior of crosslinked PDMS, together with its magnetic character, produces stimuli-responsive magneto-rheological composites, which are quite efficient and suitable for applications involving the removal of organic solvents.
Collapse
|