Hu P, Li W, Huang S, Zhang Z, Liu H, Zhan W, Chen M, Kong Q. Effect of Layered Aminovanadic Oxalate Phosphate on Flame Retardancy of Epoxy Resin.
Molecules 2023;
28:molecules28083322. [PMID:
37110556 PMCID:
PMC10142990 DOI:
10.3390/molecules28083322]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
To alleviate the fire hazard of epoxy resin (EP), layered ammonium vanadium oxalate-phosphate (AVOPh) with the structural formula of (NH4)2[VO(HPO4)]2(C2O4)·5H2O is synthesized using the hydrothermal method and mixed into an EP matrix to prepare EP/AVOPh composites. The thermogravimetric analysis (TGA) results show that AVOPh exhibits a similar thermal decomposition temperature to EP, which is suitable for flame retardancy for EP. The incorporation of AVOPh nanosheets greatly improves the thermal stability and residual yield of EP/AVOPh composites at high temperatures. The residue of pure EP is 15.3% at 700 °C. In comparison, the residue of EP/AVOPh composites is increased to 23.0% with 8 wt% AVOPh loading. Simultaneously, EP/6 wt% AVOPh composites reach UL-94 V1 rating (t1 + t2 =16 s) and LOI value of 32.8%. The improved flame retardancy of EP/ AVOPh composites is also proven by the cone calorimeter test (CCT). The results of CCT of EP/8 wt% AVOPh composites show that the peak heat release rate (PHHR), total smoke production (TSP), peak of CO production (PCOP), and peak of CO2 production (PCO2P) decrease by 32.7%, 20.4%, 37.1%, and 33.3% compared with those of EP, respectively. This can be attributed to the lamellar barrier, gas phase quenching effect of phosphorus-containing volatiles, the catalytic charring effect of transition metal vanadium, and the synergistic decomposition of oxalic acid structure and charring effect of phosphorus phase, which can insulate heat and inhibit smoke release. Based on the experimental data, AVOPh is expected to serve as a new high-efficiency flame retardant for EP.
Collapse