1
|
Khan R, Biffin E, van Dijk KJ, Hill RS, Liu J, Waycott M. Development of a Target Enrichment Probe Set for Conifer (REMcon). BIOLOGY 2024; 13:361. [PMID: 38927241 PMCID: PMC11200496 DOI: 10.3390/biology13060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Conifers are an ecologically and economically important seed plant group that can provide significant insights into the evolution of land plants. Molecular phylogenetics has developed as an important approach in evolutionary studies, although there have been relatively few studies of conifers that employ large-scale data sourced from multiple nuclear genes. Target enrichment sequencing (target capture, exon capture, or Hyb-Seq) has developed as a key approach in modern phylogenomic studies. However, until now, there has been no bait set that specifically targets the entire conifer clade. REMcon is a target sequence capture probe set intended for family- and species-level phylogenetic studies of conifers that target c. 100 single-copy nuclear loci. We tested the REMcon probe set using 69 species, including 44 conifer genera across six families and four other gymnosperm taxa, to evaluate the efficiency of target capture to efficiently generate comparable DNA sequence data across conifers. The recovery of target loci was high, with, on average, 94% of the targeted regions recovered across samples with high read coverage. A phylogenetic analysis of these data produced a well-supported topology that is consistent with the current understanding of relationships among conifers. The REMcon bait set will be useful in generating relatively large-scale nuclear data sets consistently for any conifer lineage.
Collapse
Affiliation(s)
- Raees Khan
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
- State Herbarium of South Australia, Adelaide, SA 5000, Australia;
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Ed Biffin
- State Herbarium of South Australia, Adelaide, SA 5000, Australia;
| | - Kor-jent van Dijk
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
| | - Robert S. Hill
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5005, Australia; (K.-j.v.D.); (R.S.H.); (M.W.)
- State Herbarium of South Australia, Adelaide, SA 5000, Australia;
| |
Collapse
|
2
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
3
|
Moore‐Pollard ER, Jones DS, Mandel JR. Compositae-ParaLoss-1272: A complementary sunflower-specific probe set reduces paralogs in phylogenomic analyses of complex systems. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11568. [PMID: 38369976 PMCID: PMC10873820 DOI: 10.1002/aps3.11568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 02/20/2024]
Abstract
Premise A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. Methods We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus Packera. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 Packera taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. Results We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061. Discussion Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.
Collapse
Affiliation(s)
- Erika R. Moore‐Pollard
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| | - Daniel S. Jones
- Department of Biological SciencesAuburn University101 Rouse Life SciencesAuburnAlabama36849USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of Memphis3700 Walker Ave.MemphisTennessee38152USA
| |
Collapse
|
4
|
Liu L, Chen M, Folk RA, Wang M, Zhao T, Shang F, Soltis DE, Li P. Phylogenomic and syntenic data demonstrate complex evolutionary processes in early radiation of the rosids. Mol Ecol Resour 2023; 23:1673-1688. [PMID: 37449554 DOI: 10.1111/1755-0998.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Some of the most vexing problems of deep level relationship that remain in angiosperms involve the superrosids. The superrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales, Saxifragales and core rosids) exhibiting remarkable morphological and ecological diversity. To help resolve deep-level relationships, we constructed a high-quality chromosome-level genome assembly for Tiarella polyphylla (Saxifragaceae) thus providing broader genomic representation of Saxifragales. Whole genome microsynteny analysis of superrosids showed that Saxifragales shared more synteny clusters with core rosids than Vitales, further supporting Saxifragales as more closely related with core rosids. To resolve the ordinal phylogeny of superrosids, we screened 122 single copy nuclear genes from genomes of 36 species, representing all 18 superrosid orders. Vitales were recovered as sister to all other superrosids (Saxifragales + core rosids). Our data suggest dramatic differences in relationships compared to earlier studies within core rosids. Fabids should be restricted to the nitrogen-fixing clade, while Picramniales, the Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales and Brassicales formed an "expanded" malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG IV) was not monophyletic. Crossosomatales, Geraniales, Myrtales and Zygophyllales did not belong to either of our well-supported malvids or fabids. There is strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relationships; we show that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.
Collapse
Affiliation(s)
- Luxian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengzhen Chen
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Meizhen Wang
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fude Shang
- Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, Henan, China
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Pezzini FF, Ferrari G, Forrest LL, Hart ML, Nishii K, Kidner CA. Target capture and genome skimming for plant diversity studies. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11537. [PMID: 37601316 PMCID: PMC10439825 DOI: 10.1002/aps3.11537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Recent technological advances in long-read high-throughput sequencing and assembly methods have facilitated the generation of annotated chromosome-scale whole-genome sequence data for evolutionary studies; however, generating such data can still be difficult for many plant species. For example, obtaining high-molecular-weight DNA is typically impossible for samples in historical herbarium collections, which often have degraded DNA. The need to fast-freeze newly collected living samples to conserve high-quality DNA can be complicated when plants are only found in remote areas. Therefore, short-read reduced-genome representations, such as target capture and genome skimming, remain important for evolutionary studies. Here, we review the pros and cons of each technique for non-model plant taxa. We provide guidance related to logistics, budget, the genomic resources previously available for the target clade, and the nature of the study. Furthermore, we assess the available bioinformatic analyses, detailing best practices and pitfalls, and suggest pathways to combine newly generated data with legacy data. Finally, we explore the possible downstream analyses allowed by the type of data generated using each technique. We provide a practical guide to help researchers make the best-informed choice regarding reduced genome representation for evolutionary studies of non-model plants in cases where whole-genome sequencing remains impractical.
Collapse
Affiliation(s)
| | - Giada Ferrari
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | | | - Kanae Nishii
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Catherine A. Kidner
- Royal Botanic Garden EdinburghEdinburghUnited Kingdom
- School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Liu SH, Hung KH, Hsu TW, Hoch PC, Peng CI, Chiang TY. New insights into polyploid evolution and dynamic nature of Ludwigia section Isnardia (Onagraceae). BOTANICAL STUDIES 2023; 64:14. [PMID: 37269434 DOI: 10.1186/s40529-023-00387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND While polyploids are common in plants, the evolutionary history and natural dynamics of most polyploid groups are still unclear. Owing to plentiful earlier systematic studies, Ludwigia sect. Isnardia (comprising 22 wetland taxa) is an ideal allopolyploid complex to investigate polyploid evolution and natural dynamics within and among taxa. With a considerable sampling, we concentrated on revisiting earlier phylogenies of Isnardia, reevaluating the earlier estimated age of the most recent common ancestor (TMRCA), exploring the correlation between infraspecific genetic diversity and ploidy levels, and inspecting interspecific gene flows among taxa. RESULTS Phylogenetic trees and network concurred with earlier phylogenies and hypothesized genomes by incorporating 192 atpB-rbcL and ITS sequences representing 91% of Isnardia taxa. Moreover, we detected three multi-origin taxa. Our findings on L. repens and L. sphaerocarpa were consistent with earlier studies; L. arcuata was reported as a multi-origin taxon here, and an additional evolutionary scenario of L. sphaerocarpa was uncovered, both for the first time. Furthermore, estimated Isnardia TMRCA ages based on our data (5.9 or 8.9 million years ago) are in accordance with earlier estimates, although younger than fossil dates (Middle Miocene). Surprisingly, infraspecific genetic variations of Isnardia taxa did not increase with ploidy levels as anticipated from many other polyploid groups. In addition, the exuberant, low, and asymmetrical gene flows among Isnardia taxa indicated that the reproductive barriers may be weakened owing to allopolyploidization, which has rarely been reported. CONCLUSIONS The present research gives new perceptions of the reticulate evolution and dynamic nature of Isnardia and points to gaps in current knowledge about allopolyploid evolution.
Collapse
Affiliation(s)
- Shih-Hui Liu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Tsai-Wen Hsu
- Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Peter C Hoch
- Missouri Botanical Garden, St. Louis, MO, 63166, USA
| | - Ching-I Peng
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
7
|
Comparative Insights into Four Major Legume Sprouts Efficacies for Diabetes Management and Its Complications: Untargeted versus Targeted NMR Biochemometrics Approach. Metabolites 2022; 13:metabo13010063. [PMID: 36676988 PMCID: PMC9866814 DOI: 10.3390/metabo13010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Interest in the consumption of seed sprouts is gradually increasing as functional foods in the modern Western diet owing to their several nutritional and health benefits. The present study aims to investigate four major legume sprouts derived from faba bean (Vicia faba L.), lentil (Lens esculenta L.), chickpea (Cicer arietinum L.), and fenugreek (Trigonella foenum-greacum L.) for their antidiabetic activity and mitigation of associated complications, i.e., oxidative stress, liver dysfunction, and lipid metabolism, compared with glibenclamide. Biochemical results presented herein further showed that the four sprouts exhibited significant hypoglycemic effects (p < 0.05), with improvement in decreasing of blood glucose levels at different degrees and with faba bean sprout most active at 348% improvement, compared to 364.3% for glibenclamide. Further biochemometric analysis based on a comparison between targeted versus untargeted partial least square (PLS) and regression analyses revealed that faba bean sprouts’ richness in flavonoids was a determinant key factor for such efficacy. In addition, correlation with previously investigated NMR fingerprinting aided in pinpointing other active agents, such as betaine and L-DOPA. Furthermore, the effect on serum liver enzymes, including alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase; oxidative stress markers; and lipid profiles showed significant improvement, especially in the case of faba bean sprout. The study revealed the potential health benefits of legume sprouts in the treatment of diabetes and its associated complications, as well as the potential role of biochemometrics in active agents’ identification in such a complex matrix to be considered for other functional foods investigation.
Collapse
|
8
|
Crameri S, Fior S, Zoller S, Widmer A. A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (Dalbergia spp.) and the legume family (Fabaceae). Mol Ecol Resour 2022; 22:3087-3105. [PMID: 35689779 PMCID: PMC9796917 DOI: 10.1111/1755-0998.13666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Understanding the genetic changes associated with the evolution of biological diversity is of fundamental interest to molecular ecologists. The assessment of genetic variation at hundreds or thousands of unlinked genetic loci forms a sound basis to address questions ranging from micro- to macroevolutionary timescales, and is now possible thanks to advances in sequencing technology. Major difficulties are associated with (i) the lack of genomic resources for many taxa, especially from tropical biodiversity hotspots; (ii) scaling the numbers of individuals analysed and loci sequenced; and (iii) building tools for reproducible bioinformatic analyses of such data sets. To address these challenges, we developed target capture probes for genomic studies of the highly diverse, pantropically distributed and economically significant rosewoods (Dalbergia spp.), explored the performance of an overlapping probe set for target capture across the legume family (Fabaceae), and built the general purpose bioinformatic pipeline CaptureAl. Phylogenomic analyses of Malagasy Dalbergia species yielded highly resolved and well supported hypotheses of evolutionary relationships. Population genomic analyses identified differences between closely related species and revealed the existence of a potentially new species, suggesting that the diversity of Malagasy Dalbergia species has been underestimated. Analyses at the family level corroborated previous findings by the recovery of monophyletic subfamilies and many well-known clades, as well as high levels of gene tree discordance, especially near the root of the family. The new genomic and bioinformatic resources, including the Fabaceae1005 and Dalbergia2396 probe sets, will hopefully advance systematics and ecological genetics research in legumes, and promote conservation of the highly diverse and endangered Dalbergia rosewoods.
Collapse
Affiliation(s)
- Simon Crameri
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Simone Fior
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| | - Stefan Zoller
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
- Genetic Diversity Centre (GDC)ETH ZurichZürichSwitzerland
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürichSwitzerland
| |
Collapse
|
9
|
Thureborn O, Razafimandimbison SG, Wikström N, Rydin C. Target capture data resolve recalcitrant relationships in the coffee family (Rubioideae, Rubiaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:967456. [PMID: 36160958 PMCID: PMC9493367 DOI: 10.3389/fpls.2022.967456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Subfamily Rubioideae is the largest of the main lineages in the coffee family (Rubiaceae), with over 8,000 species and 29 tribes. Phylogenetic relationships among tribes and other major clades within this group of plants are still only partly resolved despite considerable efforts. While previous studies have mainly utilized data from the organellar genomes and nuclear ribosomal DNA, we here use a large number of low-copy nuclear genes obtained via a target capture approach to infer phylogenetic relationships within Rubioideae. We included 101 Rubioideae species representing all but two (the monogeneric tribes Foonchewieae and Aitchinsonieae) of the currently recognized tribes, and all but one non-monogeneric tribe were represented by more than one genus. Using data from the 353 genes targeted with the universal Angiosperms353 probe set we investigated the impact of data type, analytical approach, and potential paralogs on phylogenetic reconstruction. We inferred a robust phylogenetic hypothesis of Rubioideae with the vast majority (or all) nodes being highly supported across all analyses and datasets and few incongruences between the inferred topologies. The results were similar to those of previous studies but novel relationships were also identified. We found that supercontigs [coding sequence (CDS) + non-coding sequence] clearly outperformed CDS data in levels of support and gene tree congruence. The full datasets (353 genes) outperformed the datasets with potentially paralogous genes removed (186 genes) in levels of support but increased gene tree incongruence slightly. The pattern of gene tree conflict at short internal branches were often consistent with high levels of incomplete lineage sorting (ILS) due to rapid speciation in the group. While concatenation- and coalescence-based trees mainly agreed, the observed phylogenetic discordance between the two approaches may be best explained by their differences in accounting for ILS. The use of target capture data greatly improved our confidence and understanding of the Rubioideae phylogeny, highlighted by the increased support for previously uncertain relationships and the increased possibility to explore sources of underlying phylogenetic discordance.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
10
|
Ufimov R, Gorospe JM, Fér T, Kandziora M, Salomon L, van Loo M, Schmickl R. Utilizing paralogs for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data. Mol Ecol Resour 2022; 22:3018-3034. [PMID: 35796729 DOI: 10.1111/1755-0998.13684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
The analysis of target enrichment data in phylogenetics lacks optimization toward using paralogs for phylogenetic reconstruction. We developed a novel approach of detecting paralogs and utilizing them for phylogenetic tree inference, by retrieving both ortho- and paralogous copies and creating orthologous alignments, from which the gene trees are built. We implemented this approach in ParalogWizard and demonstrate its performance in plant groups that underwent a whole genome duplication relatively recently: the subtribe Malinae (family Rosaceae), using Angiosperms353 as well as Malinae481 probes, the genus Oritrophium (family Asteraceae), using Compositae1061 probes, and the genus Amomum (family Zingiberaceae), using Zingiberaceae1180 probes. Discriminating between orthologs and paralogs reduced gene tree discordance and increased the species tree support in the case of the Malinae, but not for Oritrophium and Amomum. This may relate to the difference in the proportion of paralogous loci between the datasets, which was highest for the Malinae. Overall, retrieving paralogs for phylogenetic reconstruction following ParalogWizard has the potential to increase the species tree support and reduce gene tree discordance in target enrichment data, particularly if the proportion of paralogous loci is high.
Collapse
Affiliation(s)
- Roman Ufimov
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria.,Komarov Botanical Institute, Russian Academy of Sciences, ul. Prof. Popova 2, 197376, St. Petersburg, Russian Federation
| | - Juan Manuel Gorospe
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Tomáš Fér
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Martha Kandziora
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Luciana Salomon
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Marcela van Loo
- Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1130, Vienna, Austria
| | - Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| |
Collapse
|
11
|
Choi IS, Cardoso D, de Queiroz LP, de Lima HC, Lee C, Ruhlman TA, Jansen RK, Wojciechowski MF. Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 13:823190. [PMID: 35283880 PMCID: PMC8905342 DOI: 10.3389/fpls.2022.823190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 05/31/2023]
Abstract
Comprising 501 genera and around 14,000 species, Papilionoideae is not only the largest subfamily of Fabaceae (Leguminosae; legumes), but also one of the most extraordinarily diverse clades among angiosperms. Papilionoids are a major source of food and forage, are ecologically successful in all major biomes, and display dramatic variation in both floral architecture and plastid genome (plastome) structure. Plastid DNA-based phylogenetic analyses have greatly improved our understanding of relationships among the major groups of Papilionoideae, yet the backbone of the subfamily phylogeny remains unresolved. In this study, we sequenced and assembled 39 new plastomes that are covering key genera representing the morphological diversity in the subfamily. From 244 total taxa, we produced eight datasets for maximum likelihood (ML) analyses based on entire plastomes and/or concatenated sequences of 77 protein-coding sequences (CDS) and two datasets for multispecies coalescent (MSC) analyses based on individual gene trees. We additionally produced a combined nucleotide dataset comprising CDS plus matK gene sequences only, in which most papilionoid genera were sampled. A ML tree based on the entire plastome maximally supported all of the deep and most recent divergences of papilionoids (223 out of 236 nodes). The Swartzieae, ADA (Angylocalyceae, Dipterygeae, and Amburaneae), Cladrastis, Andira, and Exostyleae clades formed a grade to the remainder of the Papilionoideae, concordant with nine ML and two MSC trees. Phylogenetic relationships among the remaining five papilionoid lineages (Vataireoid, Dermatophyllum, Genistoid s.l., Dalbergioid s.l., and Baphieae + Non-Protein Amino Acid Accumulating or NPAAA clade) remained uncertain, because of insufficient support and/or conflicting relationships among trees. Our study fully resolved most of the deep nodes of Papilionoideae, however, some relationships require further exploration. More genome-scale data and rigorous analyses are needed to disentangle phylogenetic relationships among the five remaining lineages.
Collapse
Affiliation(s)
- In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Domingos Cardoso
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | - Luciano P. de Queiroz
- Department of Biological Sciences, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Haroldo C. de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | |
Collapse
|
12
|
Loera-Sánchez M, Studer B, Kölliker R. A multispecies amplicon sequencing approach for genetic diversity assessments in grassland plant species. Mol Ecol Resour 2021; 22:1725-1745. [PMID: 34918474 PMCID: PMC9305562 DOI: 10.1111/1755-0998.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Grasslands are widespread and economically relevant ecosystems at the basis of sustainable roughage production. Plant genetic diversity (PGD; i.e., within‐species diversity) is related to many beneficial effects on the ecosystem functioning of grasslands. The monitoring of PGD in temperate grasslands is complicated by the multiplicity of species present and by a shortage of methods for large‐scale assessments. However, the continuous advancement of high‐throughput DNA sequencing approaches has improved the prospects of broad, multispecies PGD monitoring. Among them, amplicon sequencing stands out as a robust and cost‐effective method. Here, we report a set of 12 multispecies primer pairs that can be used for high‐throughput PGD assessments in multiple grassland plant species. The target loci were selected and tested in two phases: a “discovery phase” based on a sequence capture assay (611 nuclear loci assessed in 16 grassland plant species), which resulted in the selection of 11 loci; and a “validation phase”, in which the selected loci were targeted and sequenced using multispecies primers in test populations of Dactylis glomerata L., Lolium perenne L., Festuca pratensis Huds., Trifolium pratense L. and T. repens L. The multispecies amplicons had nucleotide diversities per species from 5.19 × 10−3 to 1.29 × 10−2, which is in the range of flowering‐related genes but slightly lower than pathogen resistance genes. We conclude that the methodology, the DNA sequence resources, and the primer pairs reported in this study provide the basis for large‐scale, multispecies PGD monitoring in grassland plants.
Collapse
Affiliation(s)
- Miguel Loera-Sánchez
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Ferreira RCU, da Costa Lima Moraes A, Chiari L, Simeão RM, Vigna BBZ, de Souza AP. An Overview of the Genetics and Genomics of the Urochloa Species Most Commonly Used in Pastures. FRONTIERS IN PLANT SCIENCE 2021; 12:770461. [PMID: 34966402 PMCID: PMC8710810 DOI: 10.3389/fpls.2021.770461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Pastures based on perennial monocotyledonous plants are the principal source of nutrition for ruminant livestock in tropical and subtropical areas across the globe. The Urochloa genus comprises important species used in pastures, and these mainly include Urochloa brizantha, Urochloa decumbens, Urochloa humidicola, and Urochloa ruziziensis. Despite their economic relevance, there is an absence of genomic-level information for these species, and this lack is mainly due to genomic complexity, including polyploidy, high heterozygosity, and genomes with a high repeat content, which hinders advances in molecular approaches to genetic improvement. Next-generation sequencing techniques have enabled the recent release of reference genomes, genetic linkage maps, and transcriptome sequences, and this information helps improve our understanding of the genetic architecture and molecular mechanisms involved in relevant traits, such as the apomictic reproductive mode. However, more concerted research efforts are still needed to characterize germplasm resources and identify molecular markers and genes associated with target traits. In addition, the implementation of genomic selection and gene editing is needed to reduce the breeding time and expenditure. In this review, we highlight the importance and characteristics of the four main species of Urochloa used in pastures and discuss the current findings from genetic and genomic studies and research gaps that should be addressed in future research.
Collapse
Affiliation(s)
| | - Aline da Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
14
|
Hendriks KP, Mandáková T, Hay NM, Ly E, Hooft van Huysduynen A, Tamrakar R, Thomas SK, Toro‐Núñez O, Pires JC, Nikolov LA, Koch MA, Windham MD, Lysak MA, Forest F, Mummenhoff K, Baker WJ, Lens F, Bailey CD. The best of both worlds: Combining lineage-specific and universal bait sets in target-enrichment hybridization reactions. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311438. [PMID: 34336398 PMCID: PMC8312739 DOI: 10.1002/aps3.11438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
PREMISE Researchers adopting target-enrichment approaches often struggle with the decision of whether to use universal or lineage-specific probe sets. To circumvent this quandary, we investigate the efficacy of a simultaneous enrichment by combining universal probes and lineage-specific probes in a single hybridization reaction, to benefit from the qualities of both probe sets with little added cost or effort. METHODS AND RESULTS Using 26 Brassicaceae libraries and standard enrichment protocols, we compare results from three independent data sets. A large average fraction of reads mapping to the Angiosperms353 (24-31%) and Brassicaceae (35-59%) targets resulted in a sizable reconstruction of loci for each target set (x̄ ≥ 70%). CONCLUSIONS High levels of enrichment and locus reconstruction for the two target sets demonstrate that the sampling of genomic regions can be easily extended through the combination of probe sets in single enrichment reactions. We hope that these findings will facilitate the production of expanded data sets that answer individual research questions and simultaneously allow wider applications by the research community as a whole.
Collapse
Affiliation(s)
- Kasper P. Hendriks
- Naturalis Biodiversity CenterResearch Group Functional TraitsP.O. Box 95172300RALeidenThe Netherlands
- Department of Biology/BotanyOsnabrück UniversityOsnabrück49076Germany
| | | | - Nikolai M. Hay
- Department of BiologyDuke UniversityDurhamNorth Carolina27708USA
| | - Elfy Ly
- Naturalis Biodiversity CenterResearch Group Functional TraitsP.O. Box 95172300RALeidenThe Netherlands
| | - Alex Hooft van Huysduynen
- Naturalis Biodiversity CenterResearch Group Functional TraitsP.O. Box 95172300RALeidenThe Netherlands
| | - Rubin Tamrakar
- Department of BiologyNew Mexico State UniversityLas CrucesNew Mexico88001USA
| | - Shawn K. Thomas
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| | - Oscar Toro‐Núñez
- Departamento de BotánicaUniversidad de ConcepciónConcepciónChile
| | - J. Chris Pires
- Division of Biological SciencesUniversity of MissouriColumbiaMissouri65211USA
| | - Lachezar A. Nikolov
- Department of Molecular, Cell and Developmental BiologyUniversity of California Los AngelesLos AngelesCalifornia90095USA
| | - Marcus A. Koch
- Centre for Organismal Studies COS, Biodiversity and Plant SystematicsHeidelberg University69120HeidelbergGermany
| | | | | | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Klaus Mummenhoff
- Department of Biology/BotanyOsnabrück UniversityOsnabrück49076Germany
| | | | - Frederic Lens
- Naturalis Biodiversity CenterResearch Group Functional TraitsP.O. Box 95172300RALeidenThe Netherlands
- Institute of Biology LeidenPlant SciencesLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - C. Donovan Bailey
- Department of BiologyNew Mexico State UniversityLas CrucesNew Mexico88001USA
| |
Collapse
|
15
|
McLay TGB, Birch JL, Gunn BF, Ning W, Tate JA, Nauheimer L, Joyce EM, Simpson L, Schmidt‐Lebuhn AN, Baker WJ, Forest F, Jackson CJ. New targets acquired: Improving locus recovery from the Angiosperms353 probe set. APPLICATIONS IN PLANT SCIENCES 2021; 9:APS311420. [PMID: 34336399 PMCID: PMC8312740 DOI: 10.1002/aps3.11420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Universal target enrichment kits maximize utility across wide evolutionary breadth while minimizing the number of baits required to create a cost-efficient kit. The Angiosperms353 kit has been successfully used to capture loci throughout the angiosperms, but the default target reference file includes sequence information from only 6-18 taxa per locus. Consequently, reads sequenced from on-target DNA molecules may fail to map to references, resulting in fewer on-target reads for assembly, and reducing locus recovery. METHODS We expanded the Angiosperms353 target file, incorporating sequences from 566 transcriptomes to produce a 'mega353' target file, with each locus represented by 17-373 taxa. This mega353 file is a drop-in replacement for the original Angiosperms353 file in HybPiper analyses. We provide tools to subsample the file based on user-selected taxon groups, and to incorporate other transcriptome or protein-coding gene data sets. RESULTS Compared to the default Angiosperms353 file, the mega353 file increased the percentage of on-target reads by an average of 32%, increased locus recovery at 75% length by 49%, and increased the total length of the concatenated loci by 29%. DISCUSSION Increasing the phylogenetic density of the target reference file results in improved recovery of target capture loci. The mega353 file and associated scripts are available at: https://github.com/chrisjackson-pellicle/NewTargets.
Collapse
Affiliation(s)
- Todd G. B. McLay
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
- Centre for Australian National Biodiversity ResearchCSIROCanberraAustralia
| | - Joanne L. Birch
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
| | - Bee F. Gunn
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
- School of BiosciencesUniversity of MelbourneMelbourneAustralia
| | - Weixuan Ning
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Jennifer A. Tate
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Lars Nauheimer
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | - Elizabeth M. Joyce
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | - Lalita Simpson
- James Cook UniversityCairnsAustralia
- Australian Tropical HerbariumJames Cook UniversityCairnsAustralia
| | | | | | - Félix Forest
- Royal Botanic Gardens, KewRichmondSurreyTW9 3AEUnited Kingdom
| | - Chris J. Jackson
- National Herbarium of VictoriaRoyal Botanic Gardens VictoriaMelbourneAustralia
| |
Collapse
|
16
|
Shah T, Schneider JV, Zizka G, Maurin O, Baker W, Forest F, Brewer GE, Savolainen V, Darbyshire I, Larridon I. Joining forces in Ochnaceae phylogenomics: a tale of two targeted sequencing probe kits. AMERICAN JOURNAL OF BOTANY 2021; 108:1201-1216. [PMID: 34180046 DOI: 10.1002/ajb2.1682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 05/10/2023]
Abstract
PREMISE Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.
Collapse
Affiliation(s)
- Toral Shah
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | - Julio V Schneider
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - William Baker
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Grace E Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Vincent Savolainen
- Department of Life Sciences, Imperial College, Silwood Park Campus, Ascot, Berks, SL5 7PY, UK
| | | | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L., Ledeganckstraat 35, Gent, 9000, Belgium
| |
Collapse
|
17
|
Ren C, Wang L, Nie ZL, Johnson G, Yang QE, Wen J. Development and phylogenetic utilities of a new set of single-/low-copy nuclear genes in Senecioneae (Asteraceae), with new insights into the tribal position and the relationships within subtribe Tussilagininae. Mol Phylogenet Evol 2021; 162:107202. [PMID: 33992786 DOI: 10.1016/j.ympev.2021.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
The tribe Senecioneae is one of the largest tribes in Asteraceae, with a nearly cosmopolitan distribution. Despite great efforts devoted to elucidate the evolution of Senecioneae, many questions still remain concerning the systematics of this group, from the tribal circumscription and position to species relationships in many genera. The hybridization-based target enrichment method of next-generation sequencing has been accepted as a promising approach to resolve phylogenetic problems. We herein develop a set of single-/low-copy genes for Senecioneae, and test their phylogenetic utilities. Our results demonstrate that these genes work highly efficiently for Senecioneae, with a high average gene recovery of 98.8% across the tribe and recovering robust phylogenetic hypotheses at different levels. In particular, the delimitation of the Senecioneae has been confirmed to include Abrotanella and exclude Doronicum, with the former sister to core Senecioneae and the latter shown to be more closely related to Calenduleae. Moreover, Doronicum and Calenduleae are inferred to be the closest relatives of Senecioneae, which is a new hypothesis well supported by statistical topology tests, morphological evidence, and the profile of pyrrolizidine alkaloids, a special kind of chemical characters generally used to define Senecioneae. Furthermore, this study suggests a complex reticulation history in the diversification of Senecioneae, accounting for the prevalence of polyploid groups in the tribe. With subtribe Tussilagininae s.str. as a case study showing a more evident pattern of gene duplication, we further explored reconstructing the phylogeny in the groups with high ploidy levels. Our results also demonstrate that tree topologies based on sorted paralogous copies are stable across different methods of phylogenetic inference, and more congruent with the morphological evidence and the results of previous phylogenetic studies.
Collapse
Affiliation(s)
- Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Long Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Qin-Er Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| |
Collapse
|
18
|
Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, Zhu R, Zhang T, Egan AN, Yi TS, Huang CH, Ma H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. MOLECULAR PLANT 2021; 14:748-773. [PMID: 33631421 DOI: 10.1016/j.molp.2021.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Fabaceae are the third largest angiosperm family, with 765 genera and ∼19 500 species. They are important both economically and ecologically, and global Fabaceae crops are intensively studied in part for their nitrogen-fixing ability. However, resolution of the intrasubfamilial Fabaceae phylogeny and divergence times has remained elusive, precluding a reconstruction of the evolutionary history of symbiotic nitrogen fixation in Fabaceae. Here, we report a highly resolved phylogeny using >1500 nuclear genes from newly sequenced transcriptomes and genomes of 391 species, along with other datasets, for a total of 463 legumes spanning all 6 subfamilies and 333 of 765 genera. The subfamilies are maximally supported as monophyletic. The clade comprising subfamilies Cercidoideae and Detarioideae is sister to the remaining legumes, and Duparquetioideae and Dialioideae are successive sisters to the clade of Papilionoideae and Caesalpinioideae. Molecular clock estimation revealed an early radiation of subfamilies near the K/Pg boundary, marked by mass extinction, and subsequent divergence of most tribe-level clades within ∼15 million years. Phylogenomic analyses of thousands of gene families support 28 proposed putative whole-genome duplication/whole-genome triplication events across Fabaceae, including those at the ancestors of Fabaceae and five of the subfamilies, and further analyses supported the Fabaceae ancestral polyploidy. The evolution of rhizobial nitrogen-fixing nodulation in Fabaceae was probed by ancestral character reconstruction and phylogenetic analyses of related gene families and the results support the hypotheses of one or two switch(es) to rhizobial nodulation followed by multiple losses. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Fabaceae.
Collapse
Affiliation(s)
- Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China; Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China
| | - Kai-Wen Jiang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, PR China; Ningbo Botanical Garden Herbarium, Ningbo 315201, PR China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Yi Hu
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Renbin Zhu
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, PR China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Ashley N Egan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road, Kunming 650201, China.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200433, China.
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Šlenker M, Kantor A, Marhold K, Schmickl R, Mandáková T, Lysak MA, Perný M, Caboňová M, Slovák M, Zozomová-Lihová J. Allele Sorting as a Novel Approach to Resolving the Origin of Allotetraploids Using Hyb-Seq Data: A Case Study of the Balkan Mountain Endemic Cardamine barbaraeoides. FRONTIERS IN PLANT SCIENCE 2021; 12:659275. [PMID: 33995457 PMCID: PMC8115912 DOI: 10.3389/fpls.2021.659275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 05/19/2023]
Abstract
Mountains of the Balkan Peninsula are significant biodiversity hotspots with great species richness and a large proportion of narrow endemics. Processes that have driven the evolution of the rich Balkan mountain flora, however, are still insufficiently explored and understood. Here we focus on a group of Cardamine (Brassicaceae) perennials growing in wet, mainly mountainous habitats. It comprises several Mediterranean endemics, including those restricted to the Balkan Peninsula. We used target enrichment with genome skimming (Hyb-Seq) to infer their phylogenetic relationships, and, along with genomic in situ hybridization (GISH), to resolve the origin of tetraploid Cardamine barbaraeoides endemic to the Southern Pindos Mts. (Greece). We also explored the challenges of phylogenomic analyses of polyploid species and developed a new approach of allele sorting into homeologs that allows identifying subgenomes inherited from different progenitors. We obtained a robust phylogenetic reconstruction for diploids based on 1,168 low-copy nuclear genes, which suggested both allopatric and ecological speciation events. In addition, cases of plastid-nuclear discordance, in agreement with divergent nuclear ribosomal DNA (nrDNA) copy variants in some species, indicated traces of interspecific gene flow. Our results also support biogeographic links between the Balkan and Anatolian-Caucasus regions and illustrate the contribution of the latter region to high Balkan biodiversity. An allopolyploid origin was inferred for C. barbaraeoides, which highlights the role of mountains in the Balkan Peninsula both as refugia and melting pots favoring species contacts and polyploid evolution in response to Pleistocene climate-induced range dynamics. Overall, our study demonstrates the importance of a thorough phylogenomic approach when studying the evolution of recently diverged species complexes affected by reticulation events at both diploid and polyploid levels. We emphasize the significance of retrieving allelic and homeologous variation from nuclear genes, as well as multiple nrDNA copy variants from genome skim data.
Collapse
Affiliation(s)
- Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Kantor
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
20
|
Kates HR, Doby JR, Siniscalchi CM, LaFrance R, Soltis DE, Soltis PS, Guralnick RP, Folk RA. The Effects of Herbarium Specimen Characteristics on Short-Read NGS Sequencing Success in Nearly 8000 Specimens: Old, Degraded Samples Have Lower DNA Yields but Consistent Sequencing Success. FRONTIERS IN PLANT SCIENCE 2021; 12:669064. [PMID: 34249041 PMCID: PMC8262526 DOI: 10.3389/fpls.2021.669064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Phylogenetic datasets are now commonly generated using short-read sequencing technologies unhampered by degraded DNA, such as that often extracted from herbarium specimens. The compatibility of these methods with herbarium specimens has precipitated an increase in broad sampling of herbarium specimens for inclusion in phylogenetic studies. Understanding which sample characteristics are predictive of sequencing success can guide researchers in the selection of tissues and specimens most likely to yield good results. Multiple recent studies have considered the relationship between sample characteristics and DNA yield and sequence capture success. Here we report an analysis of the relationship between sample characteristics and sequencing success for nearly 8,000 herbarium specimens. This study, the largest of its kind, is also the first to include a measure of specimen quality ("greenness") as a predictor of DNA sequencing success. We found that taxonomic group and source herbarium are strong predictors of both DNA yield and sequencing success and that the most important specimen characteristics for predicting success differ for DNA yield and sequencing: greenness was the strongest predictor of DNA yield, and age was the strongest predictor of proportion-on-target reads recovered. Surprisingly, the relationship between age and proportion-on-target reads is the inverse of expectations; older specimens performed slightly better in our capture-based protocols. We also found that DNA yield itself is not a strong predictor of sequencing success. Most literature on DNA sequencing from herbarium specimens considers specimen selection for optimal DNA extraction success, which we find to be an inappropriate metric for predicting success using next-generation sequencing technologies.
Collapse
Affiliation(s)
- Heather R. Kates
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- *Correspondence: Heather R. Kates,
| | - Joshua R. Doby
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Carol M. Siniscalchi
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Raphael LaFrance
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Biodiversity Institute, University of Florida, Gainesville, FL, United States
- Robert P. Guralnick,
| | - Ryan A. Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
- Ryan A. Folk,
| |
Collapse
|
21
|
Koenen EJ, Kidner C, de Souza ÉR, Simon MF, Iganci JR, Nicholls JA, Brown GK, de Queiroz LP, Luckow M, Lewis GP, Pennington RT, Hughes CE. Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation. AMERICAN JOURNAL OF BOTANY 2020; 107:1710-1735. [PMID: 33253423 PMCID: PMC7839790 DOI: 10.1002/ajb2.1568] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
PREMISE Targeted enrichment methods facilitate sequencing of hundreds of nuclear loci to enhance phylogenetic resolution and elucidate why some parts of the "tree of life" are difficult (if not impossible) to resolve. The mimosoid legumes are a prominent pantropical clade of ~3300 species of woody angiosperms for which previous phylogenies have shown extensive lack of resolution, especially among the species-rich and taxonomically challenging ingoids. METHODS We generated transcriptomes to select low-copy nuclear genes, enrich these via hybrid capture for representative species of most mimosoid genera, and analyze the resulting data using de novo assembly and various phylogenomic tools for species tree inference. We also evaluate gene tree support and conflict for key internodes and use phylogenetic network analysis to investigate phylogenetic signal across the ingoids. RESULTS Our selection of 964 nuclear genes greatly improves phylogenetic resolution across the mimosoid phylogeny and shows that the ingoid clade can be resolved into several well-supported clades. However, nearly all loci show lack of phylogenetic signal for some of the deeper internodes within the ingoids. CONCLUSIONS Lack of resolution in the ingoid clade is most likely the result of hyperfast diversification, potentially causing a hard polytomy of six or seven lineages. The gene set for targeted sequencing presented here offers great potential to further enhance the phylogeny of mimosoids and the wider Caesalpinioideae with denser taxon sampling, to provide a framework for taxonomic reclassification, and to study the ingoid radiation.
Collapse
Affiliation(s)
- Erik J. M. Koenen
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107ZurichCH‐8008Switzerland
| | - Catherine Kidner
- School of Biological SciencesUniversity of EdinburghKing’s Buildings, Mayfield RoadEdinburghUK
- Royal Botanic Gardens Edinburgh20a Inverleith RowEdinburghEH3 5LRUK
| | - Élvia R. de Souza
- Departamento Ciências BiológicasUniversidade Estadual de Feira de SantanaAvenida Transnordestina s/n—Novo Horizonte44036‐900Feira de SantanaBrazil
| | - Marcelo F. Simon
- Embrapa Recursos Genéticos e BiotecnologiaParque Estação Biológica (PqEB)Avenida W5 norte70770‐917BrasíliaBrazil
| | - João R. Iganci
- Instituto de BiologiaUniversidade Federal de PelotasCampus Universitário Capão do LeãoTravessa André Dreyfus s/nCapão do Leão96010‐900Rio Grande do SulBrazil
| | - James A. Nicholls
- School of Biological SciencesUniversity of EdinburghKing’s Buildings, Mayfield RoadEdinburghUK
- Australian National Insect CollectionCSIROClunies Ross StActonACT 2601Australia
| | - Gillian K. Brown
- Queensland HerbariumBrisbane Botanic GardensMount Coot‐tha, Mt Coot‐tha RoadToowong4066QueenslandAustralia
| | - Luciano P. de Queiroz
- Departamento Ciências BiológicasUniversidade Estadual de Feira de SantanaAvenida Transnordestina s/n—Novo Horizonte44036‐900Feira de SantanaBrazil
| | - Melissa Luckow
- L.H. Bailey HortoriumDepartment of Plant BiologyCornell University412 Mann Library BuildingIthacaNew York14853USA
| | - Gwilym P. Lewis
- Comparative Plant and Fungal Biology DepartmentRoyal Botanic GardensKew, RichmondSurreyTW9 3AEUK
| | - R. Toby Pennington
- Royal Botanic Gardens Edinburgh20a Inverleith RowEdinburghEH3 5LRUK
- GeographyUniversity of ExeterAmory Building, Rennes DriveExeterEX4 4RJUK
| | - Colin E. Hughes
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107ZurichCH‐8008Switzerland
| |
Collapse
|
22
|
Straub SCK, Boutte J, Fishbein M, Livshultz T. Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb-Seq. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11400. [PMID: 33304663 PMCID: PMC7705337 DOI: 10.1002/aps3.11400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/12/2020] [Indexed: 05/07/2023]
Abstract
PREMISE Apocynaceae is the 10th largest flowering plant family and a focus for study of plant-insect interactions, especially as mediated by secondary metabolites. However, it has few genomic resources relative to its size. Target capture sequencing is a powerful approach for genome reduction that facilitates studies requiring data from the nuclear genome in non-model taxa, such as Apocynaceae. METHODS Transcriptomes were used to design probes for targeted sequencing of putatively single-copy nuclear genes across Apocynaceae. The sequences obtained were used to assess the success of the probe design, the intrageneric and intraspecific variation in the targeted genes, and the utility of the genes for inferring phylogeny. RESULTS From 853 candidate nuclear genes, 835 were consistently recovered in single copy and were variable enough for phylogenomics. The inferred gene trees were useful for coalescent-based species tree analysis, which showed all subfamilies of Apocynaceae as monophyletic, while also resolving relationships among species within the genus Apocynum. Intraspecific comparison of Elytropus chilensis individuals revealed numerous single-nucleotide polymorphisms with potential for use in population-level studies. DISCUSSION Community use of this Hyb-Seq probe set will facilitate and promote progress in the study of Apocynaceae across scales from population genomics to phylogenomics.
Collapse
Affiliation(s)
- Shannon C. K. Straub
- Department of BiologyHobart and William Smith Colleges300 Pulteney StreetGenevaNew York14456USA
| | - Julien Boutte
- Department of BiologyHobart and William Smith Colleges300 Pulteney StreetGenevaNew York14456USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology, and EvolutionOklahoma State University301 Physical SciencesStillwaterOklahoma74078USA
| | - Tatyana Livshultz
- Department of Biodiversity, Earth, and Environmental Sciences and the Academy of Natural SciencesDrexel University1900 Benjamin Franklin ParkwayPhiladelphiaPennsylvania19103USA
| |
Collapse
|
23
|
Hung TH, So T, Sreng S, Thammavong B, Boounithiphonh C, Boshier DH, MacKay JJ. Reference transcriptomes and comparative analyses of six species in the threatened rosewood genus Dalbergia. Sci Rep 2020; 10:17749. [PMID: 33082403 PMCID: PMC7576600 DOI: 10.1038/s41598-020-74814-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/07/2020] [Indexed: 12/02/2022] Open
Abstract
Dalbergia is a pantropical genus with more than 250 species, many of which are highly threatened due to overexploitation for their rosewood timber, along with general deforestation. Many Dalbergia species have received international attention for conservation, but the lack of genomic resources for Dalbergia hinders evolutionary studies and conservation applications, which are important for adaptive management. This study produced the first reference transcriptomes for 6 Dalbergia species with different geographical origins and predicted ~ 32 to 49 K unique genes. We showed the utility of these transcriptomes by phylogenomic analyses with other Fabaceae species, estimating the divergence time of extant Dalbergia species to ~ 14.78 MYA. We detected over-representation in 13 Pfam terms including HSP, ALDH and ubiquitin families in Dalbergia. We also compared the gene families of geographically co-occurring D. cochinchinensis and D. oliveri and observed that more genes underwent positive selection and there were more diverged disease resistance proteins in the more widely distributed D. oliveri, consistent with reports that it occupies a wider ecological niche and has higher genetic diversity. We anticipate that the reference transcriptomes will facilitate future population genomics and gene-environment association studies on Dalbergia, as well as contributing to the genomic database where plants, particularly threatened ones, are currently underrepresented.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Thea So
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Syneath Sreng
- Institute of Forest and Wildlife Research and Development, Phnom Penh, Cambodia
| | - Bansa Thammavong
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - Chaloun Boounithiphonh
- Forest Research Center, National Agriculture and Forestry Research Institute, Vientiane, Lao PDR
| | - David H Boshier
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
24
|
Ma ZY, Nie ZL, Ren C, Liu XQ, Zimmer EA, Wen J. Phylogenomic relationships and character evolution of the grape family (Vitaceae). Mol Phylogenet Evol 2020; 154:106948. [PMID: 32866616 DOI: 10.1016/j.ympev.2020.106948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
The grape family consists of 16 genera and ca. 950 species. It is best known for the economically important fruit crop - the grape Vitis vinifera. The deep phylogenetic relationships and character evolution of the grape family have attracted the attention of researchers in recent years. We herein reconstruct the phylogenomic relationships within Vitaceae using nuclear and plastid genes based on the Hyb-Seq approach and test the newly proposed classification system of the family. The five tribes of the grape family, including Ampelopsideae, Cayratieae, Cisseae, Parthenocisseae, and Viteae, are each robustly supported by both nuclear and chloroplast genomic data and the backbone relationships are congruent with previous reports. The cupular floral disc (raised above and free from ovary at the upper part) is an ancestral state of Vitaceae, with the inconspicuous floral disc as derived in the tribe Parthenocisseae, and the state of adnate to the ovary as derived in the tribe Viteae. The 5-merous floral pattern was inferred to be the ancestral in Vitaceae, with the 4-merous flowers evolved at least two times in the family. The compound dichasial cyme (cymose with two secondary axes) is ancestral in Vitaceae and the thyrse inflorescence (a combination of racemose and cymose branching) in tribe Viteae is derived. The ribbon-like trichome only evolved once in Vitaceae, as a synapomorphy for the tribe Viteae.
Collapse
Affiliation(s)
- Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA.
| |
Collapse
|
25
|
Valderrama E, Sass C, Pinilla-Vargas M, Skinner D, Maas PJM, Maas-van de Kamer H, Landis JB, Guan CJ, Specht CD. Unraveling the Spiraling Radiation: A Phylogenomic Analysis of Neotropical Costus L. FRONTIERS IN PLANT SCIENCE 2020; 11:1195. [PMID: 32922414 PMCID: PMC7456938 DOI: 10.3389/fpls.2020.01195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/23/2020] [Indexed: 06/01/2023]
Abstract
The family of pantropical spiral gingers (Costaceae Nakai; c. 125 spp.) can be used as a model to enhance our understanding of the mechanisms underlying Neotropical diversity. Costaceae has higher taxonomic diversity in South and Central America (c. 72 Neotropical species, c. 30 African, c. 23 Southeast Asian), particularly due to a radiation of Neotropical species of the genus Costus L. (c. 57 spp.). However, a well-supported phylogeny of the Neotropical spiral gingers including thorough sampling of proposed species encompassing their full morphologic and geographic variation is lacking, partly due to poor resolution recovered in previous analyses using a small sampling of loci. Here we use a phylogenomic approach to estimate the phylogeny of a sample of Neotropical Costus species using a targeted enrichment approach. Baits were designed to capture conserved elements' variable at the species level using available genomic sequences of Costus species and relatives. We obtained 832 loci (generating 791,954 aligned base pairs and 31,142 parsimony informative sites) for samples that encompassed the geographical and/or morphological diversity of some recognized species. Higher support values that improve the results of previous studies were obtained when including all the available loci, even those producing unresolved gene trees and having a low proportion of variable sites. Concatenation and coalescent-based species trees methods converge in almost the same topology suggesting a robust estimation of the relationships, even under the high levels of gene tree conflict presented here. The bait set design here presented made inferring a robust phylogeny to test taxonomic hypotheses possible and will improve our understanding of the origins of the charismatic diversity of the Neotropical spiral gingers.
Collapse
Affiliation(s)
- Eugenio Valderrama
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Chodon Sass
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Maria Pinilla-Vargas
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | | | - Paul J. M. Maas
- Section Botany, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Clarice J. Guan
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Hale H, Gardner EM, Viruel J, Pokorny L, Johnson MG. Strategies for reducing per-sample costs in target capture sequencing for phylogenomics and population genomics in plants. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11337. [PMID: 32351798 PMCID: PMC7186906 DOI: 10.1002/aps3.11337] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 05/19/2023]
Abstract
The reduced cost of high-throughput sequencing and the development of gene sets with wide phylogenetic applicability has led to the rise of sequence capture methods as a plausible platform for both phylogenomics and population genomics in plants. An important consideration in large targeted sequencing projects is the per-sample cost, which can be inflated when using off-the-shelf kits or reagents not purchased in bulk. Here, we discuss methods to reduce per-sample costs in high-throughput targeted sequencing projects. We review the minimal equipment and consumable requirements for targeted sequencing while comparing several alternatives to reduce bulk costs in DNA extraction, library preparation, target enrichment, and sequencing. We consider how each of the workflow alterations may be affected by DNA quality (e.g., fresh vs. herbarium tissue), genome size, and the phylogenetic scale of the project. We provide a cost calculator for researchers considering targeted sequencing to use when designing projects, and identify challenges for future development of low-cost sequencing in non-model plant systems.
Collapse
Affiliation(s)
- Haley Hale
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409USA
| | - Elliot M. Gardner
- The Morton ArboretumLisleIllinois60532USA
- Department of BiologyCase Western Reserve UniversityClevelandOhio44106USA
- Singapore Botanic GardensNational Parks Board1 Cluny Road259569Singapore
| | - Juan Viruel
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| | - Lisa Pokorny
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
- Present address:
Centre for Plant Biotechnology and Genomics (CBGP) UPM‐INIA28223Pozuelo de Alarcón (Madrid)Spain
| | - Matthew G. Johnson
- Department of Biological SciencesTexas Tech UniversityLubbockTexas79409USA
| |
Collapse
|
27
|
Shee ZQ, Frodin DG, Cámara-Leret R, Pokorny L. Reconstructing the Complex Evolutionary History of the Papuasian Schefflera Radiation Through Herbariomics. FRONTIERS IN PLANT SCIENCE 2020; 11:258. [PMID: 32265950 PMCID: PMC7099051 DOI: 10.3389/fpls.2020.00258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 05/19/2023]
Abstract
With its large proportion of endemic taxa, complex geological past, and location at the confluence of the highly diverse Malesian and Australian floristic regions, Papuasia - the floristic region comprising the Bismarck Archipelago, New Guinea, and the Solomon Islands - represents an ideal natural experiment in plant biogeography. However, scattered knowledge of its flora and limited representation in herbaria have hindered our understanding of the drivers of its diversity. Focusing on the woody angiosperm genus Schefflera (Araliaceae), we ask whether its morphologically defined infrageneric groupings are monophyletic, when these lineages diverged, and where (within Papuasia or elsewhere) they diversified. To address these questions, we use a high-throughput sequencing approach (Hyb-Seq) which combines target capture (with an angiosperm-wide bait kit targeting 353 single-copy nuclear loci) and genome shotgun sequencing (which allows retrieval of regions in high-copy number, e.g., organellar DNA) of historical herbarium collections. To reconstruct the evolutionary history of the genus we reconstruct molecular phylogenies with Bayesian inference, maximum likelihood, and pseudo-coalescent approaches, and co-estimate divergence times and ancestral areas in a Bayesian framework. We find strong support for most infrageneric morphological groupings, as currently circumscribed, and we show the efficacy of the Angiosperms-353 probe kit in resolving both deep and shallow phylogenetic relationships. We infer a sequence of colonization to explain the present-day distribution of Schefflera in Papuasia: from the Sunda Shelf, Schefflera arrived to the Woodlark plate (present-day eastern New Guinea) in the late Oligocene (when most of New Guinea was submerged) and, subsequently (throughout the Miocene), it migrated westwards (to the Maoke and Bird's Head Plates and thereon) and further diversified, in agreement with previous reconstructions.
Collapse
Affiliation(s)
- Zhi Qiang Shee
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Singapore Botanic Gardens, Singapore, Singapore
| | | | - Rodrigo Cámara-Leret
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP UPM-INIA), Madrid, Spain
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| |
Collapse
|
28
|
Oyebanji O, Zhang R, Chen SY, Yi TS. New Insights Into the Plastome Evolution of the Millettioid/Phaseoloid Clade (Papilionoideae, Leguminosae). FRONTIERS IN PLANT SCIENCE 2020; 11:151. [PMID: 32210983 PMCID: PMC7076112 DOI: 10.3389/fpls.2020.00151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
The Millettioid/Phaseoloid (MP) clade from the subfamily Papilionoideae (Leguminosae) consists of six tribes and ca. 3,000 species. Previous studies have revealed some plastome structural variations (PSVs) within this clade. However, many deep evolutionary relationships within the clade remain unresolved. Due to limited taxon sampling and few genetic markers in previous studies, our understanding of the evolutionary history of this clade is limited. To address this issue, we sampled 43 plastomes (35 newly sequenced) representing all the six tribes of the MP clade to examine genomic structural variations and phylogenetic relationships. Plastomes of the species from the MP clade were typically quadripartite (size ranged from 140,029 to 160,040 bp) and contained 109-111 unique genes. We revealed four independent gene losses (ndhF, psbI, rps16, and trnS-GCU), multiple IR-SC boundary shifts, and six inversions in the tribes Desmodieae, Millettieae, and Phaseoleae. Plastomes of the species from the MP clade have experienced significant variations which provide valuable information on the evolution of the clade. Plastid phylogenomic analyses using Maximum Likelihood and Bayesian methods yielded a well-resolved phylogeny at the tribal and generic levels within the MP clade. This result indicates that plastome data is useful and reliable data for resolving the evolutionary relationships of the MP clade. This study provides new insights into the phylogenetic relationships and PSVs within this clade.
Collapse
Affiliation(s)
- Oyetola Oyebanji
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Si-Yun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
29
|
Bagley JC, Uribe-Convers S, Carlsen MM, Muchhala N. Utility of targeted sequence capture for phylogenomics in rapid, recent angiosperm radiations: Neotropical Burmeistera bellflowers as a case study. Mol Phylogenet Evol 2020; 152:106769. [PMID: 32081762 DOI: 10.1016/j.ympev.2020.106769] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Targeted sequence capture is a promising approach for large-scale phylogenomics. However, rapid evolutionary radiations pose significant challenges for phylogenetic inference (e.g. incomplete lineages sorting (ILS), phylogenetic noise), and the ability of targeted nuclear loci to resolve species trees despite such issues remains poorly studied. We test the utility of targeted sequence capture for inferring phylogenetic relationships in rapid, recent angiosperm radiations, focusing on Burmeistera bellflowers (Campanulaceae), which diversified into ~130 species over less than 3 million years. We compared phylogenies estimated from supercontig (exons plus flanking sequences), exon-only, and flanking-only datasets with 506-546 loci (~4.7 million bases) for 46 Burmeistera species/lineages and 10 outgroup taxa. Nuclear loci resolved backbone nodes and many congruent internal relationships with high support in concatenation and coalescent-based species tree analyses, and inferences were largely robust to effects of missing taxa and base composition biases. Nevertheless, species trees were incongruent between datasets, and gene trees exhibited remarkably high levels of conflict (~4-60% congruence, ~40-99% conflict) not simply driven by poor gene tree resolution. Higher gene tree heterogeneity at shorter branches suggests an important role of ILS, as expected for rapid radiations. Phylogenetic informativeness analyses also suggest this incongruence has resulted from low resolving power at short internal branches, consistent with ILS, and homoplasy at deeper nodes, with exons exhibiting much greater risk of incorrect topologies due to homoplasy than other datasets. Our findings suggest that targeted sequence capture is feasible for resolving rapid, recent angiosperm radiations, and that results based on supercontig alignments containing nuclear exons and flanking sequences have higher phylogenetic utility and accuracy than either alone. We use our results to make practical recommendations for future target capture-based studies of Burmeistera and other rapid angiosperm radiations, including that such studies should analyze supercontigs to maximize the phylogenetic information content of loci.
Collapse
Affiliation(s)
- Justin C Bagley
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Mónica M Carlsen
- Research Department, Science and Conservation Division, Missouri Botanical Garden, St. Louis, MO 63110, USA
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
30
|
Jones KE, Fér T, Schmickl RE, Dikow RB, Funk VA, Herrando‐Moraira S, Johnston PR, Kilian N, Siniscalchi CM, Susanna A, Slovák M, Thapa R, Watson LE, Mandel JR. An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11295. [PMID: 31667023 PMCID: PMC6814182 DOI: 10.1002/aps3.11295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
PREMISE Hybrid capture with high-throughput sequencing (Hyb-Seq) is a powerful tool for evolutionary studies. The applicability of an Asteraceae family-specific Hyb-Seq probe set and the outcomes of different phylogenetic analyses are investigated here. METHODS Hyb-Seq data from 112 Asteraceae samples were organized into groups at different taxonomic levels (tribe, genus, and species). For each group, data sets of non-paralogous loci were built and proportions of parsimony informative characters estimated. The impacts of analyzing alternative data sets, removing long branches, and type of analysis on tree resolution and inferred topologies were investigated in tribe Cichorieae. RESULTS Alignments of the Asteraceae family-wide Hyb-Seq locus set were parsimony informative at all taxonomic levels. Levels of resolution and topologies inferred at shallower nodes differed depending on the locus data set and the type of analysis, and were affected by the presence of long branches. DISCUSSION The approach used to build a Hyb-Seq locus data set influenced resolution and topologies inferred in phylogenetic analyses. Removal of long branches improved the reliability of topological inferences in maximum likelihood analyses. The Astereaceae Hyb-Seq probe set is applicable at multiple taxonomic depths, which demonstrates that probe sets do not necessarily need to be lineage-specific.
Collapse
Affiliation(s)
- Katy E. Jones
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Tomáš Fér
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
| | - Roswitha E. Schmickl
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Institute of BotanyThe Czech Academy of SciencesZámek 1CZ 25243PrůhoniceCzech Republic
| | - Rebecca B. Dikow
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | - Vicki A. Funk
- Department of BotanyNational Museum of Natural HistorySmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | | | - Paul R. Johnston
- Freie Universität BerlinEvolutionary BiologyBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Carolina M. Siniscalchi
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB‐CSIC‐ICUB)Pg. del Migdia s.n.ES 08038BarcelonaSpain
| | - Marek Slovák
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Plant Science and Biodiversity CentreSlovak Academy of SciencesSK‐84523BratislavaSlovakia
| | - Ramhari Thapa
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Linda E. Watson
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma74078USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| |
Collapse
|
31
|
Brewer GE, Clarkson JJ, Maurin O, Zuntini AR, Barber V, Bellot S, Biggs N, Cowan RS, Davies NMJ, Dodsworth S, Edwards SL, Eiserhardt WL, Epitawalage N, Frisby S, Grall A, Kersey PJ, Pokorny L, Leitch IJ, Forest F, Baker WJ. Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:1102. [PMID: 31620145 PMCID: PMC6759688 DOI: 10.3389/fpls.2019.01102] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/12/2019] [Indexed: 05/03/2023]
Abstract
The world's herbaria collectively house millions of diverse plant specimens, including endangered or extinct species and type specimens. Unlocking genetic data from the typically highly degraded DNA obtained from herbarium specimens was difficult until the arrival of high-throughput sequencing approaches, which can be applied to low quantities of severely fragmented DNA. Target enrichment involves using short molecular probes that hybridise and capture genomic regions of interest for high-throughput sequencing. In this study on herbariomics, we used this targeted sequencing approach and the Angiosperms353 universal probe set to recover up to 351 nuclear genes from 435 herbarium specimens that are up to 204 years old and span the breadth of angiosperm diversity. We show that on average 207 genes were successfully retrieved from herbarium specimens, although the mean number of genes retrieved and target enrichment efficiency is significantly higher for silica gel-dried specimens. Forty-seven target nuclear genes were recovered from a herbarium specimen of the critically endangered St Helena boxwood, Mellissia begoniifolia, collected in 1815. Herbarium specimens yield significantly less high-molecular-weight DNA than silica gel-dried specimens, and genomic DNA quality declines with sample age, which is negatively correlated with target enrichment efficiency. Climate, taxon-specific traits, and collection strategies additionally impact target sequence recovery. We also detected taxonomic bias in targeted sequencing outcomes for the 10 most numerous angiosperm families that were investigated in depth. We recommend that (1) for species distributed in wet tropical climates, silica gel-dried specimens should be used preferentially; (2) for species distributed in seasonally dry tropical climates, herbarium and silica gel-dried specimens yield similar results, and either collection can be used; (3) taxon-specific traits should be explored and established for effective optimisation of taxon-specific studies using herbarium specimens; (4) all herbarium sheets should, in future, be annotated with details of the preservation method used; (5) long-term storage of herbarium specimens should be in stable, low-humidity, and low-temperature environments; and (6) targeted sequencing with universal probes, such as Angiosperms353, should be investigated closely as a new approach for DNA barcoding that will ensure better exploitation of herbarium specimens than traditional Sanger sequencing approaches.
Collapse
Affiliation(s)
- Grace E. Brewer
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - James J. Clarkson
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Olivier Maurin
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Vanessa Barber
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Sidonie Bellot
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Nicola Biggs
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Robyn S. Cowan
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Nina M. J. Davies
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, Luton, BedfordshireUnited Kingdom
| | - Sara L. Edwards
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Wolf L. Eiserhardt
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Department of Bioscience, Aarhus University, Ny Munkegade Aarhus C, Denmark
| | | | - Sue Frisby
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Aurélie Grall
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Paul J. Kersey
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Lisa Pokorny
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Pozuelo de Alarcón, Madrid, Spain
| | - Ilia J. Leitch
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Félix Forest
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - William J. Baker
- Science Directorate, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| |
Collapse
|
32
|
Ojeda DI, Koenen E, Cervantes S, de la Estrella M, Banguera-Hinestroza E, Janssens SB, Migliore J, Demenou BB, Bruneau A, Forest F, Hardy OJ. Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes. Mol Phylogenet Evol 2019; 137:156-167. [DOI: 10.1016/j.ympev.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/15/2022]
|
33
|
Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GKS, Baker WJ, Wickett NJ. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Syst Biol 2019; 68:594-606. [PMID: 30535394 PMCID: PMC6568016 DOI: 10.1093/sysbio/syy086] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/31/2023] Open
Abstract
Sequencing of target-enriched libraries is an efficient and cost-effective method for obtaining DNA sequence data from hundreds of nuclear loci for phylogeny reconstruction. Much of the cost of developing targeted sequencing approaches is associated with the generation of preliminary data needed for the identification of orthologous loci for probe design. In plants, identifying orthologous loci has proven difficult due to a large number of whole-genome duplication events, especially in the angiosperms (flowering plants). We used multiple sequence alignments from over 600 angiosperms for 353 putatively single-copy protein-coding genes identified by the One Thousand Plant Transcriptomes Initiative to design a set of targeted sequencing probes for phylogenetic studies of any angiosperm group. To maximize the phylogenetic potential of the probes, while minimizing the cost of production, we introduce a k-medoids clustering approach to identify the minimum number of sequences necessary to represent each coding sequence in the final probe set. Using this method, 5-15 representative sequences were selected per orthologous locus, representing the sequence diversity of angiosperms more efficiently than if probes were designed using available sequenced genomes alone. To test our approximately 80,000 probes, we hybridized libraries from 42 species spanning all higher-order groups of angiosperms, with a focus on taxa not present in the sequence alignments used to design the probes. Out of a possible 353 coding sequences, we recovered an average of 283 per species and at least 100 in all species. Differences among taxa in sequence recovery could not be explained by relatedness to the representative taxa selected for probe design, suggesting that there is no phylogenetic bias in the probe set. Our probe set, which targeted 260 kbp of coding sequence, achieved a median recovery of 137 kbp per taxon in coding regions, a maximum recovery of 250 kbp, and an additional median of 212 kbp per taxon in flanking non-coding regions across all species. These results suggest that the Angiosperms353 probe set described here is effective for any group of flowering plants and would be useful for phylogenetic studies from the species level to higher-order groups, including the entire angiosperm clade itself.
Collapse
Affiliation(s)
- Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Lisa Pokorny
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Steven Dodsworth
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- School of Life Sciences, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| | - Laura R Botigué
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Robyn S Cowan
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Alison Devault
- Arbor Biosciences, 5840 Interface Dr, Suite 101, Ann Arbor, MI 48103, USA
| | - Wolf L Eiserhardt
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Niroshini Epitawalage
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Félix Forest
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jan T Kim
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - James H Leebens-Mack
- Department of Plant Biology, University of Georgia, 2502 Miller Plant Sciences, Athens, GA 30602, USA
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Olivier Maurin
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Douglas E Soltis
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Pamela S Soltis
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8525, USA
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611-2710, USA
| | - Gane Ka-shu Wong
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - William J Baker
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Norman J Wickett
- Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
- Program in Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
34
|
Soto Gomez M, Pokorny L, Kantar MB, Forest F, Leitch IJ, Gravendeel B, Wilkin P, Graham SW, Viruel J. A customized nuclear target enrichment approach for developing a phylogenomic baseline for Dioscorea yams (Dioscoreaceae). APPLICATIONS IN PLANT SCIENCES 2019; 7:e11254. [PMID: 31236313 PMCID: PMC6580989 DOI: 10.1002/aps3.11254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/01/2019] [Indexed: 05/14/2023]
Abstract
PREMISE We developed a target enrichment panel for phylogenomic studies of Dioscorea, an economically important genus with incompletely resolved relationships. METHODS Our bait panel comprises 260 low- to single-copy nuclear genes targeted to work in Dioscorea, assessed here using a preliminary taxon sampling that includes both distantly and closely related taxa, including several yam crops and potential crop wild relatives. We applied coalescent-based and maximum likelihood phylogenomic inference approaches to the pilot taxon set, incorporating new and published transcriptome data from additional species. RESULTS The custom panel retrieved ~94% of targets and >80% of full gene length from 88% and 68% of samples, respectively. It has minimal gene overlap with existing panels designed for angiosperm-wide studies and generally recovers longer and more variable targets. Pilot phylogenomic analyses consistently resolve most deep and recent relationships with strong support across analyses and point to revised relationships between the crop species D. alata and candidate crop wild relatives. DISCUSSION Our customized panel reliably retrieves targeted loci from Dioscorea, is informative for resolving relationships in denser samplings, and is suitable for refining our understanding of the independent origins of cultivated yam species; the panel likely has broader promise for phylogenomic studies across Dioscoreales.
Collapse
Affiliation(s)
- Marybel Soto Gomez
- Department of BotanyUniversity of British Columbia6270 University BoulevardVancouverBritish ColumbiaV6T 1Z4Canada
- UBC Botanical Garden and Centre for Plant ResearchUniversity of British Columbia6804 Marine Drive SWVancouverBritish ColumbiaV6T 1Z4Canada
| | - Lisa Pokorny
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| | - Michael B. Kantar
- Department of Tropical Plant and Soil SciencesUniversity of Hawai‘i at ManoaHonoluluHawai‘i96822USA
| | - Félix Forest
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| | - Ilia J. Leitch
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| | - Barbara Gravendeel
- Naturalis Biodiversity CenterEndless FormsSylviusweg 72Leiden2333 BEThe Netherlands
- Institute Biology LeidenLeiden UniversitySylviusweg 72Leiden2333 BEThe Netherlands
- Faculty of Science and TechnologyUniversity of Applied Sciences LeidenZernikedreef 11Leiden2333 CKThe Netherlands
| | - Paul Wilkin
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| | - Sean W. Graham
- Department of BotanyUniversity of British Columbia6270 University BoulevardVancouverBritish ColumbiaV6T 1Z4Canada
- UBC Botanical Garden and Centre for Plant ResearchUniversity of British Columbia6804 Marine Drive SWVancouverBritish ColumbiaV6T 1Z4Canada
| | - Juan Viruel
- Royal Botanic GardensKew, RichmondSurreyTW9 3DSUnited Kingdom
| |
Collapse
|
35
|
Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. THE NEW PHYTOLOGIST 2019; 222:1638-1651. [PMID: 30735246 DOI: 10.1111/nph.15732] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 05/03/2023]
Abstract
The Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research. Here, we inferred a Brassicaceae phylogeny using newly generated targeted enrichment sequence data of 1827 exons (> 940 000 bases) representing 63 species, as well as sequenced genome data of 16 species, together representing 50 of the 52 currently recognized Brassicaceae tribes. A third of the samples were derived from herbarium material, facilitating broad taxonomic coverage of the family. Six major clades formed successive sister groups to the rest of Brassicaceae. We also recovered strong support for novel relationships among tribes, and resolved the position of 16 taxa previously not assigned to a tribe. The broad utility of these phylogenetic results is illustrated through a comparative investigation of genome-wide expression signatures that distinguish simple from complex leaves in Brassicaceae. Our study provides an easily extendable dataset for further advances in Brassicaceae systematics and a timely higher-level phylogenetic framework for a wide range of comparative studies of multiple traits in an intensively investigated group of plants.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ihsan A Al-Shehbaz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St Louis, MO, 63110, USA
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
36
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|
37
|
Gitzendanner MA, Yang Y, Wickett NJ, McKain M, Beaulieu JM. Methods for exploring the plant tree of life. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1039. [PMCID: PMC5895194 DOI: 10.1002/aps3.1039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 05/24/2023]
Affiliation(s)
| | - Ya Yang
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Norman J. Wickett
- Department of Plant ScienceChicago Botanic GardenGlencoeIllinois60022USA
- Plant Biology and ConservationNorthwestern UniversityEvanstonIllinois60208USA
| | - Michael McKain
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabama35487USA
| | - Jeremy M. Beaulieu
- Department of Biological SciencesUniversity of ArkansasFayettevilleArkansas72701USA
| |
Collapse
|