1
|
Matsuzawa M, Nakayama T, Sato MH, Hirano T. Systematic expression analysis of cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein (CAP) superfamily in Arabidopsis. PLANT DIRECT 2024; 8:e70003. [PMID: 39385761 PMCID: PMC11464146 DOI: 10.1002/pld3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
The Cysteine-rich secretory proteins (CRISPS), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) protein (CAP) superfamily members are found in multiple eukaryotic organisms, including yeasts, animals, and plants. Although one of the plant CAP family genes, PR-1 is known to respond to pathogen infection in plants, the functions of other CAP family genes in Arabidopsis remain largely unknown. In this study, we conducted a comprehensive analysis of the similarities, loci, and expression patterns of 22 Arabidopsis CAP genes/proteins, providing a clue to elucidate their molecular functions. According to the promoter-β-glucuronidase (GUS) analysis, members of the Arabidopsis CAP family were expressed in various young tissues or organs, such as root and shoot meristems, reproductive tissues, and particularly at the lateral root initiation site before the formation of the lateral root primordium, with distinct expression specificity. In particular, CAP51, CAP52, and CAP53 were specifically expressed in the cortical cells at the lateral root developing regions, suggesting that these genes may function in lateral root development. Thus, the expression patterns of Arabidopsis CAP family genes suggest that CAP family proteins may have certain function in the expressed organs or tissues in Arabidopsis plant.
Collapse
Affiliation(s)
- Megumi Matsuzawa
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Takumi Nakayama
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Masa H. Sato
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| | - Tomoko Hirano
- Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
2
|
Sainz MM, Sotelo-Silveira M, Filippi CV, Zardo S. Legume-rhizobia symbiosis: Translatome analysis. Genet Mol Biol 2024; 47Suppl 1:e20230284. [PMID: 38954532 PMCID: PMC11223499 DOI: 10.1590/1678-4685-gmb-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/31/2024] [Indexed: 07/04/2024] Open
Abstract
Leguminous plants can establish endosymbiotic relationships with nitrogen-fixing soil rhizobacteria. Bacterial infection and nodule organogenesis are two independent but highly coordinated genetic programs that are active during this interaction. These genetic programs can be regulated along all the stages of gene expression. Most of the studies, for both eukaryotes and prokaryotes, focused on the transcriptional regulation level determining the abundance of mRNAs. However, it has been demonstrated that mRNA levels only sometimes correlate with the abundance or activity of the coded proteins. For this reason, in the past two decades, interest in the role of translational control of gene expression has increased, since the subset of mRNA being actively translated outperforms the information gained only by the transcriptome. In the case of legume-rhizobia interactions, the study of the translatome still needs to be explored further. Therefore, this review aims to discuss the methodologies for analyzing polysome-associated mRNAs at the genome-scale and their contribution to studying translational control to understand the complexity of this symbiotic interaction. Moreover, the Dual RNA-seq approach is discussed for its relevance in the context of a symbiotic nodule, where intricate multi-species gene expression networks occur.
Collapse
Affiliation(s)
- María Martha Sainz
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Mariana Sotelo-Silveira
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Carla V. Filippi
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| | - Sofía Zardo
- Universidad de la República, Facultad de Agronomía, Departamento
de Biología Vegetal, Laboratorio de Bioquímica, Montevideo, Uruguay
| |
Collapse
|
3
|
Sanders LM, Scott RT, Yang JH, Qutub AA, Garcia Martin H, Berrios DC, Hastings JJA, Rask J, Mackintosh G, Hoarfrost AL, Chalk S, Kalantari J, Khezeli K, Antonsen EL, Babdor J, Barker R, Baranzini SE, Beheshti A, Delgado-Aparicio GM, Glicksberg BS, Greene CS, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Mason CE, Matar M, Mias GI, Miller J, Myers JG, Nelson C, Oribello J, Park SM, Parsons-Wingerter P, Prabhu RK, Reynolds RJ, Saravia-Butler A, Saria S, Sawyer A, Singh NK, Snyder M, Soboczenski F, Soman K, Theriot CA, Van Valen D, Venkateswaran K, Warren L, Worthey L, Zitnik M, Costes SV. Biological research and self-driving labs in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Barker R, Kruse CPS, Johnson C, Saravia-Butler A, Fogle H, Chang HS, Trane RM, Kinscherf N, Villacampa A, Manzano A, Herranz R, Davin LB, Lewis NG, Perera I, Wolverton C, Gupta P, Jaiswal P, Reinsch SS, Wyatt S, Gilroy S. Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome. NPJ Microgravity 2023; 9:21. [PMID: 36941263 PMCID: PMC10027818 DOI: 10.1038/s41526-023-00247-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/10/2023] [Indexed: 03/23/2023] Open
Abstract
Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Colin P S Kruse
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, 87545, USA
| | | | - Amanda Saravia-Butler
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Logyx, LLC, Mountain View, CA, 94043, USA
| | - Homer Fogle
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Bionetics, Yorktown, VA, 23693, USA
| | - Hyun-Seok Chang
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Ralph Møller Trane
- Department of Statistics, University of Wisconsin, Madison, WI, 53706, USA
| | - Noah Kinscherf
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-741, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-741, USA
| | - Imara Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chris Wolverton
- Department of Botany and Microbiology, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sarah Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Bazhina EV. Changes in Siberian Fir Crown Architecture under Impaired Homeostasis. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Barker R, Lombardino J, Rasmussen K, Gilroy S. Test of Arabidopsis Space Transcriptome: A Discovery Environment to Explore Multiple Plant Biology Spaceflight Experiments. FRONTIERS IN PLANT SCIENCE 2020; 11:147. [PMID: 32265943 PMCID: PMC7076552 DOI: 10.3389/fpls.2020.00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 05/04/2023]
Abstract
Recent advances in the routine access to space along with increasing opportunities to perform plant growth experiments on board the International Space Station have led to an ever-increasing body of transcriptomic, proteomic, and epigenomic data from plants experiencing spaceflight. These datasets hold great promise to help understand how plant biology reacts to this unique environment. However, analyses that mine across such expanses of data are often complex to implement, being impeded by the sheer number of potential comparisons that are possible. Complexities in how the output of these multiple parallel analyses can be presented to the researcher in an accessible and intuitive form provides further barriers to such research. Recent developments in computational systems biology have led to rapid advances in interactive data visualization environments designed to perform just such tasks. However, to date none of these tools have been tailored to the analysis of the broad-ranging plant biology spaceflight data. We have therefore developed the Test Of Arabidopsis Space Transcriptome (TOAST) database (https://astrobiology.botany.wisc.edu/astrobotany-toast) to address this gap in our capabilities. TOAST is a relational database that uses the Qlik database management software to link plant biology, spaceflight-related omics datasets, and their associated metadata. This environment helps visualize relationships across multiple levels of experiments in an easy to use gene-centric platform. TOAST draws on data from The US National Aeronautics and Space Administration's (NASA's) GeneLab and other data repositories and also connects results to a suite of web-based analytical tools to facilitate further investigation of responses to spaceflight and related stresses. The TOAST graphical user interface allows for quick comparisons between plant spaceflight experiments using real-time, gene-specific queries, or by using functional gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, or other filtering systems to explore genetic networks of interest. Testing of the database shows that TOAST confirms patterns of gene expression already highlighted in the literature, such as revealing the modulation of oxidative stress-related responses across multiple plant spaceflight experiments. However, this data exploration environment can also drive new insights into patterns of spaceflight responsive gene expression. For example, TOAST analyses highlight changes to mitochondrial function as likely shared responses in many plant spaceflight experiments.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Jonathan Lombardino
- Department of Botany, University of Wisconsin, Madison, WI, United States
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, WI, United States
| | - Kai Rasmussen
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, United States
- *Correspondence: Simon Gilroy,
| |
Collapse
|
7
|
Góra-Sochacka A, Więsyk A, Fogtman A, Lirski M, Zagórski-Ostoja W. Root Transcriptomic Analysis Reveals Global Changes Induced by Systemic Infection of Solanum lycopersicum with Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2019; 11:v11110992. [PMID: 31671783 PMCID: PMC6893655 DOI: 10.3390/v11110992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) causes systemic infection in plant hosts. There are many studies on viroid-host plant interactions, but they have predominantly focused on the aboveground part of the plant. Here, we investigated transcriptomic profile changes in tomato roots systemically infected with mild or severe PSTVd variants using a combined microarray/RNA-seq approach. Analysis indicated differential expression of genes related to various Gene Ontology categories depending on the stage of infection and PSTVd variant. A majority of cell-wall-related genes were down-regulated at early infection stages, but at the late stage, the number of up-regulated genes increased significantly. Along with observed alterations of many lignin-related genes, performed lignin quantification indicated their disrupted level in PSTVd-infected roots. Altered expression of genes related to biosynthesis and signaling of auxin and cytokinin, which are crucial for lateral root development, was also identified. Comparison of both PSTVd infections showed that transcriptional changes induced by the severe variant were stronger than those caused by the mild variant, especially at the late infection stage. Taken together, we showed that similarly to aboveground plant parts, PSTVd infection in the underground tissues activates the plant immune response.
Collapse
Affiliation(s)
- Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | | |
Collapse
|
8
|
Li CY, Zhang WW, Xiang JL, Wang XH, Wang JL, Li J. Integrated analysis highlights multiple long non‑coding RNAs and their potential roles in the progression of human esophageal squamous cell carcinoma. Oncol Rep 2019; 42:2583-2599. [PMID: 31638253 PMCID: PMC6859451 DOI: 10.3892/or.2019.7377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent aggressive malignant tumor with poor prognosis. Investigations into the molecular changes that occur as a result of the disease, as well as identification of novel biomarkers for its diagnosis and prognosis, are urgently required. Long non‑coding RNAs (lncRNAs) have been reported to play a critical role in tumor progression. The present study performed data mining analyses for ESCC via an integrated study of accumulated datasets and identification of the differentially expressed lncRNAs from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The identified intersection of differentially expressed genes (lncRNAs, miRNAs and mRNAs) in ESCC tissues between the GEO and TCGA datasets was investigated. Based on these intersected lncRNAs, the present study constructed a competitive endogenous RNA (ceRNA) network of lncRNAs in ESCC. A total of 81 intersection lncRNAs were identified; 67 of these were included in the ceRNA network. Functional analyses revealed that these 67 key lncRNAs primarily dominated cellular biological processes. The present study then analyzed the associations between the expression levels of these 67 key lncRNAs and the clinicopathological characteristics of the ESCC patients, as well as their survival time using TCGA. The results revealed that 31 of these lncRNAs were associated with tumor grade, tumor‑node‑metastasis (TNM) stage and lymphatic metastasis status (P<0.05). In addition, 15 key lncRNAs were demonstrated to be associated with survival time (P<0.05). Finally, 5 key lncRNAs were selected for validation of their expression levels in 30 patients newly diagnosed with ESCC via reverse transcription‑quantitative PCR (RT‑qPCR). The results suggested that the fold changes in the trends of up‑ and downregulation between GEO, TCGA and RT‑qPCR were consistent. In addition, it was also demonstrated that a select few of these 5 key lncRNAs were significantly associated with TNM stage and lymph node metastasis (P<0.05). The results of the clinically relevant analysis and the aforementioned bioinformatics were similar, hence proving that the bioinformatics analysis used in the present study is credible. Overall, the results from the present study may provide further insight into the functional characteristics of lncRNAs in ESCC through bioinformatics integrative analysis of the GEO and TCGA datasets, and reveal potential diagnostic and prognostic biomarkers for ESCC.
Collapse
Affiliation(s)
- Cheng-Yun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Wen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ji-Lian Xiang
- Department of Gastroenterology, Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Xing-Hua Wang
- Department of Gastrointestinal Surgery, Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jun-Ling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jin Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|