1
|
Yang LM, Ornitz DM. Sculpting the skull through neurosensory epithelial-mesenchymal signaling. Dev Dyn 2018; 248:88-97. [PMID: 30117627 DOI: 10.1002/dvdy.24664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate skull is a complex structure housing the brain and specialized sensory organs, including the eye, the inner ear, and the olfactory system. The close association between bones of the skull and the sensory organs they encase has posed interesting developmental questions about how the tissues scale with one another. Mechanisms that regulate morphogenesis of the skull are hypothesized to originate in part from the encased neurosensory organs. Conversely, the developing skull is hypothesized to regulate the growth of neurosensory organs, through mechanical forces or molecular signaling. Here, we review studies of epithelial-mesenchymal interactions during inner ear and olfactory system development that may coordinate the growth of the two sensory organs with their surrounding bone. We highlight recent progress in the field and provide evidence that mechanical forces arising from bone growth may affect olfactory epithelium development. Developmental Dynamics 248:88-97, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Raft S, Coate TM, Kelley MW, Crenshaw EB, Wu DK. Pou3f4-mediated regulation of ephrin-b2 controls temporal bone development in the mouse. PLoS One 2014; 9:e109043. [PMID: 25299585 PMCID: PMC4192298 DOI: 10.1371/journal.pone.0109043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022] Open
Abstract
The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas M. Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - E. Bryan Crenshaw
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Doris K. Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Bohnenpoll T, Trowe MO, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol 2014; 391:54-65. [PMID: 24727668 DOI: 10.1016/j.ydbio.2014.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/18/2023]
Abstract
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | - Marianne Petry
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
4
|
Abstract
The middle ear is a composite organ formed from all three germ layers and the neural crest. It provides the link between the outside world and the inner ear, where sound is transduced and routed to the brain for processing. Extensive classical and modern studies have described the complex morphology and origin of the middle ear. Non-mammalian vertebrates have a single ossicle, the columella. Mammals have three functionally equivalent ossicles, designated the malleus, incus and stapes. In this review, I focus on the role of genes known to function in the middle ear. Genetic studies are beginning to unravel the induction and patterning of the multiple middle ear elements including the tympanum, skeletal elements, the air-filled cavity, and the insertion point into the inner ear oval window. Future studies that elucidate the integrated spatio-temporal signaling mechanisms required to pattern the middle ear organ system are needed. The longer-term translational benefits of understanding normal and abnormal ear development will have a direct impact on human health outcomes.
Collapse
|
5
|
Trowe MO, Shah S, Petry M, Airik R, Schuster-Gossler K, Kist R, Kispert A. Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse. Dev Biol 2010; 342:51-62. [DOI: 10.1016/j.ydbio.2010.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
6
|
Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J. Fgf9 signaling regulates inner ear morphogenesis through epithelial–mesenchymal interactions. Dev Biol 2004; 273:350-60. [PMID: 15328018 DOI: 10.1016/j.ydbio.2004.06.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/16/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
The mammalian inner ear comprises the cochleovestibular labyrinth, derived from the ectodermal otic placode, and the encasing bony labyrinth of the temporal bone. Epithelial-mesenchymal interactions are thought to control inner ear development, but the modes and the molecules involved are largely unresolved. We show here that, during the precartilage and cartilage stages, Fgf9 is expressed in specific nonsensory domains of the otic epithelium and its receptors, Fgfr1(IIIc) and Fgfr2(IIIc), widely in the surrounding mesenchyme. To address the role of Fgf9 signaling, we analyzed the inner ears of mice homozygous for Fgf9 null alleles. Fgf9 inactivation leads to a hypoplastic vestibular component of the otic capsule and to the absence of the epithelial semicircular ducts. Reduced proliferation of the prechondrogenic mesenchyme was found to underlie capsular hypoplasticity. Semicircular duct development is blocked at the initial stages, since fusion plates do not form. Our results show that the mesenchyme directs fusion plate formation and they give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. In addition to the vestibule, in the cochlea, Fgf9 mutation caused defects in the interactions between the Reissner's membrane and the mesenchymal cells, leading to a malformed scala vestibuli. Together, these data show that Fgf9 signaling is required for inner ear morphogenesis.
Collapse
Affiliation(s)
- Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
7
|
Phippard D, Heydemann A, Lechner M, Lu L, Lee D, Kyin T, Crenshaw EB. Changes in the subcellular localization of the Brn4 gene product precede mesenchymal remodeling of the otic capsule. Hear Res 1998; 120:77-85. [PMID: 9667433 DOI: 10.1016/s0378-5955(98)00059-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To better understand the genetic mechanisms that regulate the formation of the temporal bone, we have characterized the developmental expression pattern of the mouse gene, Brn4/Pou3f4, which plays a central role in bony labyrinth formation. Expression of this gene is initially detected in the ventral aspect of the otic capsule at 10.5 days post coitus (dpc), and correlates with the onset of mesenchymal condensation in the otic capsule. As the otic capsule condenses further and surrounds the entire otic vesicle, the Brn4 gene product is detected throughout the inner ear in the mesenchyme of both the cochlear and vestibular aspects. Early in otic embryogenesis, the Brn4 gene product is localized to the nucleus of the vast majority of cells in which it is expressed. The Brn4 gene product remains nuclear in those regions of the otic capsule that eventually give rise to the mature bony labyrinth. However, the subcellular localization of the Brn4 gene product shifts from strictly nuclear to perinuclear in those regions of the otic capsule that will cavitate to form acellular regions in the temporal bone, such as the scala tympani, scala vestibuli, and the internal auditory meatus. These data provide a detailed analysis of the expression pattern of the Brn4 gene, and provide insight into the role of the Brn4 gene product and its regulation during otic capsule formation.
Collapse
Affiliation(s)
- D Phippard
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104-6074, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Crann SA, Van de Water TR, Schacht J. Ornithine decarboxylase activity during development of the mouse inner ear in vivo and in vitro. Cell Tissue Res 1991; 265:547-50. [PMID: 1786595 DOI: 10.1007/bf00340878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ornithine decarboxylase activity was determined during the development of the peripheral auditory system in the murine otocyst with the goal of understanding the role of this enzyme in the morphological and functional maturation of the inner ear. At gestational days 11 and 12 enzyme activity was more than 10-fold higher than adult levels. A sharp decline occurred between day 12 and 13 after which activity rose to a peak around day 15. Activity then dropped continuously until near-adult levels were reached at birth. A lower specific activity of ODC but a similar time-course was seen in otocysts explanted at gestational day 13 and subsequently cultured for 6 days. For two stages of development, enzyme activity and binding of 3H-alpha-difluoromethylornithine were compared. The four-fold difference in enzymatic activity on gestational days 15 and 17 was paralleled by a similar difference in binding. Ornithine decarboxylase activity during inner ear development therefore seems primarily regulated at the level of protein synthesis. Ornithine decarboxylase activity correlates with major inductive events in the morphogenesis of the cartilagenous otic capsule that serves as a template for the formation of the bony labyrinth. The pattern of activity may reflect the changes in the head mesenchyme that is recruited by the otocyst to aggregate and form its protective otic capsule.
Collapse
Affiliation(s)
- S A Crann
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109-0506
| | | | | |
Collapse
|
9
|
FRENZ DA, WATER TR. TGF?1: Modulation of Chondrogenic Differentiation by Cultured Periotic Mesenchymal Cells. Ann N Y Acad Sci 1990. [DOI: 10.1111/j.1749-6632.1990.tb16138.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Anniko M, Wikström SO, Wróblewski R. Microanalytic and light microscopic studies on the developing otic capsule. Acta Otolaryngol 1987; 104:429-38. [PMID: 3434264 DOI: 10.3109/00016488709128271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The structure of the middle layer of the bone of the otic capsule is histologically unique: it is of endochondral origin, has no Haversian canals and the ossification develops from several centres which fuse to form the hardest bone in the body. Our study has been concentrated on the development of the otic capsule in the CBA/CBA mouse, followed from the 13th gestational day to early postnatal age. In the 14th gestational day inner ear, a condensation of mesenchyme is detected around the membranous labyrinth. A cartilaginous capsule is present on the 15th-16th gestational day. Prior to birth, ossification centres occur close to the stapedial footplate. Serial cryosectioning of the newborn inner ear reveals very few regions containing high levels of calcium (microprobe analysis) although by light microscopy, several ossification centres can be identified.
Collapse
Affiliation(s)
- M Anniko
- Department of Otolaryngology-Head and Neck Surgery, University of Umeå, Sweden
| | | | | |
Collapse
|
11
|
McPhee JR, Van de Water TR, Su HX. Hyaluronate production by the inner ear during otic capsule and perilymphatic space formation. Am J Otolaryngol 1987; 8:265-72. [PMID: 3434668 DOI: 10.1016/s0196-0709(87)80045-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Otosclerosis has been hypothesized to result from a disorder of the extracellular matrix of the cartilaginous rests present in the adult temporal bone. Matrix relationship to bone formation and remodeling, as well as the fact that the pathogenesis of otosclerosis is expressed by the action of both of these processes, strongly suggests that more knowledge is needed about the process of otic capsule development. In pursuit of this goal, otic complexes were explanted from mouse embryos that ranged in age from 10.5 to 16 days old and were then exposed to 3H-glucosamine (50 microCi/ml) for 6 hours in vitro. Total labeled glycosaminoglycans (GAGs) and labeled hyaluronate content of each age group of otic explants were measured, and the results were compared to a developmental series of the otic regions of whole embryos stained with either toluidine blue or alcian blue. Increases in the synthesis of the total GAGs were observed on embryonic day 11 and for a prolonged period extending from gestation day 13.5 through day 16. The first increase of GAGs occurred at the initiation of metachromasia and positive staining by toluidine blue of the region of aggregated periotic mesenchyme cells that form the otic capsule. The second increase in GAGs was correlated with chondrification of the capsule. Hyaluronate production revealed a different pattern. Synthesis of hyaluronate exhibits peaks at 10.5, 12.5, and for an extended period of from 13.5 to 14.5 days of gestation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J R McPhee
- Laboratory of Developmental Otobiology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
12
|
D'Amico-Martel A, Van de Water TR, Wootton JA, Minor RR. Changes in the types of collagen synthesized during chondrogenesis of the mouse otic capsule. Dev Biol 1987; 120:542-55. [PMID: 3549392 DOI: 10.1016/0012-1606(87)90257-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have investigated the temporal relationship between the morphological differentiation of the mouse otic capsule and the pattern of collagen synthesis by mouse otocyst-mesenchyme complexes labeled in vitro. In 10.5- to 12-day embryos the mesenchyme surrounding the otocyst was loosely organized except for a few lateroventral condensations; explants from these embryos synthesized only small amounts of collagen. Collagen synthesis by whole explants increased by more than 50% between 12 and 13 days concomitant with metachromatic staining of the lateral periotic mesenchyme. Cartilage specific type II collagen was the predominant collagen synthesized by these explants as confirmed by SDS-PAGE, densitometry, CNBr cleavage, and V8 protease digestion. This biochemical expression of the cartilage phenotype preceded morphologic recognition of otic capsular cartilage by almost 2 days. Type II collagen synthesis continued to increase and predominate through Day 16 of gestation by which time the otic labyrinth was surrounded by mature cartilage. The minor cartilage collagen chains, 1 alpha, 2 alpha, and 3 alpha, first appeared on different days of gestation. The 1 alpha, and 3 alpha chains were synthesized by explants from 11-day embryos while the 2 alpha chain appeared during Day 13, just before overt differentiation of mature cartilage. These results suggested that the 1 alpha, 2 alpha, and 3 alpha chains may not form heterotrimers containing all three chains and that synthesis of the 2 alpha chain may be associated with stabilization of the cartilaginous matrix. Comparison of these data with the patterns of collagen production by mutant, diseased, or experimentally manipulated inner ear tissues may provide insights into the molecular basis of chondrogenic tissue interactions.
Collapse
|