1
|
Giaquinto D, Fonsatti E, Bortoletti M, Radaelli G, De Felice E, de Girolamo P, Bertotto D, D'Angelo L. Olfactory and gustatory chemical sensor systems in the African turquoise killifish: Insights from morphology. Cell Tissue Res 2024:10.1007/s00441-024-03923-5. [PMID: 39432108 DOI: 10.1007/s00441-024-03923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Smell and taste are extensively studied in fish species as essential for finding food and selecting mates while avoiding toxic substances and predators. Depending on the evolutionary position and adaptation, a discrete variation in the morphology of these sense organs has been reported in numerous teleost species. Here, for the first time, we approach the phenotypic characterization of the olfactory epithelium and taste buds in the African turquoise killifish (Nothobranchius furzeri), a model organism known for its short lifespan and use in ageing research. Our observations indicate that the olfactory epithelium of N. furzeri is organized as a simple patch, lacking the complex folding into a rosette, with an average size of approximately 600 µm in length, 300 µm in width, and 70 µm in thickness. Three main cytotypes, including olfactory receptor neurons (CalbindinD28K), supporting cells (β-tubulin IV), and basal cells (Ki67), were identified across the epithelium. Further, we determined the taste buds' distribution and quantification between anterior (skin, lips, oral cavity) and posterior (gills, pharynx, oesophagus) systems. We identified the key cytotypes by using immunohistochemical markers, i.e. CalbindinD28K, doublecortin, and neuropeptide Y (NPY) for gustatory receptor cells, glial fibrillary acidic protein (GFAP) for supporting cells, and Ki67, a marker of cellular proliferation for basal cells. Altogether, these results indicate that N. furzeri is a microsmatic species with unique taste and olfactory features and possesses a well-developed posterior taste system compared to the anterior. This study provides fundamental insights into the chemosensory biology of N. furzeri, facilitating future investigations into nutrient-sensing mechanisms and their roles in development, survival, and ageing.
Collapse
Affiliation(s)
- Daniela Giaquinto
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1 I-80137, Naples, Italy
| | - Elisa Fonsatti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1 I-80137, Naples, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1 I-80137, Naples, Italy.
| |
Collapse
|
2
|
Torres-Pérez M, Herrera ML, Rosillo JC, Berrosteguieta I, Casanova G, Olivera-Bravo S, Fernández AS. Brain atlas of the annual Garcialebias charrua fish. Anat Rec (Hoboken) 2024; 307:3384-3397. [PMID: 38504626 DOI: 10.1002/ar.25432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Annual fish have become attractive study models for a wide range of disciplines, including neurobiology. These fish have developed different survival strategies. As a result, their nervous system is under considerable selective pressure when facing extreme environmental situations. Fish from the Austrolebias group exhibit rapid neurogenesis in different brain regions, possibly as a result of the demanding conditions of a changing habitat. Knowledge of cerebral histology is essential for detecting ontogenic, anatomical, or cytoarchitectonic changes in the brain during the short lifespan of these fish, such as those reflecting functional adaptive plasticity in different systems, including sensory structures. The generation of an atlas of Garcialebias charrua (previously known as Austrolebias charrua) establishes its anatomical basis as a representative of a large group of fish that share similarities in their way of life. In this work, we present a detailed study of both gross anatomy and microscopic anatomy obtained through serial sections stained with the Nissl technique in three orientations: transverse, horizontal, and parasagittal planes. This atlas includes accurate drawings of the entire adult brain of the male fish Garcialebias charrua, showing dorsal, ventral, and lateral views, including where emergence and origin of cranial nerves. This brain atlas allows us to understand histoarchitecture as well as the location of neural structures that change during adult neurogenesis, enabling comparisons within the genus. Simultaneously, this atlas constitutes a valuable tool for comparing the brains of other fish species with different behaviors and neuroecologies.
Collapse
Affiliation(s)
- Maximiliano Torres-Pérez
- División Neurociencias, Departamento de Neurociencias Integrativas y Computacionales, Laboratorio de Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- División Neurociencias, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María Laura Herrera
- División Neurociencias, Departamento de Neurociencias Integrativas y Computacionales, Laboratorio de Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Juan Carlos Rosillo
- División Neurociencias, Departamento de Neurociencias Integrativas y Computacionales, Laboratorio de Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Inés Berrosteguieta
- División Neurociencias, Departamento de Neurociencias Integrativas y Computacionales, Laboratorio de Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gabriela Casanova
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- División Neurociencias, Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Anabel Sonia Fernández
- División Neurociencias, Departamento de Neurociencias Integrativas y Computacionales, Laboratorio de Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
3
|
Yang Y, He B, Mu X, Qi S. Exposure to flutolanil at environmentally relevant concentrations can induce image and non-image-forming failure of zebrafish larvae through neuro and visual disruptions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134108. [PMID: 38521039 DOI: 10.1016/j.jhazmat.2024.134108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Numerous pesticides pose a threat to aquatic ecosystems, jeopardizing aquatic animal species and impacting human health. While the contamination of aquatic environment by flutolanil and its adverse effects on animal in the treatment of rich sheath blight have been reported, the neuro-visual effects of flutolanil at environmentally relevant concentrations remain unknown. In this study, we administered flutolanil to zebrafish embryos (0, 0.125, 0.50 and 2.0 mg/L) for 4 days to investigate its impact on the neuro and visual system. The results revealed that flutolanil induced abnormal behavior in larvae, affecting locomotor activity, stimuli response and phototactic response. Additionally, it led to defective brain and ocular development and differentiation. The disruption extended to the neurological system and visual phototransduction of larvae, evidenced by significant disturbances in genes and proteins related to neurodevelopment, neurotransmission, eye development, and visual function. Untargeted metabolomics analysis revealed that the GABAergic signaling pathway and increased levels of glutamine, glutamate, andγ-aminobutyric acid were implicated in the response to neuro and visual system injury induced by flutolanil, contributing to aberrant development, behavioral issues, and endocrine disruption. This study highlights the neuro-visual injury caused by flutolanil in aquatic environment, offering fresh insights into the mechanisms underlying image and non-image effects.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan 430070, People's Republic of China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, People's Republic of China.
| |
Collapse
|
4
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
5
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Vanhunsel S, Bergmans S, Moons L. The Optic Nerve Crush Injury Paradigm in African Turquoise Killifish to Study Axonal Regeneration in an Aged Environment. Cold Spring Harb Protoc 2023; 2023:107828. [PMID: 36941064 DOI: 10.1101/pdb.prot107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In our graying world population, we are increasingly facing brain injuries and age-associated neurodegenerative diseases, which are often characterized by axonal pathology. Here, we propose the killifish visual/retinotectal system as a model for investigating central nervous system repair, more specifically axonal regeneration, in an aging context. We first describe an optic nerve crush (ONC) injury paradigm in killifish to induce and study both de- and regeneration of retinal ganglion cells (RGCs) and their axons. Subsequently, we summarize several methods for mapping different steps of the regenerative process-namely, axonal regrowth and synapse reformation-using retro- and anterograde tracing methods, (immuno)histochemistry, and morphometrical analyses.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Aragona M, Briglia M, Porcino C, Mhalhel K, Cometa M, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Guerrera MC. Localization of Calretinin, Parvalbumin, and S100 Protein in Nothobranchius guentheri Retina: A Suitable Model for the Retina Aging. Life (Basel) 2023; 13:2050. [PMID: 37895432 PMCID: PMC10608213 DOI: 10.3390/life13102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Calcium-binding proteins (CaBPs) are members of a heterogeneous family of proteins able to buffer intracellular Ca2+ ion concentration. CaBPs are expressed in the central and peripheral nervous system, including a subpopulation of retinal neurons. Since neurons expressing different CaBPs show different susceptibility to degeneration, it could be hypothesized that they are not just markers of different neuronal subpopulations, but that they might be crucial in survival. CaBPs' ability to buffer Ca2+ cytoplasmatic concentration makes them able to defend against a toxic increase in intracellular calcium that can lead to neurodegenerative processes, including those related to aging. An emergent model for aging studies is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, show a retinal stratigraphy similar to that of other actinopterygian fishes and humans. However, according to our knowledge, CaBPs' occurrence and distribution in the retina of N. guentheri have never been investigated before. Therefore, the present study aimed to localize Calretinin N-18, Parvalbumin, and S100 protein (S100p) in the N. guentheri retina with immunohistochemistry methods. The results of the present investigation demonstrate for the first time the occurrence of Calretinin N-18, Parvalbumin, and S100p in N. guentheri retina and, consequently, the potential key role of these CaBPs in the biology of the retinal cells. Hence, the suitability of N. guentheri as a model to study the changes in CaBPs' expression patterns during neurodegenerative processes affecting the retina related both to disease and aging can be assumed.
Collapse
Affiliation(s)
| | | | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (M.B.); (K.M.); (M.C.); (P.G.G.); (G.M.); (M.L.); (R.L.); (F.A.); (A.G.); (M.C.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bergmans S, Vanhunsel S, Van Houcke J, Mariën V, Arckens L, Moons L. Morphological Analysis of Aging Hallmarks in the Central Nervous System of the Fast-Aging African Turquoise Killifish. Cold Spring Harb Protoc 2023; 2023:107827. [PMID: 36941063 DOI: 10.1101/pdb.prot107827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
As the number of elderly individuals is increasing in modern society, the need for a relevant gerontology model is higher than ever before. Aging can be defined by specific cellular hallmarks, described by López-Otín and colleagues, who provided a map which can be used to scavenge the aging tissue environment. As revealing the presence of individual hallmarks does not necessarily indicate aging, here we provide different (immuno)histochemical approaches that can be used to investigate several aging hallmarks-namely, genomic damage, mitochondrial dysfunction/oxidative stress, cellular senescence, stem cell exhaustion, and altered intercellular communication-in the killifish retina, optic tectum, and/or telencephalon at a morphological level. In combination with molecular and biochemical analysis of these aging hallmarks, this protocol offers the opportunity to fully characterize the aged killifish central nervous system.
Collapse
Affiliation(s)
- Steven Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Jolien Van Houcke
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Valerie Mariën
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lut Arckens
- Neuroplasticity and Neuroproteomics Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Bedbrook CN, Nath RD, Nagvekar R, Deisseroth K, Brunet A. Rapid and precise genome engineering in a naturally short-lived vertebrate. eLife 2023; 12:e80639. [PMID: 37191291 PMCID: PMC10188113 DOI: 10.7554/elife.80639] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The African turquoise killifish is a powerful vertebrate system to study complex phenotypes at scale, including aging and age-related disease. Here, we develop a rapid and precise CRISPR/Cas9-mediated knock-in approach in the killifish. We show its efficient application to precisely insert fluorescent reporters of different sizes at various genomic loci in order to drive cell-type- and tissue-specific expression. This knock-in method should allow the establishment of humanized disease models and the development of cell-type-specific molecular probes for studying complex vertebrate biology.
Collapse
Affiliation(s)
- Claire N Bedbrook
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ravi D Nath
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Rahul Nagvekar
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anne Brunet
- Department of Genetics, Stanford UniversityStanfordUnited States
- Glenn Laboratories for the Biology of Aging at StanfordStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
10
|
Bagnoli S, Brogi L, Fronte B, Bibbiani C, Terzibasi Tozzini E, Cellerino A. Long-Term Brain Organotypic Cultures of the Turquoise Killifish Nothobranchius furzeri. Cold Spring Harb Protoc 2022; 2022:624-629. [PMID: 36167677 DOI: 10.1101/pdb.prot107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Organotypic culture is a well-established method for culturing ex vivo tissue samples. The advantages of culturing tissue slices for prolonged time periods ex vivo are numerous and consist primarily of the maintenance of the overall in vivo architecture of the isolated sample, the lack of the ematoencephalic barrier, and the ease of pharmacological treatments and interventions that can be conducted under controlled conditions as in in vitro systems such as cell cultures. Given the extremely short life span of Nothobranchius furzeri and the emergence of aging signs only after a few months of life, it is of particular interest to establish this protocol for N. furzeri as a potential method to study brain aging ex vivo.
Collapse
Affiliation(s)
- Sara Bagnoli
- Laboratory of Biology (BIO@SNS), Scuola Normale Superiore, 56126, Pisa, Italy
| | - Letizia Brogi
- Laboratory of Biology (BIO@SNS), Scuola Normale Superiore, 56126, Pisa, Italy
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, 56124, Pisa, Italy
| | - Carlo Bibbiani
- Department of Veterinary Sciences, University of Pisa, 56124, Pisa, Italy
| | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Dep. (BEOM), Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | |
Collapse
|
11
|
Central and Peripheral NPY Age-Related Regulation: A Comparative Analysis in Fish Translational Models. Int J Mol Sci 2022; 23:ijms23073839. [PMID: 35409198 PMCID: PMC8998975 DOI: 10.3390/ijms23073839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
NPY is among the most abundant neuropeptides in vertebrate brain and is primarily involved in the regulation of food intake. The NPY system is also associated with the aging process showing beneficial effects on neuronal survival via autophagy modulation. Here, we explore the age-related regulation of NPY in the brain and foregut of the shortest- and longest-lived fish species, Nothobranchius furzeri and Danio rerio, respectively. These two research models, despite some similarities, display profound biological differences making them attractive vertebrates to elucidate the mechanisms underlying the regulation of neuropeptide synthesis and function. It is noteworthy that in both fish species only Npya has been identified, while in the other teleosts two classes of NPY (Npya and Npyb) have been annotated. Our findings document that in both species: (i) NPY is centrally regulated; (ii) NPY levels increase in the brain during aging; (iii) NPY is localized in the enteroendocrine cells as well as in the myenteric plexus and drastically decreases in old animals. According to our data, the age-related regulation in the gut resembles that described in other vertebrate species while the increased levels in the brain offer the unique possibility to explore the role of NPY in model organisms to develop future experimental and translatable approaches.
Collapse
|
12
|
Dyková I, Žák J, Blažek R, Reichard M, Součková K, Slabý O. Histology of major organ systems of Nothobranchius fishes: short-lived model species. JOURNAL OF VERTEBRATE BIOLOGY 2022. [DOI: 10.25225/jvb.21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Iva Dyková
- Institute of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic, e-mail:
| | - Jakub Žák
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; e-mail: , ,
| | - Radim Blažek
- Institute of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic, e-mail:
| | - Martin Reichard
- Institute of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic, e-mail:
| | - Kamila Součková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; e-mail: ,
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; e-mail: ,
| |
Collapse
|
13
|
Neuronal Phenotype of col4a1 and col25a1: An Intriguing Hypothesis in Vertebrates Brain Aging. Int J Mol Sci 2022; 23:ijms23031778. [PMID: 35163698 PMCID: PMC8836537 DOI: 10.3390/ijms23031778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Collagens are the most abundant proteins in vertebrates and constitute the major components of the extracellular matrix. Collagens play an important and multifaceted role in the development and functioning of the nervous system and undergo structural remodeling and quantitative modifications during aging. Here, we investigated the age-dependent regulation of col4a1 and col25a1 in the brain of the short-lived vertebrate Nothobranchius furzeri, a powerful model organism for aging research due to its natural fast-aging process and further characterized typical hallmarks of brain aging in this species. We showed that col4a1 and col25a1 are relatively well conserved during vertebrate evolution, and their expression significantly increases in the brain of N. furzeri upon aging. Noteworthy, we report that both col4a1 and col25a1 are expressed in cells with a neuronal phenotype, unlike what has already been documented in mammalian brain, in which only col25a1 is considered a neuronal marker, whereas col4a1 seems to be expressed only in endothelial cells. Overall, our findings encourage further investigation on the role of col4a1 and col25a1 in the biology of the vertebrate brain as well as the onset of aging and neurodegenerative diseases.
Collapse
|
14
|
Vanhunsel S, Bergmans S, Beckers A, Etienne I, Van Bergen T, De Groef L, Moons L. The age factor in optic nerve regeneration: Intrinsic and extrinsic barriers hinder successful recovery in the short-living killifish. Aging Cell 2022; 21:e13537. [PMID: 34927348 PMCID: PMC8761009 DOI: 10.1111/acel.13537] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
As the mammalian central nervous system matures, its regenerative ability decreases, leading to incomplete or non-recovery from the neurodegenerative diseases and central nervous system insults that we are increasingly facing in our aging world population. Current neuroregenerative research is largely directed toward identifying the molecular and cellular players that underlie central nervous system repair, yet it repeatedly ignores the aging context in which many of these diseases appear. Using an optic nerve crush model in a novel biogerontology model, that is, the short-living African turquoise killifish, the impact of aging on injury-induced optic nerve repair was investigated. This work reveals an age-related decline in axonal regeneration in female killifish, with different phases of the repair process being affected depending on the age. Interestingly, as in mammals, both a reduced intrinsic growth potential and a non-supportive cellular environment seem to lie at the basis of this impairment. Overall, we introduce the killifish visual system and its age-dependent regenerative ability as a model to identify new targets for neurorepair in non-regenerating individuals, thereby also considering the effects of aging on neurorepair.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
| | | | | | - Lies De Groef
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteLeuvenBelgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
15
|
Borgonovo J, Ahumada-Galleguillos P, Oñate-Ponce A, Allende-Castro C, Henny P, Concha ML. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front Neuroanat 2021; 15:728720. [PMID: 34588961 PMCID: PMC8473916 DOI: 10.3389/fnana.2021.728720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
The catecholaminergic system has received much attention based on its regulatory role in a wide range of brain functions and its relevance in aging and neurodegenerative diseases. In the present study, we analyzed the neuroanatomical distribution of catecholaminergic neurons based on tyrosine hydroxylase (TH) immunoreactivity in the brain of adult Nothobranchius furzeri. In the telencephalon, numerous TH+ neurons were observed in the olfactory bulbs and the ventral telencephalic area, arranged as strips extending through the rostrocaudal axis. We found the largest TH+ groups in the diencephalon at the preoptic region level, the ventral thalamus, the pretectal region, the posterior tuberculum, and the caudal hypothalamus. In the dorsal mesencephalic tegmentum, we identified a particular catecholaminergic group. The rostral rhombencephalon housed TH+ cells in the locus coeruleus and the medulla oblongata, distributing in a region dorsal to the inferior reticular formation, the vagal lobe, and the area postrema. Finally, scattered TH+ neurons were present in the ventral spinal cord and the retina. From a comparative perspective, the overall organization of catecholaminergic neurons is consistent with the general pattern reported for other teleosts. However, N. furzeri shows some particular features, including the presence of catecholaminergic cells in the midbrain. This work provides a detailed neuroanatomical map of the catecholaminergic system of N. furzeri, a powerful aging model, also contributing to the phylogenetic understanding of one of the most ancient neurochemical systems.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Patricio Ahumada-Galleguillos
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Camilo Allende-Castro
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Pablo Henny
- Department of Anatomy and Interdisciplinary Center of Neurosciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
16
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Levanti M, Abbate F, Laurà R, Germanà A. Localization of Neurotrophin Specific Trk Receptors in Mechanosensory Systems of Killifish ( Nothobranchius guentheri). Int J Mol Sci 2021; 22:10411. [PMID: 34638748 PMCID: PMC8508645 DOI: 10.3390/ijms221910411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotrophins (NTs) and their signal-transducing Trk receptors play a crucial role in the development and maintenance of specific neuronal subpopulations in nervous and sensory systems. NTs are supposed to regulate two sensory systems in fish, the inner ear and the lateral line system (LLS). The latter is one of the major mechanosensory systems in fish. Considering that annual fishes of the genus Nothobranchius, with their short life expectancy, have become a suitable model for aging studies and that the occurrence and distribution of neurotrophin Trk receptors have never been investigated in the inner ear and LLS of killifish (Nothobranchius guentheri), our study aimed to investigate the localization of neurotrophin-specific Trk receptors in mechanosensory systems of N. guentheri. For histological and immunohistochemical analysis, adult specimens of N. guentheri were processed using antibodies against Trk receptors and S100 protein. An intense immunoreaction for TrkA and TrkC was found in the sensory cells of the inner ear as well as in the hair cells of LLS. Moreover, also the neurons localized in the acoustic ganglia displayed a specific immunoreaction for all Trk receptors (TrkA, B, and C) analyzed. Taken together, our results demonstrate, for the first time, that neurotrophins and their specific receptors could play a pivotal role in the biology of the sensory cells of the inner ear and LLS of N. guentheri and might also be involved in the hair cells regeneration process in normal and aged conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Germanà
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (M.L.); (F.A.); (R.L.)
| |
Collapse
|
17
|
Baier H, Wullimann MF. Anatomy and function of retinorecipient arborization fields in zebrafish. J Comp Neurol 2021; 529:3454-3476. [PMID: 34180059 DOI: 10.1002/cne.25204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In 1994, Burrill and Easter described the retinal projections in embryonic and larval zebrafish, introducing the term "arborization fields" (AFs) for the retinorecipient areas. AFs were numbered from 1 to 10 according to their positions along the optic tract. With the exception of AF10 (neuropil of the optic tectum), annotations of AFs remained tentative. Here we offer an update on the likely identities and functions of zebrafish AFs after successfully matching classical neuroanatomy to the digital Max Planck Zebrafish Brain Atlas. In our system, individual AFs are neuropil areas associated with the following nuclei: AF1 with the suprachiasmatic nucleus; AF2 with the posterior parvocellular preoptic nucleus; AF3 and AF4 with the ventrolateral thalamic nucleus; AF4 with the anterior and intermediate thalamic nuclei; AF5 with the dorsal accessory optic nucleus; AF7 with the parvocellular superficial pretectal nucleus; AF8 with the central pretectal nucleus; and AF9d and AF9v with the dorsal and ventral periventricular pretectal nuclei. AF6 is probably part of the accessory optic system. Imaging, ablation, and activation experiments showed contributions of AF5 and potentially AF6 to optokinetic and optomotor reflexes, AF4 to phototaxis, and AF7 to prey detection. AF6, AF8 and AF9v respond to dimming, and AF4 and AF9d to brightening. While few annotations remain tentative, it is apparent that the larval zebrafish visual system is anatomically and functionally continuous with its adult successor and fits the general cyprinid pattern. This study illustrates the synergy created by merging classical neuroanatomy with a cellular-resolution digital brain atlas resource and functional imaging in larval zebrafish.
Collapse
Affiliation(s)
- Herwig Baier
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany
| | - Mario F Wullimann
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany.,Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| |
Collapse
|
18
|
Bagnoli S, Terzibasi Tozzini E. Age-Dependent Regulation of Notch Family Members in the Neuronal Stem Cell Niches of the Short-Lived Killifish Nothobranchius furzeri. Front Cell Dev Biol 2021; 9:640958. [PMID: 34307342 PMCID: PMC8299727 DOI: 10.3389/fcell.2021.640958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The annual killifish Nothobranchius furzeri is a new experimental model organism in biology, since it represents the vertebrate species with the shortest captive life span and also shows the fastest maturation and senescence recorded in the laboratory. Here, we use this model to investigate the age-dependent decay of neurogenesis in the telencephalon (brain region sharing the same embryonic origin with the mammalian adult niches), focusing on the expression of the Notch pathway genes. Results: We observed that the major ligands/receptors of the pathway showed a negative correlation with age, indicating age-dependent downregulation of the Notch pathway. Moreover, expression of notch1a was clearly limited to active neurogenic niches and declined during aging, without changing its regional patterning. Expression of notch3 is not visibly influenced by aging. Conclusion: Both expression pattern and regulation differ between notch1a and notch3, with the former being limited to mitotically active regions and reduced by aging and the latter being present in all cells with a neurogenic potential, regardless of the level of their actual mitotic activity, and so is less influenced by age. This finally suggests a possible differential role of the two receptors in the regulation of the niche proliferative potential throughout the entire fish life.
Collapse
Affiliation(s)
- Sara Bagnoli
- Laboratory of Biology (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
19
|
Eunjeong D, Seongsin L, Yumi K. Anatomical identification of the neuroendocrine system in the Nothobranchius furzeri brain. JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Do Eunjeong
- Center for Plant Aging Research, Institute for Basic Science, Republic of Korea; e-mail: , ,
| | - Lee Seongsin
- Center for Plant Aging Research, Institute for Basic Science, Republic of Korea; e-mail: , ,
| | - Kim Yumi
- Center for Plant Aging Research, Institute for Basic Science, Republic of Korea; e-mail: , ,
| |
Collapse
|
20
|
Thoré ESJ, Philippe C, Brendonck L, Pinceel T. Towards improved fish tests in ecotoxicology - Efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. CHEMOSPHERE 2021; 273:129697. [PMID: 33517116 DOI: 10.1016/j.chemosphere.2021.129697] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
As many freshwaters are chemically polluted, one of the challenges for policy makers is to determine the potential impact of these pollutants on ecosystems and to define safe concentrations. Common practice is the use of ecotoxicological assays to assess the response of model organisms from different trophic levels such as algae, invertebrates and fish during exposure to dilutions of a specific compound. Ideally, ecotoxicological assessments of (pseudo-)persistent chemicals should be performed across the life-cycle or even multiple generations for an accurate risk assessment. Multigenerational tests with fish are, however, impractical and costly given the long lifespan and generation time of classic model species. Here, we suggest a framework for more relevant, time- and cost-efficient fish-based testing in ecotoxicology and align it with accredited test guidelines. Next, we introduce an upcoming fish model, the turquoise killifish Nothobranchius furzeri, and show how it facilitates such research agendas due to a short lifespan and generation time. Through a review of fish-based exposure studies with a set of reference toxicants, we position N. furzeri as a sensitive species, suitable for screening effects of different pollutant types. Ultimately, we perform a cost-benefit analysis and propose a plan of action for the introduction of N. furzeri into accredited test guidelines.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
21
|
Leggieri A, Palladino A, Attanasio C, Avallone L, de Girolamo P, D'Angelo L, Lucini C. Id(entifying) the inhibitor of DNA binding 3 in the brain of Nothobranchius furzeri upon aging. J Anat 2020; 238:1106-1115. [PMID: 33314133 PMCID: PMC8053586 DOI: 10.1111/joa.13367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023] Open
Abstract
Inhibitors of DNA (Id) are key transcription factors (TFs) regulating neurogenic processes. They belong to the helix-loop-helix (HLH) TF family and are dominant negative regulators of basic HLH proteins (bHLHs). Specifically, they inhibit cell differentiation and enhance cell proliferation and motility. The Id family includes four members, Id1, Id2, Id3, and Id4, which have been identified in nearly all vertebrates. The transcript catalog of the African turquoise killifish, Nothobranchius furzeri, contains all four TFs and has evolved showing positive selection for Id3. N. furzeri, a teleost, is the short-lived vertebrate and is gaining increasing scientific interest as a new model organism in aging research. It is characterized by embryonic diapause, explosive sexual maturation, and rapid aging. In this study, we investigated both the expression and the role of Id3 in the brain of this model organism. Interestingly, Id3 was upregulated age-dependently along with a distribution pattern resembling that of other vertebrates. Additionally, the gene has undergone positive selection during evolution and shows a high degree of conservation relative to that of other vertebrates. These features make N. furzeri a valid tool for aging studies and a potential model in translational research.
Collapse
Affiliation(s)
- Adele Leggieri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Antonio Palladino
- CESMA-Centro Servizi Metrologici e Tecnologici Avanzati, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
22
|
Thoré ESJ, Brendonck L, Pinceel T. Conspecific density and environmental complexity impact behaviour of turquoise killifish (Nothobranchius furzeri). JOURNAL OF FISH BIOLOGY 2020; 97:1448-1461. [PMID: 32845514 DOI: 10.1111/jfb.14512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Fish models are essential for research in many biological and medical disciplines. With a typical lifespan of only 6 months, the Turquoise killifish (Nothobranchius furzeri) was recently established as a time- and cost-efficient model to facilitate whole-life and multigenerational studies in several research fields, including behavioural ecotoxicology. Essential information on the behavioural norm and on how laboratory conditions affect behaviour, however, is deficient. In the current study, we examined the impact of the social and structural environment on a broad spectrum of behavioural endpoints in N. furzeri. While structural enrichment affected only fish boldness and exploratory behaviour, fish rearing density affected the total body length, locomotor activity, boldness, aggressiveness and feeding behaviour of N. furzeri individuals. Overall, these results contribute to compiling a behavioural baseline for N. furzeri that increases the applicability of this new model species. Furthermore, our findings will fuel the development of improved husbandry protocols to maximize the welfare of N. furzeri in a laboratory setting.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
23
|
de Girolamo P, Leggieri A, Palladino A, Lucini C, Attanasio C, D’Angelo L. Cholinergic System and NGF Receptors: Insights from the Brain of the Short-Lived Fish Nothobranchius furzeri. Brain Sci 2020; 10:brainsci10060394. [PMID: 32575701 PMCID: PMC7348706 DOI: 10.3390/brainsci10060394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) receptors are evolutionary conserved molecules, and in mammals are considered necessary for ensuring the survival of cholinergic neurons. The age-dependent regulation of NTRK1/NTRKA and p75/NGFR in mammalian brain results in a reduced response of the cholinergic neurons to neurotrophic factors and is thought to play a role in the pathogenesis of neurodegenerative diseases. Here, we study the age-dependent expression of NGF receptors (NTRK1/NTRKA and p75/NGFR) in the brain of the short-lived teleost fish Nothobranchius furzeri. We observed that NTRK1/NTRKA is more expressed than p75/NGFR in young and old animals, although both receptors do not show a significant age-dependent change. We then study the neuroanatomical organization of the cholinergic system, observing that cholinergic fibers project over the entire neuroaxis while cholinergic neurons appear restricted to few nuclei situated in the equivalent of mammalian subpallium, preoptic area and rostral reticular formation. Finally, our experiments do not confirm that NTRK1/NTRKA and p75/NGFR are expressed in cholinergic neuronal populations in the adult brain of N. furzeri. To our knowledge, this is the first study where NGF receptors have been analyzed in relation to the cholinergic system in a fish species along with their age-dependent modulation. We observed differences between mammals and fish, which make the African turquoise killifish an attractive model to further investigate the fish specific NGF receptors regulation.
Collapse
Affiliation(s)
- Paolo de Girolamo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
- Correspondence: ; Tel.: +39-081-2536099
| | - Adele Leggieri
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Antonio Palladino
- CESMA—Centro Servizi metereologici e Tecnologici Avanzati, University of Naples Federico II, I-80126 Naples, Italy;
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Livia D’Angelo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| |
Collapse
|
24
|
Nezhybová V, Janáč M, Reichard M, Ondračková M. Risk-taking behaviour in African killifish – a case of parasitic manipulation? JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Veronika Nezhybová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; e-mail: , ,
| | - Michal Janáč
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; e-mail: , ,
| | - Martin Reichard
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; e-mail: , ,
| | - Markéta Ondračková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; e-mail: , ,
| |
Collapse
|
25
|
Palang I, Withyachumnarnkul B, Senapin S, Sirimanapong W, Vanichviriyakit R. Brain histopathology in red tilapia Oreochromis sp. experimentally infected with Streptococcus agalactiae serotype III. Microsc Res Tech 2020; 83:877-888. [PMID: 32243694 DOI: 10.1002/jemt.23481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
Abstract
One of the clinical manifestations of streptococcosis is swimming errors of the infected fish, which is likely caused by lesions in the brain. As most studies described brain histopathology in streptococcosis as meningitis, with a limited description of lesions in the whole brain, the aim of this study was therefore to explore histopathology of the whole brain of red tilapia experimentally infected with Streptococcus agalactiae serotype III. Transcripts relating to motoneuron functions and inflammatory responses were also investigated. In the S. agalactiae-infected fish, the parenchyma of the whole brain and its associated meninx primitiva were found to be markedly infiltrated by mononuclear cells and Gram-positive cocci. Hemorrhage, neuronal necrosis, and localized spongiform histopathology were observed, especially within the midbrain and the cerebellum. The lesion was observed in the medial longitudinal fasciculus and its nucleus. Expressions of the transcripts CD166, GAP43, SMN, and SV2B of the infected fish did not change, while those of IL-1β and TNF-α were significantly upregulated. It is likely that S. agalactiae cause extensive damage to the fish brain, especially in areas that control swimming activities, through both direct invasion of the bacteria and acute inflammatory responses of the brain resident macrophages, or microglia.
Collapse
Affiliation(s)
- Iyapa Palang
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Boonsirm Withyachumnarnkul
- Faculty of Science and Industrial Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,AquaAcademy Farm, Tha Chana, Surat Thani, Thailand
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathumthani, Thailand
| | - Wanna Sirimanapong
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Bangkok, Thailand
| | - Rapeepun Vanichviriyakit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Montesano A, De Felice E, Leggieri A, Palladino A, Lucini C, Scocco P, de Girolamo P, Baumgart M, D’Angelo L. Ontogenetic Pattern Changes of Nucleobindin-2/Nesfatin-1 in the Brain and Intestinal Bulb of the Short Lived African Turquoise Killifish. J Clin Med 2019; 9:jcm9010103. [PMID: 31906085 PMCID: PMC7019235 DOI: 10.3390/jcm9010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nesfatin-1 (Nesf-1) was identified as an anorexigenic and well conserved molecule in rodents and fish. While tissue distribution of NUCB2 (Nucleobindin 2)/Nesf-1 is discretely known in vertebrates, reports on ontogenetic expression are scarce. Here, we examine the age-related central and peripheral expression of NUCB2/Nesf-1 in the teleost African turquoise killifish Nothobranchius furzeri, a consolidated model organism for aging research. We focused our analysis on brain areas responsible for the regulation of food intake and the rostral intestinal bulb, which is analogous of the mammalian stomach. We hypothesize that in our model, the stomach equivalent structure is the main source of NUCB2 mRNA, displaying higher expression levels than those observed in the brain, mainly during aging. Remarkably, its expression significantly increased in the rostral intestinal bulb compared to the brain, which is likely due to the typical anorexia of aging. When analyzing the pattern of expression, we confirmed the distribution in diencephalic areas involved in food intake regulation at all age stages. Interestingly, in the rostral bulb, NUCB2 mRNA was localized in the lining epithelium of young and old animals, while Nesf-1 immunoreactive cells were distributed in the submucosae. Taken together, our results represent a useful basis for gaining deeper knowledge regarding the mechanisms that regulate food intake during vertebrate aging.
Collapse
Affiliation(s)
- Alessia Montesano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (A.L.); (C.L.); (P.d.G.)
- Leibniz Institute on Aging–Fritz Lipmann Institute, 07745 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology–Hans Knöll Institute, 07745 Jena, Germany
| | - Elena De Felice
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (E.D.F.); (P.S.)
| | - Adele Leggieri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (A.L.); (C.L.); (P.d.G.)
| | - Antonio Palladino
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, 80125 Naples, Italy;
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (A.L.); (C.L.); (P.d.G.)
| | - Paola Scocco
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (E.D.F.); (P.S.)
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (A.L.); (C.L.); (P.d.G.)
| | - Mario Baumgart
- Leibniz Institute on Aging–Fritz Lipmann Institute, 07745 Jena, Germany;
| | - Livia D’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (A.M.); (A.L.); (C.L.); (P.d.G.)
- Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
- Correspondence: ; Tel.: +39-081-253-6131; Fax: +39-081-253-6097
| |
Collapse
|
27
|
ŽáK J, Vrtílek M, Reichard M. Diel schedules of locomotor, reproductive and feeding activity in wild populations of African annual killifish. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Diel patterns of different activities arise from adaptations to periodic cycling of environmental parameters and may involve trade-offs between acquiring benefits and minimizing associated costs. In this study, we provide fundamental baseline data on diel activity of natural populations of Nothobranchius fishes, model organisms in laboratory studies, including links between diurnal rhythms and ageing. Initially, we quantified the diel change in activity in wild populations of three African killifish species (Nothobranchius furzeri, Nothobranchius orthonotus and Nothobranchius pienaari) and compared average activity between sexes. In all species, males were more active than females, probably as a result of their active pursuit of females. Swimming activity peaked at midday. In N. furzeri, the only species occurring at all sites, oocytes were ovulated in the early morning, and most spawning events had occurred by the early afternoon. Gut fullness and diet richness increased before spawning activity and peaked in the morning. Daytime diet was dominated by chironomid larvae, whereas notonectid bugs were the dominant prey at night, perhaps as a result of different prey detectability over the diel cycle. Finally, no loyalty to any particular pool section was detected in N. furzeri. Collectively, these data provide the first empirical description of diel activity in three wild populations of African killifish.
Collapse
Affiliation(s)
- Jakub ŽáK
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milan Vrtílek
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Martin Reichard
- The Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
28
|
Identification and Expression of Neurotrophin-6 in the Brain of Nothobranchius furzeri: One More Piece in Neurotrophin Research. J Clin Med 2019; 8:jcm8050595. [PMID: 31052296 PMCID: PMC6571927 DOI: 10.3390/jcm8050595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins contribute to the complexity of vertebrate nervous system, being involved in cognition and memory. Abnormalities associated with neurotrophin synthesis may lead to neuropathies, neurodegenerative disorders and age-associated cognitive decline. The genome of teleost fishes contains homologs of some mammalian neurotrophins as well as a gene coding for an additional neurotrophin (NT-6). In this study, we characterized this specific neurotrophin in the short-lived fish Nothobranchius furzeri, a relatively new model for aging studies. Thus, we report herein for the first time the age-related expression of a neurotrophin in a non-mammalian vertebrate. Interestingly, we found comparable expression levels of NT-6 in the brain of both young and old animals. More in detail, we used a locked nucleic acid probe and a riboprobe to investigate the neuroanatomical distribution of NT-6 mRNA revealing a significant expression of the neurotrophin in neurons of the forebrain (olfactory bulbs, dorsal and ventral telencephalon, and several diencephalic nuclei), midbrain (optic tectum, longitudinal tori, and semicircular tori), and hindbrain (valvula and body of cerebellum, reticular formation and octavolateral area of medulla oblongata). By combining in situ hybridization and immunohistochemistry, we showed that NT-6 mRNA is synthesized in mature neurons. These results contribute to better understanding the evolutionary history of neurotrophins in vertebrates, and their role in the adult brain.
Collapse
|
29
|
Hess A, Hinz R, Keliris GA, Boehm-Sturm P. On the Usage of Brain Atlases in Neuroimaging Research. Mol Imaging Biol 2019; 20:742-749. [PMID: 30094652 DOI: 10.1007/s11307-018-1259-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.
Collapse
Affiliation(s)
- Andreas Hess
- Institute for Experimental Pharmacology, Friedrich Alexander University Erlangen Nuremberg, Fahrstraße 17, 91054, Erlangen, Germany.
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
30
|
Montesano A, Baumgart M, Avallone L, Castaldo L, Lucini C, Tozzini ET, Cellerino A, D'Angelo L, de Girolamo P. Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. J Comp Neurol 2019; 527:1508-1526. [PMID: 30666646 DOI: 10.1002/cne.24638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Orexin A (OXA) and neuropeptide Y (NPY) are two hypothalamic neuropeptides involved in the regulation of feeding behavior and food intake in all vertebrates. Accumulating evidences document that they undergo age-related modifications, with consequences on metabolism, sleep/wake disorders and progression of neurodegenerations. The present study addressed the age related changes in expression and distribution of orexin A (its precursor is also known as hypocretin-HCRT) and NPY, and their regulation by food intake in the short-lived vertebrate model Nothobranchius furzeri. Our experiments, conducted on male specimens, show that: (a) HCRT and OXA and NPY mRNA and protein are localized in neurons of diencephalon and optic tectum, as well as in numerous fibers projecting through the entire neuroaxis, and are colocalized in specific nuclei; (b) in course of aging, HCRT and NPY expressing neurons are localized also in telencephalon and rhombencephalon; (c) HCRT expressing neurons increased slightly in the diencephalic area of old animals and in fasted animals, whereas NPY increased sharply; (d) central HCRT levels are not regulated neither in course of aging nor by food intake; and (e) central NPY levels are augmented in course of aging, and regulated by food intake only in young. These findings represent a great novelty in the study of central orexinergic and NPY-ergic systems in vertebrates', demonstrating an uncommon and unprecedented described regulation of these two orexigenic neuropeptides.
Collapse
Affiliation(s)
- Alessia Montesano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Lab. Biology of Aging, Jena, Germany
| | - Mario Baumgart
- Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Lab. Biology of Aging, Jena, Germany
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Alessandro Cellerino
- Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Lab. Biology of Aging, Jena, Germany.,Scuola Normale Superiore, Bio@SNS, c/o Istituto di Biofisica del CNR, Pisa, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Stazione Zoologica Anton Dohrn, Biology and Evolution of Marine Organisms, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Thoré ESJ, Steenaerts L, Philippe C, Grégoir AF, Brendonck L, Pinceel T. Improving the reliability and ecological validity of pharmaceutical risk assessment: Turquoise killifish (Nothobranchius furzeri) as a model in behavioral ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:262-270. [PMID: 30357889 DOI: 10.1002/etc.4301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are essential for human well-being, but their increasing and continuous use pollutes the environment. Although behavioral ecotoxicology is increasingly advocated to assess the effects of pharmaceutical pollution on wildlife and ecosystems, a consensus on the actual environmental risks is lacking for most compounds. The main limitation is the lack of standardized reproducible tests that are based on sensitive behavioral endpoints and that accommodate a high ecological relevance. In the present study, we assessed the impact of a 3-wk exposure to the antidepressant fluoxetine on multiple behavioral traits in the promising new model organism Nothobranchius furzeri (turquoise killifish). Overall, our study shows that fluoxetine can impact feeding behavior, habitat choice in a novel environment, and antipredator response of N. furzeri individuals; effects on spontaneous activity and exploration tendency were less pronounced. However, effects became only apparent when individuals were exposed to fluoxetine concentrations that were 10 times higher than typical concentrations in natural aquatic environments. Ecotoxicologists are challenged to maximize both the reliability and ecological validity of risk assessments of pollutants. Our study contributes to the development of a time- and cost-efficient, standardized ecotoxicological test based on sensitive, ecologically relevant behavioral endpoints in N. furzeri. Environ Toxicol Chem 2019;38:262-270. © 2018 SETAC.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Laure Steenaerts
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Systemic Physiological and Ecotoxicological Research, University of Antwerp, Antwerp, Belgium
| | - Arnout F Grégoir
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
32
|
Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, Izumi H, Tsuneoka Y, Suto F, Murakami Y, Ichijo H. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol 2018; 527:874-900. [PMID: 30516281 DOI: 10.1002/cne.24547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/10/2022]
Abstract
Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.
Collapse
Affiliation(s)
- Masahumi Kawaguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Hanako Hagio
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hironori Izumi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Fumikazu Suto
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
33
|
Thoré ESJ, Steenaerts L, Philippe C, Grégoir A, Brendonck L, Pinceel T. Individual behavioral variation reflects personality divergence in the upcoming model organism Nothobranchius furzeri. Ecol Evol 2018; 8:8448-8457. [PMID: 30250714 PMCID: PMC6144979 DOI: 10.1002/ece3.4356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/19/2018] [Accepted: 06/20/2018] [Indexed: 12/28/2022] Open
Abstract
In the animal kingdom, behavioral variation among individuals has often been reported. However, stable among-individual differences along a behavioral continuum-reflective of personality variation-have only recently become a key target of research. While a vast body of descriptive literature exists on animal personality, hypothesis-driven quantitative studies are largely deficient. One of the main constraints to advance the field is the lack of suitable model organisms. Here, we explore whether N. furzeri could be a valuable model to bridge descriptive and hypothesis-driven research to further unravel the causes, function and evolution of animal personality. As a first step toward this end, we perform a common garden laboratory experiment to examine if behavioral variation in the turquoise killifish Nothobranchius furzeri reflects personality divergence. Furthermore, we explore if multiple behavioral traits are correlated. We deliver "proof of principle" of personality variation among N. furzeri individuals in multiple behavioral traits. Because of the vast body of available genomic and physiological information, the well-characterized ecological background and an exceptionally short life cycle, N. furzeri is an excellent model organism to further elucidate the causes and implications of behavioral variation in an eco-evolutionary context.
Collapse
Affiliation(s)
- Eli S. J. Thoré
- Animal Ecology, Global Change and Sustainable DevelopmentKU LeuvenLeuvenBelgium
| | - Laure Steenaerts
- Animal Ecology, Global Change and Sustainable DevelopmentKU LeuvenLeuvenBelgium
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable DevelopmentKU LeuvenLeuvenBelgium
- Systemic Physiological and Ecotoxicological ResearchUniversity of AntwerpAntwerpBelgium
| | - Arnout Grégoir
- Animal Ecology, Global Change and Sustainable DevelopmentKU LeuvenLeuvenBelgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable DevelopmentKU LeuvenLeuvenBelgium
- Water Research GroupUnit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable DevelopmentKU LeuvenLeuvenBelgium
- Centre for Environmental ManagementUniversity of the Free StateBloemfonteinSouth Africa
| |
Collapse
|
34
|
Magalhães Horn ÂC, Rasia-Filho AA. The Cytoarchitecture of the Telencephalon of Betta Splendens Regan 1910 (Perciformes: Anabantoidei) with a Stereological Approach to the Supracommissural and Postcommissural Nuclei. Anat Rec (Hoboken) 2017; 301:88-110. [PMID: 29024431 DOI: 10.1002/ar.23699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/22/2017] [Accepted: 07/13/2017] [Indexed: 11/06/2022]
Abstract
Teleostean fish brains are useful models to study cellular and functional specializations along the phylogenesis. The Betta splendens Regan 1910 (Siamese fighting fish; Perciformes:Anabantoidei) is known for its aggressive display, courtship behavior, nest building, and offspring care. Here, we present novel and detailed data about the cytoarchitecture of the olfactory bulb and the telencephalic hemispheres of this fish. The hematoxylin-eosin and Nissl techniques served to identify brain nuclei (n = 19 males and n = 21 females) and for the stereological evaluation of the numerical density of cells and the proportion of neurons and glial cells in the ventral telencephalon supracommissural (Vs) and postcommissural (Vp) nuclei of adult males and females. These nuclei are putative homologs of the sexually dimorphic medial amygdala in mammals. The olfactory bulb of Betta splendens consists of 5 concentrically arranged layers plus ganglion cells of the terminal nerves. The dorsal telencephalon consists of 16 different cell groups. The ventral telencephalon has 8 nuclei, plus the lateral septal organ and the nuclei of the preoptic area forming an anatomical continuum. The rostrocaudal extent of the Vs and Vp is not different between sexes. In both nuclei, the proportion of neurons to glial cells is approximately 2:1 and the density of neurons and glial cells is not different between sexes. These morphological findings can subserve future research on the brain function of the Betta splendens and the search for neural sex differences in other central areas of this same species, in other teleost species, or yet in other related vertebrate group. Anat Rec, 00:000-000, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:88-110, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ângelo Cássio Magalhães Horn
- Laboratory of Histology, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Porto Alegre, Porto Alegre, RS 90030-041, Brazil.,ICBS/Neuroscience Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Alberto A Rasia-Filho
- ICBS/Neuroscience Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil.,DCBS/Physiology, Universidade Federal de Ciência da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
35
|
Karoubi N, Segev R, Wullimann MF. The Brain of the Archerfish Toxotes chatareus: A Nissl-Based Neuroanatomical Atlas and Catecholaminergic/Cholinergic Systems. Front Neuroanat 2016; 10:106. [PMID: 27891081 PMCID: PMC5104738 DOI: 10.3389/fnana.2016.00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/13/2016] [Indexed: 01/30/2023] Open
Abstract
Over recent years, the seven-spot archerfish (Toxotes chatareus) has emerged as a new model for studies in visual and behavioral neuroscience thanks to its unique hunting strategy. Its natural ability to spit at insects outside of water can be used in the laboratory for well controlled behavioral experiments where the fish is trained to aim at targets on a screen. The need for a documentation of the neuroanatomy of this animal became critical as more research groups use it as a model. Here we present an atlas of adult T. chatareus specimens caught in the wild in South East Asia. The atlas shows representative sections of the brain and specific structures revealed by a classic Nissl staining as well as corresponding schematic drawings. Additional immunostainings for catecholaminergic and cholinergic systems were conducted to corroborate the identification of certain nuclei and the data of a whole brain scanner is available online. We describe the general features of the archerfish brain as well as its specificities, especially for the visual system and compare the neuroanatomy of the archerfish with other teleosts. This atlas of the archerfish brain shows all levels of the neuraxis and intends to provide a solid basis for further neuroscientific research on T. chatareus, in particular electrophysiological studies.
Collapse
Affiliation(s)
- Naomi Karoubi
- Life Sciences Department and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beersheba, Israel
| | - Ronen Segev
- Life Sciences Department and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beersheba, Israel
| | - Mario F Wullimann
- Graduate School of Systemic Neurosciences and Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
36
|
Rosillo JC, Torres M, Olivera-Bravo S, Casanova G, García-Verdugo JM, Fernández AS. Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration. Neuroscience 2016; 336:63-80. [PMID: 27593094 DOI: 10.1016/j.neuroscience.2016.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis participates in fish olfaction sensitivity in response to environmental challenges. Therefore, we investigated if several populations of stem/progenitor cells that are retained in the olfactory bulbs (OB) may constitute different neurogenic niches that support growth and functional demands. By electron microscopy and combination cell proliferation and lineage markers, we found that the telencephalic ventricle wall (VW) at OB level of Austrolebias charrua fish presents three neurogenic niches (transitional 1, medial 2 and ventral 3). The main cellular types described in other vertebrate neurogenic niches were identified (transient amplifying cells, stem cells and migrating neuroblasts). However, elongated vimentin/BLBP+ radial glia were the predominant cells in transitional and ventral zones. Use of halogenated thymidine analogs chloro- and iodo-deoxyuridine administered at different experimental times showed that both regions have the highest cell proliferation and migration rates. Zone 1 migration was toward the OB and telencephalon, whereas in zone 3, migration was directed toward the OB rostral portion constituting the equivalent of the mammal rostral migratory band. Medial zone (MZ) has fewer proliferating non-migrant cells that are the putative stem cells as indicated by short and long proliferation assays as well as cell lineage markers. Sparse migration observed suggests MZ may collaborate with VW growth. Scanning electron microscopy evidenced that the whole VW has only monociliated cells with remarkable differences in cilium length among regions. In OB there are monociliated cells with dwarf cilium whereas ventral telencephalon shows long cilium. Summarizing, we identified three neurogenic niches that might serve different functional purposes.
Collapse
Affiliation(s)
- Juan Carlos Rosillo
- Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| | - Maximiliano Torres
- Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| | - Silvia Olivera-Bravo
- Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay.
| | - Gabriela Casanova
- Unidad de Microscopia Electrónica de Transmisión, Facultad de Ciencias, Universidad de la República (UdelaR), Iguá 4225, 11400 Montevideo, Uruguay.
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Paterna, 46980, CIBERNED, Spain.
| | - Anabel Sonia Fernández
- Departamento NCIC, Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600 Montevideo, Uruguay; Neuroanatomía Comparada, Unidad Asociada a la Facultad de Ciencias, Universidad de la República (UdelaR), Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
37
|
Polačik M, Blažek R, Reichard M. Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nat Protoc 2016; 11:1396-413. [DOI: 10.1038/nprot.2016.080] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Ann Anat 2016; 205:75-84. [DOI: 10.1016/j.aanat.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/01/2015] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
|
39
|
D'Angelo L, Avallone L, Cellerino A, de Girolamo P, Paolucci M, Varricchio E, Lucini C. Neurotrophin-4 in the brain of adult Nothobranchius furzeri. Ann Anat 2016; 207:47-54. [PMID: 26970500 DOI: 10.1016/j.aanat.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/31/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Neurotrophin-4 (NT-4) is a member of the well-known family of neurotrophins that regulate the development of neuronal networks by participating in neuronal survival and differentiation, the growth of neuronal processes, synaptic development and plasticity, as well as myelination. NT-4 interacts with two distinct receptors: TrkB, high affinity receptor and p75 low-affinity neurotrophin receptor (p75(NTR)). In the present survey, we identified the gene encoding NT-4 in the teleost Nothobranchius furzeri, a model species for aging research. The identified gene shows a similarity of about 72% with medaka, the closest related species. The neuroanatomical localization of NT-4 mRNA is obtained by using an LNA probe. NT-4 mRNA expression is observed in neurons and glial cells of the forebrain and hindbrain, with very low signal found in the midbrain. This survey confirms that NT-4 is expressed in the brain of N. furzeri during adulthood, suggesting that it could also be implicated in the maintenance and regulation of neuronal functions.
Collapse
Affiliation(s)
- L D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - L Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - A Cellerino
- Scuola Normale Superiore di Pisa, Pisa, Italy; Laboratory of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - P de Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - M Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - E Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - C Lucini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
40
|
Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual
Nothobranchius
fishes as a new model system in biology. Biol Rev Camb Philos Soc 2015; 91:511-33. [DOI: 10.1111/brv.12183] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Alessandro Cellerino
- Bio@SNS, Scuola Normale Superiore Department of Neurosciences Piazza dei Cavalieri 7 56126 Pisa Italy
- Fritz Lipmann Institute for Age Research, Leibniz Institute Beutenbergstr. 11 D‐07745 Jena Germany
| | - Dario R. Valenzano
- Max Planck Institute for Biology of Ageing Joseph‐Stelzmann‐Str. 9b D‐50931 Cologne Germany
| | - Martin Reichard
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic Květná 8 603 65 Brno Czech Republic
| |
Collapse
|
41
|
D'Angelo L, De Girolamo P, Lucini C, Terzibasi ET, Baumgart M, Castaldo L, Cellerino A. Brain-derived neurotrophic factor: mRNA expression and protein distribution in the brain of the teleost Nothobranchius furzeri. J Comp Neurol 2014; 522:1004-30. [PMID: 23983038 DOI: 10.1002/cne.23457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/28/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022]
Abstract
BDNF (brain-derived neurotrophic factor) is a member of the neurotrophin family and it is implicated in regulating brain development and function. The BDNF gene organization and coding sequence are conserved in all vertebrates. The present survey was conducted in a teleost fish, Nothobranchius furzeri, because it is an emerging model of aging studies due to its short lifespan and shows the high rate of adult neurogenesis typical of anamniotes. The present survey reports: 1) the identification and characterization of the cDNA fragment encoding BDNF protein, and 2) the localization of BDNF in the whole brain. BDNF mRNA expression was assessed by in situ hybridization, by employing an antisense RNA probe; BDNF protein was detected by employing a sensitive immunohistochemical technique, along with highly specific affinity-purified antibodies to BDNF. Both BDNF mRNA and protein were detected in neurons and glial cells of all regions of the brain of N. furzeri. Interestingly, BDNF was localized also in brain areas involved in adult neurogenic activities, suggesting a specific role for this neurotrophic factor in controlling cell proliferation. These results provide baseline information for future studies concerning BDNF involvement in the aging processes of the teleost brain.
Collapse
Affiliation(s)
- Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Napoli, Italy; Biology of Ageing, Leibniz Institute for Age Research, Fritz-Lipmann Institute, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Dewan AK, Tricas TC. Cytoarchitecture of the Telencephalon in the Coral Reef Multiband Butterflyfish ( Chaetodon multicinctus: Perciformes). BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:31-50. [DOI: 10.1159/000363124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022]
|
43
|
D’Angelo L, Castaldo L, Cellerino A, de Girolamo P, Lucini C. Nerve growth factor in the adult brain of a teleostean model for aging research: Nothobranchius furzeri. Ann Anat 2014; 196:183-91. [DOI: 10.1016/j.aanat.2014.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/24/2014] [Accepted: 02/16/2014] [Indexed: 12/31/2022]
|