1
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
2
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
3
|
Jin J, Zhu C, Wang J, Zhao X, Yang R. The association between ACTB methylation in peripheral blood and coronary heart disease in a case-control study. Front Cardiovasc Med 2022; 9:972566. [PMID: 36061541 PMCID: PMC9433772 DOI: 10.3389/fcvm.2022.972566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Coronary heart disease (CHD) brings a heavy burden to society worldwide. Novel and minimally invasive biomarkers for the risk evaluation of CHD are urgently needed. Previous study has revealed that blood-based hypomethylation of β-actin (ACTB) was associated with increased risk of stroke, but not reported in CHD yet. Objectives We aimed to explore the association between blood-based ACTB methylation and the risk of CHD in a case-control study in the Chinese population. Methods The methylation level of ACTB was quantitatively determined by mass spectrometry in 281 CHD patients and 272 controls. The association between ACTB methylation and CHD risk was estimated by logistic regression analyses adjusted for possible confounding effects. Results We found a significant association between hypermethylation of ACTB in peripheral blood and increased risk of CHD (odds ratios (ORs) per +10% methylation: 1.19–1.45, p < 0.013 for nine out of thirteen CpG sites), especially in male subjects and heart failure (HF) patients (ORs per +10% methylation: 1.20–1.43, 1.38–1.46; p < 0.030, 1.52 × 10−4, respectively). Hypermethylation of ACTB_CpG_2.3, ACTB_CpG_7.8, and ACTB_CpG_9.10 was observed in the CHD patients with minor to medium cardiac function impairment (NYHA I&II CHD cases) (ORs per +10% methylation: 1.38–1.44; p < 0.001). The combination of ACTB_CpG_2.3, ACTB_CpG_7.8, and ACTB_CpG_9.10 methylation levels could efficiently discriminate CHD cases, male CHD patients, HF and NYHA I&II CHD patients from controls (area under curve (AUC) = 0.75, 0.74, 0.73, and 0.77, respectively). Conclusions Our study reveals a strong association between blood-based ACTB hypermethylation and CHD risk. The combination of ACTB methylation and conventional risk factors might provide a novel strategy to improve risk assessment of CHD.
Collapse
Affiliation(s)
- Jialie Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinxin Wang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Military Translational Medicine Lab, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Xiaojing Zhao
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Rongxi Yang
| |
Collapse
|
4
|
Zhang K, Zhang J, Ding N, Zellmer L, Zhao Y, Liu S, Liao DJ. ACTB and GAPDH appear at multiple SDS-PAGE positions, thus not suitable as reference genes for determining protein loading in techniques like Western blotting. Open Life Sci 2021; 16:1278-1292. [PMID: 34966852 PMCID: PMC8669867 DOI: 10.1515/biol-2021-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
We performed polyacrylamide gel electrophoresis of human proteins with sodium dodecyl sulfate, isolated proteins at multiple positions, and then used liquid chromatography and tandem mass spectrometry (LC-MS/MS) to determine the protein identities. Although beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are 41.7 and 36 kDa proteins, respectively, LC-MS/MS identified their peptides at all the positions studied. The National Center for Biotechnology Information (USA) database lists only one ACTB mRNA but five GAPDH mRNAs and one noncoding RNA. The five GAPDH mRNAs encode three protein isoforms, while our bioinformatics analysis identified a 17.6 kDa isoform encoded by the noncoding RNA. All LC-MS/MS-identified GAPDH peptides at all positions studied are unique, but some of the identified ACTB peptides are shared by ACTC1, ACTBL2, POTEF, POTEE, POTEI, and POTEJ. ACTC1 and ACTBL2 belong to the ACT family with significant similarities to ACTB in protein sequence, whereas the four POTEs are ACTB-containing chimeric genes with the C-terminus of their proteins highly similar to the ACTB. These data lead us to conclude that GAPDH and ACTB are poor reference genes for determining the protein loading in such techniques as Western blotting, a leading role these two genes have been playing for decades in biomedical research.
Collapse
Affiliation(s)
- Keyin Zhang
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
| | - Ju Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing 100015 , People’s Republic of China
| | - Nan Ding
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing 100015 , People’s Republic of China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center , 730 South 8th St. , Minneapolis , MN 55415 , United States of America
| | - Yan Zhao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
| | - Siqi Liu
- Beijing Genomic Institute, Building 11 of Beishan Industrial Zone, Tantian District , Shengzhen 518083 , Guangdong Province , People’s Republic of China
| | - Dezhong Joshua Liao
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University , Guiyang 550004 , Guizhou Province , People’s Republic of China
- Department of Clinical Biochemistry, Guizhou Medical University Hospital , Guiyang 550004 , Guizhou Province , People’s Republic of China
| |
Collapse
|
5
|
Gibieža P, Petrikaitė V. The regulation of actin dynamics during cell division and malignancy. Am J Cancer Res 2021; 11:4050-4069. [PMID: 34659876 PMCID: PMC8493394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023] Open
Abstract
Actin is the most abundant protein in almost all the eukaryotic cells. Actin amino acid sequences are highly conserved and have not changed a lot during the progress of evolution, varying by no more than 20% in the completely different species, such as humans and algae. The network of actin filaments plays a crucial role in regulating cells' cytoskeleton that needs to undergo dynamic tuning and structural changes in order for various functional processes, such as cell motility, migration, adhesion, polarity establishment, cell growth and cell division, to take place in live cells. Owing to its fundamental role in the cell, actin is a prominent regulator of cell division, a process, whose success directly depends on morphological changes of actin cytoskeleton and correct segregation of duplicated chromosomes. Disorganization of actin framework during the last stage of cell division, known as cytokinesis, can lead to multinucleation and formation of polyploidy in post-mitotic cells, eventually developing into cancer. In this review, we will cover the principles of actin regulation during cell division and discuss how the control of actin dynamics is altered during the state of malignancy.
Collapse
Affiliation(s)
- Paulius Gibieža
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences Kaunas, LT-50162, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences Kaunas, LT-50162, Lithuania
| |
Collapse
|
6
|
Waizumi T, Sakuta H, Hayashi M, Tsumoto K, Takiguchi K, Yoshikawa K. Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect. J Chem Phys 2021; 155:075101. [PMID: 34418942 DOI: 10.1063/5.0055460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intercellular fluids in living organisms contain high concentrations of macromolecules such as nucleic acid and protein. Over the past few decades, several studies have examined membraneless organelles in terms of liquid-liquid phase separation. These studies have investigated aggregation/attraction among a rich variety of biomolecules. Here, we studied the association between the polymerization/depolymerization of actin, interconversion between monomeric (G-actin) and filamentous states (F-actin), and water/water phase separation in a binary polymer solution using polyethylene glycol (PEG) and dextran (DEX). We found that actin, which is a representative cytoskeleton, changes its distribution in a PEG/DEX binary solution depending on its polymerization state: monomeric G-actin is distributed homogeneously throughout the solution, whereas polymerized F-actin is localized only within the DEX-rich phase. We extended our study by using fragmin, which is a representative actin-severing and -depolymerizing factor. It took hours to restore a homogeneous actin distribution from localization within the DEX-rich phase, even with the addition of fragmin in an amount that causes complete depolymerization. In contrast, when actin that had been depolymerized by fragmin in advance was added to a solution with microphase-separation, F-actin was found in DEX-rich phase droplets. The micro-droplets tended to deform into a non-spherical morphology under conditions where they contained F-actin. These findings suggest that microphase-separation is associated with the dynamics of polymerization and localization of the actin cytoskeleton. We discuss our observations by taking into consideration the polymer depletion effect.
Collapse
Affiliation(s)
- Tatsuyuki Waizumi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Masahito Hayashi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Kurimamachiya-cho 1577, Tsu, Mie 514-8507, Japan
| | - Kingo Takiguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
7
|
Kashina AS. Regulation of actin isoforms in cellular and developmental processes. Semin Cell Dev Biol 2020; 102:113-121. [PMID: 32001148 DOI: 10.1016/j.semcdb.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Actin is one of the most abundant and essential intracellular proteins that mediates nearly every form of cellular movement and underlies such key processes as embryogenesis, tissue integrity, cell division and contractility of all types of muscle and non-muscle cells. In mammals, actin is represented by six isoforms, which are encoded by different genes but produce proteins that are 95-99 % identical to each other. The six actin genes have vastly different functions in vivo, and the small amino acid differences between the proteins they encode are rigorously maintained through evolution, but the underlying differences behind this distinction, as well as the importance of specific amino acid sequences for each actin isoform, are not well understood. This review summarizes different levels of actin isoform-specific regulation in cellular and developmental processes, starting with the nuclear actin's role in transcription, and covering the gene-level, mRNA-level, and protein-level regulation, with a special focus on mammalian actins in non-muscle cells.
Collapse
Affiliation(s)
- Anna S Kashina
- University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
8
|
Karatsai O, Stasyk O, Redowicz MJ. Effects of Arginine and Its Deprivation on Human Glioblastoma Physiology and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:243-258. [PMID: 32034717 DOI: 10.1007/978-3-030-30651-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The observations that numerous cancers are characterized by impairment in arginine synthesis and that deficit of exogenous arginine specifically affects their growth and viability are the ground for arginine deprivation-based anticancer treatment strategy. This review addresses molecular mechanisms of the human glioblastoma cell response to arginine deprivation. Our earlier studies have shown that arginine deprivation specifically impairs glioblastoma cell motility, adhesion and invasiveness. These changes were evoked by alterations in the actin cytoskeleton organization resulting from a decreased arginylation of β-actin isoform. Moreover, deficit of arginine induces prolonged endoplasmic reticulum (ER) stress and activation of the unfolded protein response, not leading, however, to a massive apoptosis in glioblastoma cells. Our current research indicates that cell death could be augmented by other compounds such as modulators of ER stress, for example arginine analogue of plant origin, canavanine. Implication of these studies on the development of new anti-glioma metabolic therapeutic modalities are discussed.
Collapse
Affiliation(s)
- Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
9
|
Vogl AW, Guttman JA. An Introduction to Actin and Actin-Rich Structures. Anat Rec (Hoboken) 2018; 301:1986-1990. [PMID: 30312025 DOI: 10.1002/ar.23960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton has long been recognized as a crucial sub-cellular filament system that is responsible for governing fundamental events ranging from cell division and muscle contraction to whole cell motility and the maintenance of tissue integrity. Consequently, it is not surprising that this network is the focus of over 100,000 different manuscripts. Alterations in the actin cytoskeleton lead to an assortment of diseases and serve as a target for a variety of pathogens. Here we have brought together a collection of primary research articles and reviews that underscore the broad influence this filament system has on organisms. Anat Rec, 301:1986-1990, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Wayne Vogl
- Life Sciences Centre, Vancouver, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|