1
|
Bisht N, Fular A, Saini M, Kumar S, Sankar M, Sharma AK, Ghosh S. Effect of ivermectin, amitraz and fipronil on midgut epithelium and digestive enzyme profile in Rhipicephalus microplus ticks (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:851-870. [PMID: 38642307 DOI: 10.1007/s10493-024-00913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Blood feeding and digestion are vital physiological activities essential for the survival and reproduction of ticks. Chemical acaricides viz., ivermectin, amitraz and fipronil, are known to act on the central nervous system, resulting in the mortality of ticks. The present study is focused on the effect of these acaricides on the midgut and gut enzymes of Rhipicephalus microplus. The ultra-thin sections of midgut of ivermectin-treated ticks showed irregular basal membrane and ruptured digestive vesicles. Amitraz treatment resulted in a notable decrease in digestive cells with pleats in the basal membrane, while fipronil-exposed ticks exhibited reduced digestive cells, loss of cellular integrity, and disintegration of the basal membrane and muscle layer. The gut tissue homogenate of ivermectin and fipronil treated ticks showed a significant reduction of cathepsin D level, 76.54 ± 3.20 μg/mL and 92.67 ± 3.72 μg/mL, respectively, as compared to the control group (150.0 ± 3.80 μg/mL). The leucine aminopeptidase level (4.27 ± 0.08 units/mL) was significantly decreased in the ivermectin treated ticks compared to other treatment groups. The acid phosphatase activity (29.16 ± 0.67 μmole/min/L) was reduced in the ivermectin treated group whereas, increased activity was observed in the fipronil and amitraz treated groups. All the treatment groups revealed increased alkaline phosphatase levels (17.47-26.72 μmole/min/L). The present finding suggests that in addition to the established mechanism of action of the tested acaricides on the nervous system, the alterations in the cellular profile of digestive cells and enzymes possibly affect the blood digestion process and thus the synthesis of vital proteins which are essential for vitellogenesis, and egg production in ticks.
Collapse
Affiliation(s)
- Nisha Bisht
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Ashutosh Fular
- Temperate Animal Husbandry Division, ICAR- Indian Veterinary Research Institute, Mukteshwar, Uttarakhand, 263138, India.
| | - Mohini Saini
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Satyanshu Kumar
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Boriavi, Anand, Gujarat, 387310, India
| | - M Sankar
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- School of Agriculture, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
2
|
Wang D, Li M, Ma J, Wang X, Liu J. Effects of temperature on cathepsin B, cathepsin D and acid phosphatase during embryo development of the hard tick Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:105-115. [PMID: 36656390 DOI: 10.1007/s10493-022-00774-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The effects of temperature on the expression patterns and enzyme activity of cathepsin B (HlCatB), cathepsin D (HlCatD) and acid phosphatase (HlACP) during the embryo development of Haemaphysalis longicornis (bisexual population) were investigated in this study. Eggs were exposed to 20 °C (low temperature), 26 °C (normal temperature), and 30 °C (high temperature) immediately after laying, and collected on odd days of embryo development to measure HlCatB, HlCatD and HlACP gene expression using quantitative real-time PCR, as well as three enzyme activities using spectrophotometry. Then the associations between mRNA expression levels of three enzymes and their enzyme activities were assessed. Compared with normal temperature, the mRNA expression peaks of HlCatB were higher and appeared later at low and high temperatures and the activity of HlCatB increased on most days of embryonic development at high temperature. As for HlCatD, the expression peak appeared later at low temperature, but earlier at high temperature. The activity peaks of HlCatD were lower and appeared earlier at low and high temperatures. As for HlACP, the expression peak was higher and appeared later at low temperature, whereas it formed no prominent peak at high temperature. The activity peak of HlACP was higher at low temperature, but lower at high temperature. The linear regression analysis showed that activities of three enzymes were associated with their mRNA expression levels (P < 0.05). Three enzymes are involved in the embryo adaptation to temperature stress. Moreover, the mRNA expression level may be another factor affecting its enzyme activity.
Collapse
Affiliation(s)
- Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei province, 050024, Shijiazhuang, Hebei province, China
| | - Mengmeng Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei province, 050024, Shijiazhuang, Hebei province, China
| | - Jingyi Ma
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei province, 050024, Shijiazhuang, Hebei province, China
| | - Xuanxuan Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei province, 050024, Shijiazhuang, Hebei province, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Hebei province, 050024, Shijiazhuang, Hebei province, China.
| |
Collapse
|
3
|
Lin XW, Fan ZZ, Liu YH, Li J, Ma Q, Yan RH. High MEK/ERK signalling is a key regulator of diapause maintenance in the cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2021; 30:508-518. [PMID: 34086372 DOI: 10.1111/imb.12721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
MEK/ERK signalling has been identified as a key factor that terminates diapause in Sarcophaga crassipalpis and Bombyx mori. Paradoxically, high p-MEK/p-ERK signalling induces diapause in pupae of the moth Helicoverpa armigera; however, the regulatory mechanism is unknown. In the present study, we show that p-MEK and p-ERK are elevated in the brain of diapause-destined pupae and suppression of MEK/ERK activity terminates diapause progress. Reactive oxygen species (ROS) activate MEK/ERK signalling, causing large-scale phosphorylation of downstream proteins. The levels of ubiquitin-conjugated proteins are also significantly reduced when ROS or p-ERK level decreased. Moreover, terminated diapause progress by 20-hydroxyecdysone injection significantly decreases p-MEK, p-ERK and phospho-ribosomal S6 kinase levels, while phospho-MAPK substrates and ubiquitin-conjugated protein levels increase. Our data demonstrate that high MEK/ERK signalling mediated by ROS promotes diapause maintenance via increasing phosphorylation and degradation of downstream substrates. The results of this study may provide important information for understanding the regulatory mechanisms during insect diapause.
Collapse
Affiliation(s)
- X W Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Z Z Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Y H Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - J Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Q Ma
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - R H Yan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
4
|
Guo SY, Wu WM, Li SY, Liu Y, Ruan ZF, Ye MQ, Xiao Y, Zhong YJ, Cao Y, Li K, Tian L. 20-Hydroxyecdysone-upregulated proteases involved in Bombyx larval fat body destruction. INSECT MOLECULAR BIOLOGY 2018; 27:724-738. [PMID: 29888823 DOI: 10.1111/imb.12511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During insect larval-pupal metamorphosis, the obsolete larval organs and tissues undergo histolysis and programmed cell death to recycle cellular materials. It has been demonstrated that some cathepsins are essential for histolysis in larval tissues, but the process of tissue destruction is not well documented. Fat body, the homologous organ to mammalian liver and adipose tissue, goes through a distinct destruction process during larval-pupal transition. Herein, we found that most of the Bombyx proteases - including Bombyx cathepsin B (BmCatB) (BmCatLL-2), Bombyx cathepsin D (BmCatD), Bombyx cathepsin L like-1 (BmCatLL-1) and -2(BmCatLL-2), Bombyx fibroinase (BmBcp), Bombyx matrix metalloprotease (BmMmp), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs 1 (BmAdamTS-1), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs like (BmAdamTS L) and Bombyx cysteine protease inhibitor (Bmbcpi)- were expressed highly in fat body during feeding and metamorphosis, with a peak occurring during the nonfeeding moulting or prepupal stage, as well as being responsive to 20-hydroxyecdysone (20E). The aforementioned protease genes expression was upregulated by injection of 20E into the feeding larvae, while blocking 20E signalling transduction led to downregulation. Western blotting and immunofluorescent staining of BmCatB and BmBcp confirmed the coincident variation of their messenger RNA (mRNA) and protein level during the development and after the treatments. Moreover, BmCatB, BmBcp, BmMmp and BmAdamTS-1 RNA interference all led to blockage of larval fat body destruction. Taken together, we conclude that 20E regulates larval fat body destruction by upregulating related protease gene expression and protein levels during larval-pupal transition.
Collapse
Affiliation(s)
- S-Y Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - W-M Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - S-Y Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Liu
- Shanghai Generay Biotech Co. Ltd, Shanghai, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Z F Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - M-Q Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Y Xiao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y-J Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - K Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Jia Q, Chen X, Wu L, Ruan Z, Li K, Li S. Matrix metalloproteinases promote fat body cell dissociation and ovary development in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:8-15. [PMID: 30300619 DOI: 10.1016/j.jinsphys.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases participating in tissue remodeling. Three Mmps genes have been identified from the silkworm, Bombyx mori, and their expression levels and enzyme activity are consistent with progressive fat body cell dissociation during the early pupal stages. Using both loss-of-function and gain-of-function experiments, we have demonstrated that Mmps are functionally required for fat body cell dissociation and ovary development in female pupae. Moderate inhibition of Mmps activity via inhibitor treatments delayed fat body cell dissociation and ovary development, while severe inhibition blocked these developmental processes and eventually led to pupal lethality. Individual RNAi knockdown of each Mmp delayed fat body cell dissociation, with the strongest and weakest phenotypes occurring for Mmp3 and Mmp1, respectively. By contrast, overexpression of each Mmp promoted fat body cell dissociation and ovary development, with the strongest stimulatory effects for Mmp3 overexpression and the weakest effects for Mmp1 overexpression. This is the first time to show that Mmps induce fat body cell dissociation in Lepidoptera, and we also hypothesize that Mmps-induced fat body cell dissociation is required for ovary development in this insect species.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoxi Chen
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Research Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zifeng Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Sun YX, Zhu BJ, Tang L, Sun Y, Chen C, Nadeem Abbas M, Wang L, Qian C, Wei GQ, Liu CL. Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi. J Invertebr Pathol 2017; 150:6-14. [DOI: 10.1016/j.jip.2017.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/11/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023]
|
7
|
Li Y, Wang K, Xie H, Wang DW, Xu CL, Huang X, Wu WJ, Li DL. Cathepsin B Cysteine Proteinase is Essential for the Development and Pathogenesis of the Plant Parasitic Nematode Radopholus similis. Int J Biol Sci 2015; 11:1073-87. [PMID: 26221074 PMCID: PMC4515818 DOI: 10.7150/ijbs.12065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/21/2015] [Indexed: 11/11/2022] Open
Abstract
Radopholus similis is an important plant parasitic nematode which severely harms many crops. Cathepsin B is present in a wide variety of organisms, and plays an important role in many parasites. Understanding cathepsin B of R. similis would allow us to find new targets and approaches for its control. In this study, we found that Rs-cb-1 mRNA was expressed in esophageal glands, intestines and gonads of females, testes of males, juveniles and eggs in R. similis. Rs-cb-1 expression was the highest in females, followed by juveniles and eggs, and was the lowest in males. The maximal enzyme activity of Rs-CB-1 was detected at pH 6.0 and 40 °C. Silencing of Rs-cb-1 using in vitro RNAi (Soaking with dsRNA in vitro) not only significantly inhibited the development and hatching of R. similis, but also greatly reduced its pathogenicity. Using in planta RNAi, we confirmed that Rs-cb-1 expression in nematodes were significantly suppressed and the resistance to R. similis was significantly improved in T2 generation transgenic tobacco plants expressing Rs-cb-1 dsRNA. The genetic effects of in planta RNAi-induced gene silencing could be maintained in the absence of dsRNA for at least two generations before being lost, which was not the case for the effects induced by in vitro RNAi. Overall, our results first indicate that Rs-cb-1 plays key roles in the development, hatching and pathogenesis of R. similis, and that in planta RNAi is an effective tool in studying gene function and genetic engineering of plant resistance to migratory plant parasitic nematodes.
Collapse
Affiliation(s)
- Yu Li
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Ke Wang
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Hui Xie
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Wei Wang
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Ling Xu
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Xin Huang
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Jia Wu
- 1. Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Dan-Lei Li
- 2. College of Forestry, Northeast Forestry University, Haerbin 150040, China
| |
Collapse
|
8
|
Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells. Int J Biochem Cell Biol 2015; 64:126-35. [DOI: 10.1016/j.biocel.2015.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/11/2015] [Accepted: 03/26/2015] [Indexed: 11/21/2022]
|
9
|
Zhang K, Su J, Chen S, Yu S, Tan J, Xu M, Liang H, Zhao Y, Chao H, Yang L, Cui H. Molecular cloning, characterization and expression analysis of cathepsin O in silkworm Bombyx mori related to bacterial response. Mol Immunol 2015; 66:409-17. [PMID: 25996894 DOI: 10.1016/j.molimm.2015.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Cathepsins are the main members of the cysteine family and play important roles in immune response in vertebrates. The Cathepsin O of Bombyx mori (BmCathepsin O) was cloned from the hemocytes by the rapid amplification of cDNA ends (RACE). The genomic DNA was 6131bp long with a total of six exons and five introns. Its pre-mRNA was spliced to generate two spliceosomes. By comparisons with other reported cathepsins O, it was concluded that the identity between them ranged from 29 to 39%. Expression analysis indicated that BmCathepsin O was specific-expressed in hemocytes, and highly expressed at the 4th molting and metamorphosis stages. Immunofluorescence assay and qRT-PCR showed that BmCathepsin O was expressed in granulocytes and plasmatocytes. Interestingly, BmCathepsin O was significantly up-regulated after stimulated by 20-hydroxyecdysone (20-E) in vivo, which suggested that BmCathepsin O may be regulated by 20E. Moreover, activation of BmCathepsin O was also observed in hemocytes challenged by Escherichia coli, indicating its potential involvement in the innate immune system of silkworm, B. mori. In summary, our studies provide a new insight into the functional features of Cathepsin O.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Siyuan Chen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Shuang Yu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Man Xu
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Yuzu Zhao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Huijuan Chao
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Cai XY, Yu J, Yu HY, Liu YW, Fang Y, Ren ZX, Jia JQ, Zhang GZ, Guo XJ, Jin BR, Gui ZZ. Core promoter regulates the expression of cathepsin B gene in the fat body of Bombyx mori. Gene 2014; 542:232-9. [PMID: 24630970 DOI: 10.1016/j.gene.2014.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 01/08/2023]
Abstract
Bombyx mori cathepsin B (BmCatB) is involved in the programmed cell death of the fat body during B. mori metamorphosis. For a better understanding of the functional regulatory mechanism, the promoter region of BmCatB in the transcriptional regulation has been identified and analyzed in the present study. BmCatB promoter region performed by the 5' truncation or mutagenesis of EcREs was inserted in the pFA3Luc-A3RL double fluorescence expression vector to activate the fireflies luciferase (FLuc) gene. The results indicated that the dual-luciferase activity of BmCatB gene in the silkworm larval fat body is regulated by the length of promoter. Site-directed mutagenesis of EcRE experiment has shown that the EcREs are up-regulated significantly in the regulation of the BmCatB promoter. A 142bp region (-1165 to -1023) and EcREs are the mainly fat-body tissue-specificity related region and could function as a core promoter element.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Jie Yu
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hai-Yan Yu
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yan-Wei Liu
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Yin Fang
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Zi-Xu Ren
- Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Jun-Qiang Jia
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Guo-Zheng Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xi-Jie Guo
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Republic of Korea
| | - Zhong-Zheng Gui
- Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| |
Collapse
|
11
|
Yu J, Wu FY, Zou FM, Cai XY, Yu HY, Liu YW, Fang Y, Ren ZX, Jia JQ, Zhang GZ, Guo XJ, Jin BR, Gui ZZ. Identification and functional analysis of the cathepsin D gene promoter of Bombyx mori. Mol Biol Rep 2014; 41:1623-30. [DOI: 10.1007/s11033-013-3009-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
12
|
Zhang Y, Lu YX, Liu J, Yang C, Feng QL, Xu WH. A regulatory pathway, ecdysone-transcription factor relish-cathepsin L, is involved in insect fat body dissociation. PLoS Genet 2013; 9:e1003273. [PMID: 23459255 PMCID: PMC3573115 DOI: 10.1371/journal.pgen.1003273] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/10/2012] [Indexed: 12/21/2022] Open
Abstract
Insect fat body is the organ for intermediary metabolism, comparable to vertebrate liver and adipose tissue. Larval fat body is disintegrated to individual fat body cells and then adult fat body is remodeled at the pupal stage. However, little is known about the dissociation mechanism. We find that the moth Helicoverpa armigera cathepsin L (Har-CL) is expressed heavily in the fat body and is released from fat body cells into the extracellular matrix. The inhibitor and RNAi experiments demonstrate that Har-CL functions in the fat body dissociation in H. armigera. Further, a nuclear protein is identified to be transcription factor Har-Relish, which was found in insect immune response and specifically binds to the promoter of Har-CL gene to regulate its activity. Har-Relish also responds to the steroid hormone ecdysone. Thus, the dissociation of the larval fat body is involved in the hormone (ecdysone)-transcription factor (Relish)-target gene (cathepsin L) regulatory pathway. Insect fat body is the intermediary metabolism organ and the main source of hemolymph components, and it is crucial for insect development and metamorphosis. However, molecular mechanism for the fat body remodeling is almost unknown other than in Drosophila melanogaster. A pupal diapause species the cotton bollworm, Helicoverpa armigera (Har), is a useful model to study individual or tissue remodeling, because larval fat body will remain integral in diapause-type pupae for months, whereas the dissociation of larval fat body will start on day 0 after pupation in nondiapause-type ones. Here, we find that H. armigera cathepsin L (Har-CL) is released from fat body cells into the extracellular matrix for tissue dissociation. A nuclear protein is identified to be transcription factor Har-Relish, which regulates the promoter activity of Har-CL gene. Har-Relish also responds to the steroid hormone ecdysone. Thus, a new regulatory mechanism, ecdysone-Relish-cathepsin L signaling pathway, is involved in the larval fat body dissociation.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Xuan Lu
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jian Liu
- Department of Life Sciences, School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Cui Yang
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol and Institute of Entomology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
13
|
Yu J, Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. Identification of ecdysone response elements (EcREs) in the Bombyx mori cathepsin D promoter. Biochem Biophys Res Commun 2012; 425:113-8. [DOI: 10.1016/j.bbrc.2012.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
|
14
|
Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, Stephan C, Meyer HE, Schneider T, Cizmowski C, Oldenburg M, Höhn S, Meiser CK, Schuhmann W, Schaub GA. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:240-250. [PMID: 22210150 DOI: 10.1016/j.ibmb.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.
Collapse
Affiliation(s)
- Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Universitätsstrasse 150, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang CX, Zheng WW, Liu PC, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone upregulated the protein phosphatase 6 for the programmed cell death in the insect midgut. Amino Acids 2011; 43:963-71. [PMID: 22143427 DOI: 10.1007/s00726-011-1159-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 11/10/2011] [Indexed: 01/13/2023]
Abstract
Programmed cell death (PCD) plays an important role in insect midgut remodeling during metamorphosis. Insect midgut PCD is triggered by the steroid hormone 20-hydroxyecdysone (20E) and it is mediated by a series of genes. However, the mechanism by which 20E triggers midgut PCD is still unclear. Here, we report a protein phosphatase 6 (PP6) from Helicoverpa armigera playing roles in midgut PCD. PP6 was expressed in the midgut during larval growth and it is significantly increased during metamorphosis. The increase was proven to be regulated by 20E. The juvenile hormone analog methoprene has no effect on PP6 expression. RNA interference analysis suggests that 20E upregulated the PP6 transcript levels through the ecdysone receptor EcRB1. PP6 knockdown by larval feeding or PP6 dsRNA injection resulted in the repression of the midgut PCD during the metamorphic stage. The mechanism was demonstrated to be through the suppression of genes such as Broad (Br), E74a, E75b, HR3, E93, rpr, and caspase, which are involved in 20E signaling pathway or midgut PCD. These findings suggest that PP6 is involved in the 20E signal transduction pathway and participates in the PCD in midgut.
Collapse
Affiliation(s)
- Chuan-Xu Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | | | |
Collapse
|
16
|
Kaneko Y, Yasanga T, Suzuki M, Sakurai S. Larval fat body cells die during the early pupal stage in the frame of metamorphosis remodelation in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1715-1722. [PMID: 21971017 DOI: 10.1016/j.jinsphys.2011.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/15/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
In holometabolus insects, morphology of the larval fat body is remodeled during metamorphosis. In higher Diptera, remodeling of the fat body is achieved by cell death of larval fat body cells and differentiation of the adult fat body from primordial cells. However, little is known about remodeling of the fat body at pupal metamorphosis in Lepidoptera. In this study, we found that cell death of the larval fat body in Bombyx mori occurs at shortly after pupation. About 30% of the fat body cells underwent cell death on days 1 and 2 after pupation. The cell death involved genomic DNA fragmentation, a characteristic of apoptosis. Surgical manipulation and in vitro culture of fat body cells revealed that 20-hydroxyecdysone and juvenile hormone had no effect on either initiation or progression of cell death. During cell death, a large increase in activity of caspase-3, a key enzyme of cell death, was observed. Western blot analysis of the active form of caspase-3-like protein revealed that the length of caspase-3 of B. mori was much larger than that of caspase-3 in other species. The results suggest that larval fat body cells of B. mori are removed through cell death, which is mediated by a caspase probably categorized in a novel family.
Collapse
Affiliation(s)
- Yu Kaneko
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan.
| | | | | | | |
Collapse
|
17
|
Wu FY, Zou FM, Jia JQ, Wang SP, Zhang GZ, Guo XJ, Gui ZZ. The Influence of Challenge on Cathepsin B and D Expression Patterns in the Silkworm Bombyx mori L. ACTA ACUST UNITED AC 2011. [DOI: 10.7852/ijie.2011.23.1.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Hou L, Wang JX, Zhao XF. Rab32 and the remodeling of the imaginal midgut in Helicoverpa armigera. Amino Acids 2010; 40:953-61. [DOI: 10.1007/s00726-010-0720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022]
|
19
|
Ju BG, Kim WS. Lysosomal acid phosphatase mediates dedifferentiation in the regenerating salamander limb. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768354.2010.486940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
20
|
Pujol-Lereis LM, Massaldi A, Rabossi A, Quesada-Allué LA. Photosensitizing effect of hematoporphyrin IX on immature stages of Ceratitis capitata (Diptera: Tephritidae). Photochem Photobiol 2010; 86:639-44. [PMID: 20202159 DOI: 10.1111/j.1751-1097.2009.00704.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immature stages of Ceratitis capitata were tested as a model for hematoporphyrin IX (HP IX) phototoxicity. The lethal concentration 50 (LC(50)) of HP IX in the food was determined during postembryonic development until adult emergence as 0.173 mm (95% CI: 0.138-0.209). The corresponding HP IX LC(50) during the dispersal period alone was 0.536 mm (95% CI: 0.450-0.633). HP IX toxicity was compared against Phloxine B (PhB) (0.5 mm). HP IX elicited a mortality of 90.87%, which was mainly concentrated during prepupal and early pupal stages. PhB mortality was much lower (56.88%) and occurred mainly during the adult pharate stage. A direct correlation between light-dependent HP IX mortality, evidence of reactive oxygen species (ROS) and lipid peroxidation (conjugated dienes and thiobarbituric acid reactive substances) was established in C. capitata larvae. ROS were found to be very significant in both the brain and in the gut.
Collapse
Affiliation(s)
- Luciana Mercedes Pujol-Lereis
- IIBBA-CONICET, Química Biológica-FCEyN-Universidad de Buenos Aires and Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
21
|
Liu S, Gao S, Zhang D, Yin J, Xiang Z, Xia Q. MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori. BMC Genomics 2010; 11:85. [PMID: 20122259 PMCID: PMC2835664 DOI: 10.1186/1471-2164-11-85] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 02/02/2010] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) repress target genes at the post-transcriptional level, and function in the development and cell-lineage pathways of host species. Tissue-specific expression of miRNAs is highly relevant to their physiological roles in the corresponding tissues. However, to date, few miRNAs have been spatially identified in the silkworm. Results We establish for the first time the spatial expression patterns of nearly 100 miRNAs in multiple normal tissues (organs) of Bombyx mori females and males using microarray and Northern-blotting analyses. In all, only 10 miRNAs were universally distributed (including bmo-let-7 and bmo-bantam), while the majority were expressed exclusively or preferentially in specific tissue types (e.g., bmo-miR-275 and bmo-miR-1). Additionally, we examined the developmental patterns of miRNA expression during metamorphosis of the body wall, silk glands, midgut and fat body. In total, 63 miRNAs displayed significant alterations in abundance in at least 1 tissue during the developmental transition from larvae to pupae (e.g., bmo-miR-263b and bmo-miR-124). Expression patterns of five miRNAs were significantly increased during metamorphosis in all four tissues (e.g., bmo-miR-275 and bmo-miR-305), and two miRNA pairs, bmo-miR-10b-3p/5p and bmo-miR-281-3p/5p, showed coordinate expression. Conclusions In this study, we conducted preliminary spatial measurements of several miRNAs in the silkworm. Periods of rapid morphological change were associated with alterations in miRNA expression patterns in the body wall, silk glands, midgut and fat body during metamorphosis. Accordingly, we propose that corresponding ubiquitous or tissue-specific expression of miRNAs supports their critical roles in tissue specification. These results should facilitate future functional analyses.
Collapse
Affiliation(s)
- Shiping Liu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Lee KS, Kim BY, Choo YM, Yoon HJ, Kang PD, Woo SD, Sohn HD, Roh JY, Gui ZZ, Je YH, Jin BR. Expression profile of cathepsin B in the fat body of Bombyx mori during metamorphosis. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:188-94. [DOI: 10.1016/j.cbpb.2009.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 11/25/2022]
|
23
|
Ahn JE, Zhu-Salzman K. CmCatD, a cathepsin D-like protease has a potential role in insect defense against a phytocystatin. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:678-685. [PMID: 19446566 DOI: 10.1016/j.jinsphys.2009.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
When fed on a diet containing a proteinaceous cysteine protease inhibitor from soybean (scN), cowpea bruchid larvae enhance their overall digestive capacity to counter the inhibitory effect. Elevated proteolytic activity is attributed not only to the major digestive cysteine proteases (CmCPs), but also to aspartic proteases, a minor midgut protease component. In this study, we isolated a CmCatD cDNA from cowpea bruchid midgut that shares substantial sequence similarity with cathepsin D-like aspartic proteases of other organisms. Its transcript profile was developmentally regulated and subject to alteration by dietary scN. CmCatD transcripts were more abundant in scN-fed 3rd and 4th instar midguts than in control. The bacterially expressed recombinant CmCatD proprotein was capable of autoprocessing under acidic conditions, and mature CmCatD also exhibited pH-dependent proteolytic activity which was inhibited specifically by pepstatin A, indicative of its aspartic protease nature. CmCatD trans-activated CmCPs and vice versa, suggesting a cooperation between the minor midgut CmCatD and major digestive CmCPs. Further, CmCatD was able to degrade scN after extensive incubation. This activity partially restored CmCP proteolytic activity otherwise inhibited by scN. Thus CmCatD could facilitate insects' coping with the challenge of dietary scN by exerting its scN-insensitive and scN-degrading activity, freeing cysteine proteases for food degradation. Taken together, cowpea bruchids coordinate the functionality of the two classes of digestive proteases to fend off the negative effect of scN, and fulfill their nutrient requirements.
Collapse
Affiliation(s)
- Ji-Eun Ahn
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
24
|
Katsuma S, Nakanishi T, Shimada T. Bombyx mori nucleopolyhedrovirus FP25K is essential for maintaining a steady-state level of v-cath expression throughout the infection. Virus Res 2009; 140:155-60. [PMID: 19100790 DOI: 10.1016/j.virusres.2008.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 11/16/2022]
Abstract
It has been previously reported that the fp25K product of Bombyx mori nucleopolyhedrovirus (BmNPV) is required for post-mortem host degradation, but the mechanism by which it regulates host degradation is still unknown. This study shows that disruption of BmNPV fp25K attenuates the expression of viral cathepsin gene (v-cath) at a late stage of infection, and thus reduces the secretion of its product V-CATH. Western blot analysis showed that secretion of V-CATH was severely reduced in BmN cells and B. mori larvae infected with Bm25KD, a BmNPV mutant lacking functional fp25K, compared to that of wild-type BmNPV. Also, reduced accumulation of pro-V-CATH in Bm25KD-infected cells was observed from 4 days postinfection (dpi), during which V-CATH was first detected in the medium of BmNPV-infected cells. qRT-PCR experiments showed that the expression levels of v-cath mRNA in wild-type- and Bm25KD-infected BmN cells were comparable at 3 dpi, but showed a marked decrease in Bm25KD-infected BmN cells at 4 dpi. Collectively, these results suggest that BmNPV FP25K is essential for the proper transcriptional regulation of v-cath and efficient secretion of V-CATH, and a steady-state level of v-cath expression during the period of V-CATH secretion (after 4 dpi) is required for post-mortem host degradation.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
25
|
Fragoso RDR, Lourenço IT, Batista JAN, Oliveira-Neto OB, Silva MCM, Rocha TL, Coutinho MV, Grossi-de-Sa MF. Meloidogyne incognita: molecular cloning and characterization of a cDNA encoding a cathepsin D-like aspartic proteinase. Exp Parasitol 2008; 121:115-23. [PMID: 18952081 DOI: 10.1016/j.exppara.2008.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 11/19/2022]
Abstract
Herein we describe the cloning and characterization of a cDNA encoding an aspartic proteinase from the root-knot nematode Meloidogyne incognita. Using PCR techniques, a 1471-bp cDNA fragment encoding a cathepsin D-like (Mi-asp1) transcript was isolated from second-stage larvae mRNA. Its predicted amino acid sequence comprises a pro-region of 71 amino acid residues and a mature protease of 378 amino acid residues with a predicted molecular mass of 41.502kDa. Protein sequence comparisons of Mi-asp1 with GenBank (DQ360827) sequences showed 59-71% identity with nematode-specific cathepsin D-like aspartic proteinases. Southern blot analysis, RT-PCR amplification and EST mining suggest the existence of a developmentally expressed gene family encoding aspartic proteinases in M. incognita. Mi-asp1 may represent a potential target for molecular intervention for the purposes of plant-parasitic nematode control.
Collapse
|
26
|
Rabossi A, Stoka V, Puizdar V, Turk V, Quesada-Allué LA. Purification and characterization of two cysteine peptidases of the Mediterranean fruit fly Ceratitis capitata during metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:1-13. [PMID: 18163528 DOI: 10.1002/arch.20231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In holometabolous insects, there is a complete body remodeling from larva to adult. We determined in Ceratitis capitata that the transition from pre-pupa to pupa, 40 to 48 h after puparium formation (h APF), is a key moment of metamorphosis; when salivary glands, intestine, fat body, and muscles are in different stages of cell death. At 44-46 h APF, muscles from segments 1-3 (thoracic region) appeared fully disintegrated, whereas posterior muscles just started death processes. To understand some of the biochemical events eventually involved in histolytic processes during early metamorphosis, two cysteine peptidases coined "Metamorphosis Associated Cysteine Peptidase" (MACP-I and MACP-II) were purified to homogeneity from 40-46-h APF insects. Both enzymes were inhibited by Ep-475, a specific inhibitor of papain-like cysteine-peptidases. MACP-I is a single chain protein with an apparent molecular mass of 80 kDa and includes several isoforms with pI values of pH 6.25-6.35, 6.7, and 7.2. The enzyme has an optimum pH of 5.0 and its pH stability ranges from pH 4.0 to 6.0. The molecular weight and N-terminal sequence suggest that MACP-I might be a novel enzyme. MACP-II is an acidic single chain protein with a pI of pH 5.85 and an apparent molecular mass of 30 kDa. The enzyme is labile with a maximum stability in the pH range of 4.0 to 6.0 and an optimum pH among 5.0 to 6.0. MAPCP-II characteristics suggest it is a cathepsin B-like enzyme.
Collapse
Affiliation(s)
- Alejandro Rabossi
- Department of Biological Chemistry, FCEyN, Universidad de Buenos Aires, IIBBA-CONICET and Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
27
|
Liu S, Xia Q, Zhao P, Cheng T, Hong K, Xiang Z. Characterization and expression patterns of let-7 microRNA in the silkworm (Bombyx mori). BMC DEVELOPMENTAL BIOLOGY 2007; 7:88. [PMID: 17651473 PMCID: PMC1976426 DOI: 10.1186/1471-213x-7-88] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 07/25/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND lin-4 and let-7, the two founding members of heterochronic microRNA genes, are firstly confirmed in Caenorhabditis elegans to control the proper timing of developmental programs in a heterochronic pathway. let-7 has been thought to trigger the onset of adulthood across animal phyla. Ecdysone and Broad-Complex are required for the temporal expression of let-7 in Drosophila melanogaster. For a better understanding of the conservation and functions of let-7, we seek to explore how it is expressed in the silkworm (Bombyx mori). RESULTS One member of let-7 family has been identified in silkworm computationally and experimentally. All known members of this family share the same nucleotides at ten positions within the mature sequences. Sequence logo and phylogenetic tree show that they are not only conserved but diversify to some extent among some species. The bmo-let-7 was very lowly expressed in ova harvested from newborn unmated female adult and in individuals from the first molt to the early third instar, highly expressed after the third molt, and the most abundant expression was observed after mounting, particularly after pupation. The expression levels were higher at the end of each instar and at the beginning of each molt than at other periods, coinciding with the pulse of ecdysone and BR-C as a whole. Using cultured ovary cell line, BmN-SWU1, we examined the effect of altered ecdysone levels on bmo-let-7 expression. The expression was also detected in various tissues of day 3 of the fifth instar and of from day 7 of the fifth to pupa, suggesting a wide distributing pattern with various signal intensities. CONCLUSION bmo-let-7 is stage- and tissue-specifically expressed in the silkworm. Although no signals were detected during embryonic development and first larval instar stages, the expression of bmo-let-7 was observed from the first molt, suggesting that it might also function at early larval stage of the silkworm. The detailed expression profiles in the whole life cycle and cultured cell line of silkworm showed a clear association with ecdysone pulse and a variety of biological processes.
Collapse
Affiliation(s)
- Shiping Liu
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Kaili Hong
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- The Key Sericultural Laboratory of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
28
|
Gui ZZ, Lee KS, Kim BY, Choi YS, Wei YD, Choo YM, Kang PD, Yoon HJ, Kim I, Je YH, Seo SJ, Lee SM, Guo X, Sohn HD, Jin BR. Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC DEVELOPMENTAL BIOLOGY 2006; 6:49. [PMID: 17062167 PMCID: PMC1629011 DOI: 10.1186/1471-213x-6-49] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/25/2006] [Indexed: 11/10/2022]
Abstract
Background Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis. Results Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage. Conclusion Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis.
Collapse
Affiliation(s)
- Zhong Zheng Gui
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Yong Soo Choi
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Ya Dong Wei
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Young Moo Choo
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Pil Don Kang
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea
| | - Iksoo Kim
- Department of Agricultural Biology, Chonnam National University, Gwangju, Korea
| | - Yeon Ho Je
- School of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Sook Jae Seo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Sang Mong Lee
- Department of Life Science and Environmental Chemistry, Pusan National University, Miryang, Korea
| | - Xijie Guo
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Hung Dae Sohn
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 604-714, Korea
| |
Collapse
|