1
|
Sato R. Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori. Int J Mol Sci 2024; 25:10157. [PMID: 39337641 PMCID: PMC11432556 DOI: 10.3390/ijms251810157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
2
|
Zhang SS, Wang PC, Ning C, Yang K, Li GC, Cao LL, Huang LQ, Wang CZ. The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sucrose. eLife 2024; 12:RP91711. [PMID: 38814697 PMCID: PMC11139476 DOI: 10.7554/elife.91711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.
Collapse
Affiliation(s)
- Shuai-Shuai Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Pei-Chao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Wulff JP, Traverso LM, Latorre-Estivalis JM, Segura DF, Lanzavecchia SB. Identification of candidate genes associated with host-seeking behavior in the parasitoid wasp Diachasmimorpha longicaudata. BMC Genomics 2024; 25:147. [PMID: 38321385 PMCID: PMC10848486 DOI: 10.1186/s12864-024-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Diachasmimorpha longicaudata is a hymenopteran fruit fly endoparasitoid. Females of this species find their hosts for oviposition by using complex sensorial mechanisms in response to physical and chemical stimuli associated with the host and host habitat. Ecological and behavioral aspects related to host-seeking behavior for oviposition have been extensively studied in D. longicaudata, including the identification of volatile organic compounds acting as attractants to females. In this sense, molecular mechanisms of chemoreception have been explored in this species, including a preliminary characterization of odorant-binding proteins (OBPs), chemosensory proteins (CSPs) and odorant receptors (ORs), among other proteins. Functional assays on OBP and CSP have been conducted as a first approach to identify molecular mechanisms associated with the female host-seeking behavior for oviposition. The aims of the present study were to identify the D. longicaudata sensory gene repertoire expressed in the antenna of sexually mature and mated individuals of both sexes, and subsequently, characterize transcripts differentially expressed in the antennae of females to identify candidate genes associated with the female host-seeking behavior for oviposition. RESULTS A total of 33,745 predicted protein-coding sequences were obtained from a de novo antennal transcriptome assembly. Ten sensory-related gene families were annotated as follows: 222 ORs, 44 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 9 CSPs, 13 OBPs, 2 ammonium transporters (AMTs), 8 pickpocket (PPKs) receptors, 16 transient receptor potential (TRP) channels, 12 CD36/SNMPs and 3 Niemann-Pick type C2 like proteins (NPC2-like). The differential expression analysis revealed 237 and 151 transcripts up- and downregulated, respectively, between the female and male antennae. Ninety-seven differentially expressed transcripts corresponded to sensory-related genes including 88 transcripts being upregulated (87 ORs and one TRP) and nine downregulated (six ORs, two CSPs and one OBP) in females compared to males. CONCLUSIONS The sensory gene repertoire of D. longicaudata was similar to that of other taxonomically related parasitoid wasps. We identified a high number of ORs upregulated in the female antenna. These results may indicate that this gene family has a central role in the chemoreception of sexually mature females during the search for hosts and host habitats for reproductive purposes.
Collapse
Affiliation(s)
- Juan P Wulff
- Entomology and Plant Pathology, NCSU, Raleigh, NC, USA.
| | - Lucila M Traverso
- Laboratorio de Neurobiología de Insectos (LNI), Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CENEXA, CONICET, La Plata, Bs As, Argentina
| | - Jose M Latorre-Estivalis
- Laboratorio de Insectos Sociales, Biología Molecular y Neurociencias (IFIBYNE), Instituto de Fisiología, Universidad de Buenos Aires - CONICET, Bs As, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv-IABIMO (CONICET), Hurlingham, Bs As, Argentina
- Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Bs As, Argentina
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética Ewald A. Favret (INTA) gv-IABIMO (CONICET), Hurlingham, Bs As, Argentina
| |
Collapse
|
4
|
Aidlin Harari O, Dekel A, Wintraube D, Vainer Y, Mozes-Koch R, Yakir E, Malka O, Morin S, Bohbot JD. A sucrose-specific receptor in Bemisia tabaci and its putative role in phloem feeding. iScience 2023; 26:106752. [PMID: 37234092 PMCID: PMC10206433 DOI: 10.1016/j.isci.2023.106752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly Bemisia tabaci relies on gustatory receptor (GR)-mediated sugar sensing. We first conducted choice assays, which indicated that B. tabaci adults consistently choose diets containing higher sucrose concentrations. Next, we identified four GR genes in the B. tabaci genome. One of them, BtabGR1, displayed significant sucrose specificity when expressed in Xenopus oocytes. Silencing of BtabGR1 significantly interfered with the ability of B. tabaci adults to discriminate between non-phloem and phloem concentrations of sucrose. These findings suggest that in phloem feeders, sugar sensing by sugar receptors might allow tracking an increasing gradient of sucrose concentrations in the leaf, leading eventually to the location of the feeding site.
Collapse
Affiliation(s)
- Ofer Aidlin Harari
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Amir Dekel
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Dor Wintraube
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Yuri Vainer
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Rita Mozes-Koch
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Esther Yakir
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
5
|
Molecular sensors in the taste system of Drosophila. Genes Genomics 2023; 45:693-707. [PMID: 36828965 DOI: 10.1007/s13258-023-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Most animals, including humans and insects, consume foods based on their senses. Feeding is mostly regulated by taste and smell. Recent insect studies shed insight into the cross-talk between taste and smell, sweetness and temperature, sweetness and texture, and other sensory modality pairings. Five canonical tastes include sweet, umami, bitter, salty, and sour. Furthermore, other receptors that mediate the detection of noncanonical sensory attributes encoded by taste stimuli, such as Ca2+, Zn2+, Cu2+, lipid, and carbonation, have been characterized. Deorphanizing receptors and interactions among different modalities are expanding the taste field. METHODS Our study explores the taste system of Drosophila melanogaster and perception processing in insects to broaden the neuroscience of taste. Attractive and aversive taste cues and their chemoreceptors are categorized as tables. In addition, we summarize the recent progress in animal behavior as affected by the integration of multisensory information in relation to different gustatory receptor neuronal activations, olfaction, texture, and temperature. We mainly focus on peripheral responses and insect decision-making. CONCLUSION Drosophila is an excellent model animal to study the cellular and molecular mechanism of the taste system. Despite the divergence in the receptors to detect chemicals, taste research in the fruit fly can offer new insights into the many different taste sensors of animals and how to test the interaction among different sensory modalities.
Collapse
|
6
|
Değirmenci L, Rogé Ferreira FL, Vukosavljevic A, Heindl C, Keller A, Geiger D, Scheiner R. Sugar perception in honeybees. Front Physiol 2023; 13:1089669. [PMID: 36714315 PMCID: PMC9880324 DOI: 10.3389/fphys.2022.1089669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars.
Collapse
Affiliation(s)
- Laura Değirmenci
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany,*Correspondence: Laura Değirmenci, ; Fabio Luiz Rogé Ferreira,
| | - Fabio Luiz Rogé Ferreira
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany,*Correspondence: Laura Değirmenci, ; Fabio Luiz Rogé Ferreira,
| | - Adrian Vukosavljevic
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Cornelia Heindl
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Alexander Keller
- Organismic and Cellular Interactions, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| |
Collapse
|
7
|
The short neuropeptide F regulates appetitive but not aversive responsiveness in a social insect. iScience 2022; 25:103619. [PMID: 35005557 PMCID: PMC8719019 DOI: 10.1016/j.isci.2021.103619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
The neuropeptide F (NPF) and its short version (sNPF) mediate food- and stress-related responses in solitary insects. In the honeybee, a social insect where food collection and defensive responses are socially regulated, only sNPF has an identified receptor. Here we increased artificially sNPF levels in honeybee foragers and studied the consequences of this manipulation in various forms of appetitive and aversive responsiveness. Increasing sNPF in partially fed bees turned them into the equivalent of starved animals, enhancing both their food consumption and responsiveness to appetitive gustatory and olfactory stimuli. Neural activity in the olfactory circuits of fed animals was reduced and could be rescued by sNPF treatment to the level of starved bees. In contrast, sNPF had no effect on responsiveness to nociceptive stimuli. Our results thus identify sNPF as a key modulator of hunger and food-related responses in bees, which are at the core of their foraging activities.
Collapse
|
8
|
Değirmenci L, Geiger D, Rogé Ferreira FL, Keller A, Krischke B, Beye M, Steffan-Dewenter I, Scheiner R. CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees. Chem Senses 2021; 45:655-666. [PMID: 32968780 DOI: 10.1093/chemse/bjaa063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Honeybees rely on nectar as their main source of carbohydrates. Sucrose, glucose, and fructose are the main components of plant nectars. Intriguingly, honeybees express only 3 putative sugar receptors (AmGr1, AmGr2, and AmGr3), which is in stark contrast to many other insects and vertebrates. The sugar receptors are only partially characterized. AmGr1 detects different sugars including sucrose and glucose. AmGr2 is assumed to act as a co-receptor only, while AmGr3 is assumedly a fructose receptor. We show that honeybee gustatory receptor AmGr3 is highly specialized for fructose perception when expressed in Xenopus oocytes. When we introduced nonsense mutations to the respective AmGr3 gene using CRISPR/Cas9 in eggs of female workers, the resulting mutants displayed almost a complete loss of responsiveness to fructose. In contrast, responses to sucrose were normal. Nonsense mutations introduced by CRISPR/Cas9 in honeybees can thus induce a measurable behavioral change and serve to characterize the function of taste receptors in vivo. CRISPR/Cas9 is an excellent novel tool for characterizing honeybee taste receptors in vivo. Biophysical receptor characterization in Xenopus oocytes and nonsense mutation of AmGr3 in honeybees unequivocally demonstrate that this receptor is highly specific for fructose.
Collapse
Affiliation(s)
- Laura Değirmenci
- Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Dietmar Geiger
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Fábio Luiz Rogé Ferreira
- Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University of Würzburg, Biocenter, Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, Biocenter, Am Hubland, Würzburg, Germany
| | - Beate Krischke
- Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Martin Beye
- Evolutionary Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| |
Collapse
|
9
|
Bestea L, Réjaud A, Sandoz JC, Carcaud J, Giurfa M, de Brito Sanchez MG. Peripheral taste detection in honey bees: What do taste receptors respond to? Eur J Neurosci 2021; 54:4417-4444. [PMID: 33934411 DOI: 10.1111/ejn.15265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
Understanding the neural principles governing taste perception in species that bear economic importance or serve as research models for other sensory modalities constitutes a strategic goal. Such is the case of the honey bee (Apis mellifera), which is environmentally and socioeconomically important, given its crucial role as pollinator agent in agricultural landscapes and which has served as a traditional model for visual and olfactory neurosciences and for research on communication, navigation, and learning and memory. Here we review the current knowledge on honey bee gustatory receptors to provide an integrative view of peripheral taste detection in this insect, highlighting specificities and commonalities with other insect species. We describe behavioral and electrophysiological responses to several tastant categories and relate these responses, whenever possible, to known molecular receptor mechanisms. Overall, we adopted an evolutionary and comparative perspective to understand the neural principles of honey bee taste and define key questions that should be answered in future gustatory research centered on this insect.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, CNRS, IRD (UMR 5174), University of Toulouse, Toulouse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS, IRD (UMR 9191, University Paris Saclay, Gif-sur-Yvette, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France.,College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Institut Universitaire de France (IUF), Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS (UMR 5169), University of Toulouse, Toulouse, France
| |
Collapse
|
10
|
The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biol 2021; 19:e3001114. [PMID: 33600420 PMCID: PMC7924754 DOI: 10.1371/journal.pbio.3001114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/02/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.
Collapse
|
11
|
Liu XL, Sun SJ, Hou W, Zhang J, Yan Q, Dong SL. Functional characterization of two spliced variants of fructose gustatory receptor in the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:7-13. [PMID: 32284139 DOI: 10.1016/j.pestbp.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 06/11/2023]
Abstract
Insect gustatory system plays important roles in multiple behaviors including feeding, mating, and oviposition. Gustatory receptors (GRs), located on the dendritic membrane of gustatory sensory neurons (GSNs), are crucial in peripheral coding of non-volatile compounds. However, GRs and their detailed functions remain poorly understood in lepidopteran pests. In the present work, focusing on GR genes of Plutella xylostella, an important worldwide crop pest, we cloned a candidate fructose GR gene that has two spliced variants (PxylGR43a-1 and PxylGR43a-2), and determined the tissue expression profiles by semi-quantitative reverse transcription PCR (RT-PCR). It revealed that both GR variants were highly expressed in antennae and less highly in heads of adults, while PxylGR43a-2 was also weakly expressed in other tested tissues. Functional analyses were further conducted using the Xenopus oocyte system. PxylGR43a-1 and PxylGR43a-2 both responded specifically to the d-fructose among the 12 tested sugar compounds, but PxylGR43a-2 showed much higher current response than PxylGR43a-1. In addition, the proboscis extension reflex (PER) assay was conducted, demonstrating that female moths could respond to d-fructose following stimulation of antenna. Taken together, our study contributes to elucidation of the molecular mechanisms of fructose reception and provides a potential target for development of GR based pest control techniques.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Jie Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Hou
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Qi Yan
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
He P, Wang MM, Wang H, Ma YF, Yang S, Li SB, Li XG, Li S, Zhang F, Wang Q, Ran HN, Yang GQ, Dewer Y, He M. Genome-wide identification of chemosensory receptor genes in the small brown planthopper, Laodelphax striatellus. Genomics 2019; 112:2034-2040. [PMID: 31765823 DOI: 10.1016/j.ygeno.2019.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022]
Abstract
The small brown planthopper (SBPH), Laodelphax striatellus is one of the major insect pests of rice, but little is known about the molecular-level means by which it locates its hosts. SBPH host-seeking behavior heavily relies on chemosensory receptors (CRs). In this study, we utilized genome analysis of the SBPH to identify 169 CRs, including: 133 odorant receptors (ORs), 13 gustatory receptors (GRs) and 23 ionotropic receptors (IRs). The phylogenetic relationships of OR genes from three rice planthoppers and other insect species revealed that the odorant co-receptor (Orco) clade is the most conserved group. Among the candidate GRs, two sugar receptors and five fructose receptors have been identified but no carbon dioxide receptors investigated. Furthermore, we identified homologs of the three highly conserved IR co-receptors. The obtained results will provide us with precious information needed to better understand the interaction between insect pests and crop plants required for effective crop protection.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| | - Mei-Mei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Hong Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Yu-Feng Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Shao-Bing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Xuan-Gang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, PR China
| | - Qing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Hui-Nu Ran
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Gui-Qing Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| |
Collapse
|
13
|
Du Y, Xu K, Ma W, Su W, Tai M, Zhao H, Jiang Y, Li X. Contact Chemosensory Genes Identified in Leg Transcriptome of Apis cerana cerana (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2015-2029. [PMID: 31188452 DOI: 10.1093/jee/toz130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Correct gustatory recognition and selection of foods both within and outside the hive by honey bee workers are fundamental to the maintenance of colonies. The tarsal chemosensilla located on the legs of workers are sensitive to nonvolatile compounds and proposed to be involved in gustatory detection. However, little is known about the molecular mechanisms underlying the gustatory recognition of foods in honey bees. In the present study, RNA-seq was performed with RNA samples extracted from the legs of 1-, 10-, and 20-d-old workers of Apis cerana cerana Fabricius, a dominant indigenous crop pollinator with a keen perception ability for phytochemicals. A total of 124 candidate chemosensory proteins (CSPs), including 15 odorant-binding proteins (OBPs), 5 CSPs, 7 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 95 odorant receptors (ORs), were identified from the assembled leg transcriptome. In silico analysis of expression showed that 36 of them were differentially expressed among the three different ages of A. c. cerana workers. Overall, the genes encoding OBPs and CSPs had great but extremely variable FPKM values and thus were highly expressed in the legs of workers, whereas the genes encoding ORs, GRs, and SNMPs (except SNMP2) were expressed at low levels. Tissue-specific expression patterns indicated that two upregulated genes, AcerOBP15 and AcerCSP3, were predominately expressed in the legs of 20-d-old foragers, suggesting they may play an essential role in gustatory recognition and selection of plant nectars and pollens. This study lays a foundation for further research on the feeding preferences of honey bees.
Collapse
Affiliation(s)
- Yali Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kai Xu
- Department of Honey Bee Genetics and Breeding, Apiculture Science Institute of Jilin Province, Jilin, China
| | - Weihua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenting Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Tai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
14
|
Lim S, Jung J, Yunusbaev U, Ilyasov R, Kwon HW. Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Sci Rep 2019; 9:11620. [PMID: 31406120 PMCID: PMC6690930 DOI: 10.1038/s41598-019-46738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
Umami taste perception indicates the presence of amino acids, which are essential nutrients. Although the physiology of umami perception has been described in mammals, how insects detect amino acids remains unknown except in Drosophila melanogaster. We functionally characterized a gustatory receptor responding to L-amino acids in the western honey bee, Apis mellifera. Using a calcium-imaging assay and two-voltage clamp recording, we found that one of the honey bee's gustatory receptors, AmGr10, functions as a broadly tuned amino acid receptor responding to glutamate, aspartate, asparagine, arginine, lysine, and glutamine, but not to other sweet or bitter compounds. Furthermore, the sensitivity of AmGr10 to these L-amino acids was dramatically enhanced by purine ribonucleotides, like inosine-5'-monophosphate (IMP). Contact sensory hairs in the mouthpart of the honey bee responded strongly to glutamate and aspartate, which house gustatory receptor neurons expressing AmGr10. Interestingly, AmGr10 protein is highly conserved among hymenopterans but not other insects, implying unique functions in eusocial insects.
Collapse
Affiliation(s)
- Sooho Lim
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Jewon Jung
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Ural Yunusbaev
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
| | - Rustem Ilyasov
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia
| | - Hyung Wook Kwon
- Department of Life Sciences & Convergence Research Center for Insect Vectors, College of Life Science and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
15
|
Mustard JA, Akyol E, Robles KD, Ozturk C, Kaftanoglu O. Influence of sugar experience during development on gustatory sensitivity of the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:100-105. [PMID: 31059690 DOI: 10.1016/j.jinsphys.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The level of response to sugar plays a role in many aspects of honey bee behavior including age dependent polyethism and division of labor. Bees may tune their sensitivity to sugars so that they maximize collection of high quality nectar, but they must also be able to collect from less profitable sources when high quality food is scarce. However, our understanding of the mechanisms by which bees can change their responsiveness to different sugars remains incomplete. To investigate the plasticity of sensitivity to sugar, bees were raised on different sugars either in vitro or in colonies. Bees raised in the incubator on diets containing mostly either fructose or glucose showed significantly more responsiveness to the majority sugar. In contrast, bees raised in colonies that only foraged on fructose or glucose responded equally well to both sugars. These data suggest that developmental plasticity for responses to sugar is masked by the feeding of worker jelly to larvae and young bees. The production of worker jelly from secretions of the hypopharyngeal and mandibular glands by nurse bees ensures that both glucose and fructose are experienced by young bees so that they respond to both sugars and will be able to exploit all future food sources.
Collapse
Affiliation(s)
- Julie A Mustard
- Department of Biology, The University of Texas Rio Grande Valley, Brownsville, TX 78520, United States.
| | - Ethem Akyol
- Department of Animal Sciences and Technology, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Karin D Robles
- Department of Biology, The University of Texas Rio Grande Valley, Brownsville, TX 78520, United States
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, United States
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, United States
| |
Collapse
|
16
|
Identification and functional characterization of D-fructose receptor in an egg parasitoid, Trichogramma chilonis. PLoS One 2019; 14:e0217493. [PMID: 31216287 PMCID: PMC6583964 DOI: 10.1371/journal.pone.0217493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
In insects, the gustatory system has a critical function not only in selecting food and feeding behaviours but also in growth and metabolism. Gustatory receptors play an irreplaceable role in insect gustatory signalling. Trichogramma chilonis is an effective biocontrol agent against agricultural insect pests. However, the molecular mechanism of gustation in T. chilonis remains elusive. In this study, we found that T. chilonis adults had a preference for D-fructose and that D-fructose contributed to prolong longevity and improve fecundity. Then, We also isolated the full-length cDNA encoding candidate gustatory receptor (TchiGR43a) based on the transcriptome data of T. chilonis, and observed that the candidate gustatory receptor gene was expressed from the larval to adult stages. The expression levels of TchiGR43a were similar between female and male. A Xenopus oocyte expression system and two-electrode voltage-clamp recording further verified the function analysis of TchiGR43a. Electrophysiological results showed that TchiGR43a was exclusively tuned to D-fructose. By the studies of behaviour, molecular biology and electrophysiology in T. chilonis, our results lay a basic fundation of further study on the molecular mechanisms of gustatory reception and provide theoretical basis for the nutritional requirement of T. chilonis in biocontrol.
Collapse
|