1
|
Zhang Z, Xiong L, Xie C, Shen L, Chen X, Ye M, Sun L, Yang X, Yao S, Yue Z, Liang Z, You M, You S. Optimization and Application of CRISPR/Cas9 Genome Editing in a Cosmopolitan Pest, Diamondback Moth. Int J Mol Sci 2022; 23:ijms232113042. [PMID: 36361828 PMCID: PMC9657529 DOI: 10.3390/ijms232113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The CRISPR/Cas9 system is an efficient tool for reverse genetics validation, and the application of this system in the cell lines provides a new perspective on target gene analysis for the development of biotechnology tools. However, in the cell lines of diamondback moth, Plutella xylostella, the integrity of the CRISPR/Cas9 system and the utilization of this cell lines still need to be improved to ensure the application of the system. Here, we stabilize the transfection efficiency of the P. xylostella cell lines at different passages at about 60% by trying different transfection reagents and adjusting the transfection method. For Cas9 expression in the CRIPSPR/Cas9 system, we identified a strong endogenous promoter: the 217–2 promoter. The dual-luciferase and EGFP reporter assay demonstrated that it has a driving efficiency close to that of the IE1 promoter. We constructed pB-Cas9-Neo plasmid and pU6-sgRNA plasmid for CRISPR/Cas9 system and subsequent cell screening. The feasibility of the CRISPR/Cas9 system in P. xylostella cell lines was verified by knocking out endogenous and exogenous genes. Finally, we generated a transgenic Cas9 cell line of P. xylostella that would benefit future exploitation, such as knock-in and multi-threaded editing. Our works provides the validity of the CRISPR/Cas9 system in the P. xylostella cell lines and lays the foundation for further genetic and molecular studies on insects, particularly favoring gene function analysis.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Lei Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Chao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Lingling Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Min Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Linyang Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Xiaozhen Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Zhen Yue
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | | | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou 350002, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
- Correspondence:
| |
Collapse
|
2
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
3
|
Sarmiento-Vizcaíno A, Martín J, Reyes F, García LA, Blanco G. Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain. Front Microbiol 2021; 12:773095. [PMID: 34858379 PMCID: PMC8631523 DOI: 10.3389/fmicb.2021.773095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013-2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
4
|
Wang X, Tan X, Liu Q, Li Y, Li X, Dong Z, Dong H, Xia Q, Zhao P. Fiber Formation and Mechanical Properties of Bombyx mori Silk Are Regulated by Vacuolar-Type ATPase. ACS Biomater Sci Eng 2021; 7:5532-5540. [PMID: 34753284 DOI: 10.1021/acsbiomaterials.1c01230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of silk fiber formation in silkworms, Bombyx mori, is of particular scientific interest because it is closely related to the mechanical properties of silk fibers. However, there are still substantial knowledge gaps in understanding the details of this mechanism. Studies have found a pH gradient in the silk gland of silkworms. A vacuolar-type ATPase (V-ATPase) is thought to be involved in establishing this pH gradient. Although it is reported that the pH gradient plays a role in silk fibrillogenesis, the direct relationship between V-ATPase and silk mechanical properties is unclear. Thus, this study aims to clarify this relationship. We found that V-ATPase is highly and stably expressed in the anterior silk gland (ASG) and maintains the pH gradient and the fine structure of ASG. Inhibition of V-ATPase activity increased the β-sheet content and crystallinity of silk fibers. Tensile testing showed that the mechanical properties of silk fibers improved after inhibiting V-ATPase activity. All the data suggest that V-ATPase is a key factor in regulating silk fibrillogenesis and is related to the final mechanical properties of the silk fibers. V-ATPase is a potential target for silk mechanical property improvement.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiaoyin Tan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingsong Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xinning Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Haonan Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| |
Collapse
|
5
|
Neurodegeneration-related beta-amyloid as autocatabolism-attenuator in a micro-in vivo system. IBRO Rep 2020; 9:319-323. [PMID: 33336107 PMCID: PMC7733039 DOI: 10.1016/j.ibror.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/02/2020] [Indexed: 11/24/2022] Open
Abstract
Bdelloids are adaptive models for studying aggregate-metabolism interactions. Starvation causes reversible organ shrinkage in bdelloids. The organ shrinkage is in connection with autocatabolic processes. Beta-amyloid attenuates the starvation-induced germovitellaria shrinkage. Human-type amyloid-aggregates are metabolism-regulators in two bdelloid species.
Investigation of human neurodegeneration-related aggregates of beta-amyloid 1–42 (Aβ42) on bdelloid rotifers is a novel interdisciplinary approach in life sciences. We reapplied an organ size-based in vivo monitoring system, exploring the autocatabolism-related alterations evoked by Aβ42, in a glucose-supplemented starvation model. The experientially easy-to-follow size reduction of the bilateral reproductive organ (germovitellaria) in fasted rotifers was rescued by Aβ42, serving as a nutrient source- and peptide sequence-specific attenuator of the organ shrinkage phase and enhancer of the regenerative one including egg reproduction. Recovery of the germovitellaria was significant in comparison with the greatly shrunken form. In contrast to the well-known neurotoxic Aβ42 (except the bdelloids) with specific regulatory roles, the artificially designed scrambled version (random order of amino acids) was inefficient in autocatabolism attenuation, behaving as negative control. This native Aβ42-related modulation of the ‘functionally reversible organ shrinkage’ can be a potential experiential and supramolecular marker of autocatabolism in vivo.
Collapse
Key Words
- AO, acridine orange
- AVOs, acidic vesicular organelles
- Acridine orange (PubChem CID: 62344)
- Autocatabolism
- Aβ, beta-amyloid
- Bdelloid rotifer
- Beta-amyloid
- BisANS (PubChem CID: 16213473)
- BisANS, 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt
- ConA, Concanamycin A
- Concanamycin A (PubChem CID: 6438151)
- D0, Day 0
- D20, Day 20
- D25, Day 25
- FROS, functionally reversible organ shrinkage
- FROSi, FROS index
- Invertebrate
- Metabolism
- NFI%, percentage of normalized fluorescence intensity
- NaOH (PubChem CID: 14798)
- Neutral red (PubChem CID: 11105)
- Organ shrinkage
- PI, propidium-iodide
- Propidium-iodide (PubChem CID: 104981)
- S-Aβ42, scrambled isoform of Aβ
- SEM, standard error of the mean
Collapse
|
6
|
Liu Y, Li Y, Liang Y, Wang T, Yang C, Ma S, Xia Q. Comparative analysis of genome editing systems, Cas9 and BE3, in silkworms. Int J Biol Macromol 2020; 158:486-492. [PMID: 32344085 DOI: 10.1016/j.ijbiomac.2020.04.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system and the Cas9-derived proteins have been applied to genome editing in various organisms. Traditional Cas9 is typically used to knockout genes or specific DNA fragments based on the generation of double-stranded breaks, whereas nCas9 and dCas9 are fused with effectors to perform base pair transitions or epigenetic modification and regulation. However, this system has off-target effects and can cause genomic structure variations. Here, we comparatively analyzed Cas9 and BE3, an initial base editor based on the nCas9 fusion protein, in silkworms. Our results showed that base editing was superior to Cas9 in silkworm cultured cells. BE3 introduced accurate termination codons, whereas Cas9 did not. Moreover, Cas9 induced chromosome translocation, chromosome fragment repetition, and chromosome fragment deletion, with the deletion frequency reaching up to 4.29%. BE3 was not able to induce these changes in our study. Furthermore, Cas9-derived proteins blocked ribosome advance and mRNA transcription for 9 days, with a 9.40% repression effect by combining with double-stranded DNA when single guide RNAs were targeted in the coding region in silkworms. Overall, our findings established a strategy for choosing suitable editing tools for various applications in different organisms.
Collapse
Affiliation(s)
- Yue Liu
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yufeng Li
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yan Liang
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ting Wang
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Chengfei Yang
- Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Sanyuan Ma
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|