1
|
Yao X, Duan Y, Deng Z, Zhao W, Wei J, Li X, An S. ATP Synthase Subunit α from Helicoverpa armigera Acts as a Receptor of Bacillus thuringiensis Cry1Ac and Synergizes Cry1Ac Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37036055 DOI: 10.1021/acs.jafc.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Insect resistance to Bacillus thuringiensis (Bt) toxins has led to an urgent need to explore the insecticidal mechanisms of Bt. Previous studies indicated that Helicoverpa armigera ATP synthase subunit α (HaATPs-α) is involved in Cry1Ac resistance. In this study, a real-time quantitative polymerase chain reaction (RT-PCR) confirmed that HaATPs-α expression was significantly reduced in the Cry1Ac-resistant strain (BtR). Cry1Ac feeding induced the downregulated expression of HaATPs-α in the susceptible strain, but not in the BtR strain. Furthermore, the interaction between HaATPs-α and Cry1Ac was verified by ligand blotting and homologous competition experiments. The in vitro gain and loss of function analyses showed HaATPs-α involved in Cry1Ac toxicity by expressing endogenous HaATPs-α and HaATPs-α double-stranded RNAs in Sf9 and midgut cells, respectively. Importantly, purified HaATPs-α synergized Cry1Ac toxicity to H. armigera larvae. These findings provide the first evidence that HaATPs-α is a potential receptor of Cry1Ac, it shows downregulated participation in Cry1Ac resistance, and it exhibits higher enhancement of Cry1Ac toxicity to H. armigera larvae.
Collapse
Affiliation(s)
- Xue Yao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yunpeng Duan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- College of Life Science, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
de Oliveira WS, Sakuno CIR, Miraldo LL, Tavares MAGC, Komada KMA, Teresani D, Santos JLX, Huang F. Varied frequencies of resistance alleles to Cry1Ab and Cry1Ac among Brazilian populations of the sugarcane borer, Diatraea saccharalis (F.). PEST MANAGEMENT SCIENCE 2022; 78:5150-5163. [PMID: 36070208 DOI: 10.1002/ps.7133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Brazil is the largest grower of the world's 26 million ha of sugarcane, Saccharum officinarum. Pest damage mainly by the sugarcane borer, Diatraea saccharalis (F.), is a great challenge to the sugarcane industry. To control D. saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to two Bt sugarcane varieties: CTC20BT expressing Cry1Ab and CTC9001BT expressing Cry1Ac. Here we report the results of the first study related to Bt resistance in a sugarcane cropping system. RESULTS Larval survivorships of these families in an F2 screen on CTC20BT were highly correlated with their survival on CTC9001BT, whereas the Cry1Ac tissues exhibited greater insecticidal activities than Cry1Ab. Resistance allele frequencies (RAFs) for populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). CONCLUSIONS RAFs to Cry1Ab and Cry1Ac varied among Brazilian D. saccharalis populations. Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring, and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. MINI ABSTRACT To control Diatraea saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting in Brazil, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to Cry1Ab and Cry1Ac sugarcane plants Resistance allele frequencies (RAFs) for the populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for the São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of non-Bt maize refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that effective mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
3
|
Resistance Allele Frequency to Cry1Ab and Vip3Aa20 in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Louisiana and Three Other Southeastern U.S. States. Toxins (Basel) 2022; 14:toxins14040270. [PMID: 35448879 PMCID: PMC9028807 DOI: 10.3390/toxins14040270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
The corn earworm/bollworm, Helicoverpa zea (Boddie), is a pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1Ab and Vip3Aa20 are two common Bt toxins that are expressed in transgenic maize. The objective of this study was to determine the resistance allele frequency (RAF) to Cry1Ab and Vip3Aa20 in H. zea populations that were collected during 2018 and 2019 from four southeastern U.S. states: Louisiana, Mississippi, Georgia, and South Carolina. By using a group-mating approach, 104 F2 iso-lines of H. zea were established from field collections with most iso-lines (85) from Louisiana. These F2 iso-lines were screened for resistance alleles to Cry1Ab and Vip3Aa20, respectively. There was no correlation in larval survivorship between Cry1Ab and Vip3Aa20 when the iso-lines were exposed to these two toxins. RAF to Cry1Ab maize was high (0.256) and the RAFs were similar between Louisiana and the other three states and between the two sampling years. In contrast, no functional major resistance allele (RA) that allowed resistant insects to survive on Vip3Aa20 maize was detected and the expected RAF of major RAs with 95% probability was estimated to 0 to 0.0073. However, functional minor RAs to Vip3Aa20 maize were not uncommon; the estimated RAF for minor alleles was 0.028. The results provide further evidence that field resistance to Cry1Ab maize in H. zea has widely occurred, while major RAs to Vip3Aa20 maize are uncommon in the southeastern U.S. region. Information that was generated from this study should be useful in resistance monitoring and refinement of resistance management strategies to preserve Vip3A susceptibility in H. zea.
Collapse
|
4
|
Sun D, Zhu L, Guo L, Wang S, Wu Q, Crickmore N, Zhou X, Bravo A, Soberón M, Guo Z, Zhang Y. A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. BMC Biol 2022; 20:33. [PMID: 35120513 PMCID: PMC8817492 DOI: 10.1186/s12915-022-01226-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Biopesticides and transgenic crops based on Bacillus thuringiensis (Bt) toxins are extensively used to control insect pests, but the rapid evolution of insect resistance seriously threatens their effectiveness. Bt resistance is often polygenic and complex. Mutations that confer resistance occur in midgut proteins that act as cell surface receptors for the toxin, and it is thought they facilitate its assembly as a membrane-damaging pore. However, the mechanistic details of the action of Bt toxins remain controversial. RESULTS We have examined the contribution of two paralogous ABC transporters and two aminopeptidases N to Bt Cry1Ac toxicity in the diamondback moth, Plutella xylostella, using CRISPR/Cas9 to generate a series of homozygous polygenic knockout strains. A double-gene knockout strain, in which the two paralogous ABC transporters ABCC2 and ABCC3 were deleted, exhibited 4482-fold resistance to Cry1A toxin, significantly greater than that previously reported for single-gene knockouts and confirming the mutual functional redundancy of these ABC transporters in acting as toxin receptors in P. xylostella. A double-gene knockout strain in which APN1 and APN3a were deleted exhibited 1425-fold resistance to Cry1Ac toxin, providing the most direct evidence to date for these APN proteins acting as Cry1Ac toxin receptors, while also indicating their functional redundancy. Genetic crosses of the two double-gene knockouts yielded a hybrid strain in which all four receptor genes were deleted and this resulted in a > 34,000-fold resistance, indicating that while both types of receptor need to be present for the toxin to be fully effective, there is a level of functional redundancy between them. The highly resistant quadruple knockout strain was less fit than wild-type moths, but no fitness cost was detected in the double knockout strains. CONCLUSION Our results provide direct evidence that APN1 and APN3a are important for Cry1Ac toxicity. They support our overarching hypothesis of a versatile mode of action of Bt toxins, which can compensate for the absence of individual receptors, and are consistent with an interplay among diverse midgut receptors in the toxins' mechanism of action in a super pest.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, 510642, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton, BN1 9QE, UK
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546-0091, USA
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, México
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, México
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Yao X, Liu C, Duan Y, An S, Wei J, Liang G. ABCC2 is a functional receptor of Bacillus thuringiensis Cry1Ca in Spodoptera litura. Int J Biol Macromol 2022; 194:9-16. [PMID: 34861271 DOI: 10.1016/j.ijbiomac.2021.11.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Spodoptera litura is a serious polyphagous pest in the whole world, which has developed resistance to most conventional insecticides and even some Bacillus thuringiensis (Bt) toxins. Cry1Ca has excellent insecticide activity against S. litura with potential application to control S. litura and delay the development of insect resistance. However, the mode of action of Cry1Ca in S. litura is poorly understood. Here, Cry1Ca-binding proteins were identified from S. litura by using pull down assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that aminopeptidase-N (APN), ATP binding cassette subfamily C member 2 (ABCC2), polycalin, actin and V-type proton ATPase subunit A may bind with Cry1Ca. Further study confirmed that ABCC2 fragment expressed in vitro can bind to Cry1Ca as demonstrated by Ligand blot and homologous competition experiments. The over-expression of endogenous SlABCC2 in Sf9 cells increased Cry1Ca cytotoxicity. Correspondingly, the vivo loss of function analyses by SlABCC2 small interfering RNAs (siRNAs) in S. litura larvae decreased the toxicity of Cry1Ca to larvae. Altogether, these results show that ABCC2 of S. litura is a functional receptor that is involved in the action mode of Cry1Ca.
Collapse
Affiliation(s)
- Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Yunpeng Duan
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
6
|
Liu J, Liang YS, Hu T, Zeng H, Gao R, Wang L, Xiao YH. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112805. [PMID: 34592526 DOI: 10.1016/j.ecoenv.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
During the production and application of Bacillus thuringiensis (Bt) transgenic crops, large doses of insecticidal Bt toxic proteins are expressed continuously. The multi-interfacial behaviors of Bt proteins entering the environment in multi-media affects their states of existence transformation, transport and fate as well as biological and ecological impacts. Because both soil matrix and organisms will be exposed to Bt proteins to a certain extent, knowledge of the multi-interfacial behaviors and affecting factors of Bt proteins are vital not only for understanding the source-sink distribution mechanisms, predicting their bio-availability, but also for exploring the soil safety and environmental problems caused by the interaction between Bt proteins and soil matrix. This review summarized and analyzed various internal and external factors that affect the adsorption/ desorption and degradation of Bt proteins in the environment, so as to understand the multi-interfacial behaviors of Bt proteins. In addition, the reasons of concentration changes of Bt proteins in soil are discussed. This review will also discuss the existing knowledge of the combined effects of Bt proteins and other pollutants in environment. Finally, discussing the factors that should be considered when assessing the environmental risk of Bt proteins, thus to further improve the understanding of the environmental fate of Bt proteins.
Collapse
Affiliation(s)
- Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Hong Zeng
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| |
Collapse
|
7
|
Qi L, Dai H, Jin Z, Shen H, Guan F, Yang Y, Tabashnik BE, Wu Y. Evaluating Cross-Resistance to Cry and Vip Toxins in Four Strains of Helicoverpa armigera With Different Genetic Mechanisms of Resistance to Bt Toxin Cry1Ac. Front Microbiol 2021; 12:670402. [PMID: 34054780 PMCID: PMC8160511 DOI: 10.3389/fmicb.2021.670402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Evolution of resistance by pests has diminished the efficacy of transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt). In China, where transgenic cotton producing Bt toxin Cry1Ac has been planted since 1997, field control failures have not been reported but the frequency of resistance to Cry1Ac has increased in the cotton bollworm, Helicoverpa armigera. This provides incentive to switch to multi-toxin Bt cotton, which is grown in many other countries. Previous work created four laboratory strains of H. armigera with >100-fold resistance to Cry1Ac, with the genetic basis of resistance known in all but the LF256 strain. Here, we analyzed the genetic basis of resistance in Cry1Ac in LF256 and evaluated cross-resistance of all four strains to three toxins produced by widely planted multi-toxin Bt cotton: Cry1Fa, Cry2Ab, and Vip3Aa. DNA sequencing revealed that LF256 lacked the mutations in three genes (HaTSPAN1, HaABCC2, and HaABCC3) that confer resistance to Cry1Ac in two other strains of H. armigera we analyzed. Together with previous results, the data reported here show that each of the four strains examined has a different genetic basis of resistance to Cry1Ac. Significant positive cross-resistance occurred to Cry1Fa in three of the four strains tested but not to Cry2Ab or Vip3Aa in any strain. Thus, Cry2Ab and Vip3Aa are likely to be especially valuable for increasing the efficacy and durability of Bt cotton against H. armigera populations that have some resistance to Cry1Ac.
Collapse
Affiliation(s)
- Liangxuan Qi
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hanyang Dai
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zeng Jin
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huiwen Shen
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fang Guan
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E Tabashnik
- Department of Entomology, The University of Arizona, Tucson, AZ, United States
| | - Yidong Wu
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Karthik K, Negi J, Rathinam M, Saini N, Sreevathsa R. Exploitation of Novel Bt ICPs for the Management of Helicoverpa armigera (Hübner) in Cotton ( Gossypium hirsutum L.): A Transgenic Approach. Front Microbiol 2021; 12:661212. [PMID: 33995323 PMCID: PMC8116509 DOI: 10.3389/fmicb.2021.661212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cotton is a commercial crop of global importance. The major threat challenging the productivity in cotton has been the lepidopteron insect pest Helicoverpa armigera or cotton bollworm which voraciously feeds on various plant parts. Biotechnological interventions to manage this herbivore have been a universally inevitable option. The advent of plant genetic engineering and exploitation of Bacillus thuringiensis (Bt) insecticidal crystal proteins (ICPs) marked the beginning of plant protection in cotton through transgenic technology. Despite phenomenal success and widespread acceptance, the fear of resistance development in insects has been a perennial concern. To address this issue, alternate strategies like introgression of a combination of cry protein genes and protein-engineered chimeric toxin genes came into practice. The utility of chimeric toxins produced by domain swapping, rearrangement of domains, and other strategies aid in toxins emerging with broad spectrum efficacy that facilitate the avoidance of resistance in insects toward cry toxins. The present study demonstrates the utility of two Bt ICPs, cry1AcF (produced by domain swapping) and cry2Aa (produced by codon modification) in transgenic cotton for the mitigation of H. armigera. Transgenics were developed in cotton cv. Pusa 8–6 by the exploitation of an apical meristem-targeted in planta transformation protocol. Stringent trait efficacy-based selective screening of T1 and T2 generation transgenic plants enabled the identification of plants resistant to H. armigera upon deliberate challenging. Evaluation of shortlisted events in T3 generation identified a total of nine superior transgenic events with both the genes (six with cry1AcF and three with cry2Aa). The transgenic plants depicted 80–100% larval mortality of H. armigera and 10–30% leaf damage. Molecular characterization of the shortlisted transgenics demonstrated stable integration, inheritance and expression of transgenes. The study is the first of its kind to utilise a non-tissue culture-based transformation strategy for the development of stable transgenics in cotton harbouring two novel genes, cry1AcF and cry2Aa for insect resistance. The identified transgenic events can be potential options toward the exploitation of unique cry genes for the management of the polyphagous insect pest H. armigera.
Collapse
Affiliation(s)
- Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Jyotsana Negi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
9
|
Wei J, Yao X, Yang S, Liu S, Zhou S, Cen J, Liu X, Du M, Tang Q, An S. Suppression of Calcineurin Enhances the Toxicity of Cry1Ac to Helicoverpa armigera. Front Microbiol 2021; 12:634619. [PMID: 33643268 PMCID: PMC7904703 DOI: 10.3389/fmicb.2021.634619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Insect resistance to Bacillus thuringiensis (Bt) insecticidal proteins has rapidly evolved with the expansion of the planting area of transgenic Bt crops. Pyramiding RNA interference (RNAi) and Bt in crops is urgently needed to counter the rapid increase in pest resistance. The ideal “pyramid” strategy simultaneously targets different action pathways that exert synergetic effects on each other. Here, we identified a dephosphatase, namely, Helicoverpa armigera calcineurin (HaCAN), which might enhance the insecticidal activity of Cry1Ac against Helicoverpa armigera by regulating immune gene expression via dephosphatase activity, but not by acting as a receptor. Notably, blocking enzyme activity or knocking down endogenous HaCAN significantly promoted the enhancement in Cry1Ac toxicity to insect larvae and cells. Correspondingly, the increase in HaCAN activity reduced the cytotoxicity of Cry1Ac as shown by the heterologous expression of HaCAN. Our results provide a probable that HaCAN is an important candidate gene for pyramiding RNAi and Cry1Ac crops to control cotton bollworm.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xue Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaokai Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuai Zhou
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Junjuan Cen
- Bureau of Agriculture and Rural Affairs of Qixian, Kaifeng, China
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qingbo Tang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Grahl MVC, Lopes FC, Martinelli AHS, Carlini CR, Fruttero LL. Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules 2020; 25:molecules25225338. [PMID: 33207637 PMCID: PMC7696265 DOI: 10.3390/molecules25225338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/24/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) do not have a stable 3D structure but still have important biological activities. Jaburetox is a recombinant peptide derived from the jack bean (Canavalia ensiformis) urease and presents entomotoxic and antimicrobial actions. The structure of Jaburetox was elucidated using nuclear magnetic resonance which reveals it is an IDP with small amounts of secondary structure. Different approaches have demonstrated that Jaburetox acquires certain folding upon interaction with lipid membranes, a characteristic commonly found in other IDPs and usually important for their biological functions. Soyuretox, a recombinant peptide derived from the soybean (Glycine max) ubiquitous urease and homologous to Jaburetox, was also characterized for its biological activities and structural properties. Soyuretox is also an IDP, presenting more secondary structure in comparison with Jaburetox and similar entomotoxic and fungitoxic effects. Moreover, Soyuretox was found to be nontoxic to zebra fish, while Jaburetox was innocuous to mice and rats. This profile of toxicity affecting detrimental species without damaging mammals or the environment qualified them to be used in biotechnological applications. Both peptides were employed to develop transgenic crops and these plants were active against insects and nematodes, unveiling their immense potentiality for field applications.
Collapse
Affiliation(s)
- Matheus V. Coste Grahl
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
| | - Fernanda Cortez Lopes
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Building 43431, Porto Alegre CEP 91501-970, RS, Brazil;
| | - Anne H. Souza Martinelli
- Department of Biophysics & Deparment of Molecular Biology and Biotechnology-Biosciences Institute (IB), Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre 91501-970, RS, Brazil;
| | - Celia R. Carlini
- Graduate Program in Medicine and Health Sciences, Brain Institute of Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, Brazil;
- Brain Institute and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba CP 5000, Argentina
- Correspondence: (C.R.C.); (L.L.F.); Tel.: +55-51-3320-3485 (C.R.C.); +54-351-535-3850 (L.L.F.)
| |
Collapse
|
11
|
Wang B, Wei J, Wang Y, Chen L, Liang G. Polycalin is involved in the toxicity and resistance to Cry1Ac toxin in Helicoverpa armigera (Hübner). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21661. [PMID: 32011765 DOI: 10.1002/arch.21661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Polycalin has been confirmed as a binding protein of the Cry toxins in a few Lepidoptera insects, but its function in the action mechanism of Cry1Ac and whether it is involved in resistance evolution are still unclear. In this study, Ligand blot and enzyme-linked immunosorbent assays showed that Helicoverpa armigera polycalin could specifically interact with Cry1Ac with a high affinity (Kd = 118.80 nM). Importantly, antisera blocking polycalin in H. armigera larvae decreased the toxicity of Cry1Ac by 31.84%. Furthermore, the relative gene and protein expressions were lower in Cry1Ac-resistant strain (LF60) than that in Cry1Ac-susceptible strain (LF). These findings indicated that H. armigera polycalin was a possible receptor of Cry1Ac and may be contributed to the resistance to Cry1Ac.
Collapse
Affiliation(s)
- Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Zhang Y, Xu L, Li S, Zhang J. Bacteria-Mediated RNA Interference for Management of Plagiodera versicolora (Coleoptera: Chrysomelidae). INSECTS 2019; 10:insects10120415. [PMID: 31766384 PMCID: PMC6955681 DOI: 10.3390/insects10120415] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has emerged as a novel and feasible strategy for pest management. Methods for cost-effective production and stable delivery of double-stranded RNA (dsRNA) to the target insects are crucial for the wide application of RNAi for pest control. In this study, we tested the expression of dsRNA in RNaseIII-deficient Escherichia coli HT115 which was then fed to Plagiodera versicolora larvae, an insect pest of Salicaceae plants worldwide. By targeting six potential genes, including actin (ACT), signal recognition particle protein 54k (SRP54), heat shock protein 70 (HSC70), shibire (SHI), cactus (CACT), and soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAP), we found that feeding bacteria-expressed dsRNA successfully triggered the silencing of the five target genes tested and the suppression of ACT and SRP54 genes caused significant mortality. Our results suggest that the oral delivery of bacteria-expressed dsRNA is a potential alternative for the control of P. versicolora, and that ACT and SRP54 genes are the potent targets.
Collapse
|
13
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|