1
|
Maingi FM, Akutse KS, Ajene IJ, Omolo KM, Khamis FM. Immunological responses and gut microbial shifts in Phthorimaea absoluta exposed to Metarhizium anisopliae isolates under different temperature regimes. Front Microbiol 2023; 14:1258662. [PMID: 38029135 PMCID: PMC10666277 DOI: 10.3389/fmicb.2023.1258662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The invasive tomato leaf miner, Phthorimaea absoluta, is conventionally controlled through chemical insecticides. However, the rise of insecticide resistance has necessitated sustainable and eco-friendly alternatives. Entomopathogenic fungi (EPF) have shown potential due to their ability to overcome resistance and have minimal impact on non-target organisms. Despite this potential, the precise physiological mechanisms by which EPF acts on insect pests remain poorly understood. To attain a comprehensive understanding of the complex physiological processes that drive the successful control of P. absoluta adults through EPF, we investigated the impacts of different Metarhizium anisopliae isolates (ICIPE 665, ICIPE 20, ICIPE 18) on the pest's survival, cellular immune responses, and gut microbiota under varying temperatures. The study unveiled that ICIPE 18 caused the highest mortality rate among P. absoluta moths, while ICIPE 20 exhibited the highest significant reduction in total hemocyte counts after 10 days at 25°C. Moreover, both isolates elicited notable shifts in P. absoluta's gut microbiota. Our findings revealed that ICIPE 18 and ICIPE 20 compromised the pest's defense and physiological functions, demonstrating their potential as biocontrol agents against P. absoluta in tomato production systems.
Collapse
Affiliation(s)
- Felix Muendo Maingi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit for Environment Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Inusa Jacob Ajene
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Kevin Mbogo Omolo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
2
|
Kaya S. Immunosuppressive effect of Plantago major on the innate immunity of Galleria mellonella. PeerJ 2023; 11:e15982. [PMID: 37753175 PMCID: PMC10519203 DOI: 10.7717/peerj.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Greater plantain (Plantago major), a medicinal plant species, is used in folk medicine for the treatment of various diseases in many countries of the world. Different studies have shown that the bioactive components contained in the plant have a dual effect. It was also reported that in vivo and in vitro studies showed different results. The aim of the study was to determine the effects of P. major extract on the hemocyte-mediated and humoral immune responses of the invertebrate model organism Galleria mellonella, which is widely used in immune studies. In the evaluation of these effects, total hemocyte count, encapsulation, melanization, phenoloxidase, superoxide dismutase, catalase, malondialdehyde and total protein parameters were evaluated. The results of the study showed that the total hemocyte count did not change, that the encapsulation responses decreased, that the melanization responses and phenoloxidase activity increased and that the superoxide dismutase activity decreased. As a result, it was determined that high doses of P. major had negative effects on cell-mediated immunity and antioxidant defence and positive effects on melanization. High doses and continuous use of P. major may have negative effects on living things.
Collapse
Affiliation(s)
- Serhat Kaya
- Department of Biology/Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
3
|
Diksha, Singh S, Mahajan E, Sohal SK. Immunomodulatory, cyto-genotoxic, and growth regulatory effects of nerolidol on melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Toxicon 2023; 233:107248. [PMID: 37562702 DOI: 10.1016/j.toxicon.2023.107248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/25/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Insects have evolved a robust immune system consisting of humoral and cellular branches and their orchestrated response enables insect to defend against exogenous stressors. Exploration of underlying immune mechanisms of insect pest under allelochemical stress can give us new insights on insect pest management. In this study, nerolidol, a plant sesquiterpene was evaluated for its insecticidal, growth regulatory, immunomodulatory, and cyto-genotoxic effects against melon fruit fly, Zeugodacus cucurbitae (Coquillett). First, second, and third instar larvae of Z. cucurbitae were fed on artificial diet containing different concentrations (5, 25, 125, 625, and 3125 ppm) of nerolidol. Results revealed a significant reduction in pupation and adult emergence as well as prolongation of developmental duration of treated larvae. Decline in growth indices showed remarkable growth inhibitory effects of nerolidol. Pupal weight and nutritional parameters viz. Larval weight gain, food assimilated, and mean relative growth rate declined after treatment. Immunological studies on second instar larvae depicted a drop in total hemocyte count and variations in proportions of plasmatocytes and granulocytes of LC30 and LC50 treated larvae. Phenoloxidase activity in nerolidol treated larvae initially increased but was suppressed after 72 h of treatment. The frequency of viable hemocytes decreased and that of apoptotic and necrotic hemocytes increased with both the lethal concentrations of nerolidol. Comet assay revealed a significant damage to DNA of hemocytes. The findings of the current study indicate that nerolidol exerts its insecticidal action through growth regulation, immunomodulation, and cyto-genotoxicity thus revealing its potential to be used as biopesticide against Z. cucurbitae.
Collapse
Affiliation(s)
- Diksha
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Evani Mahajan
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Satwinder Kaur Sohal
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
4
|
Radwan MA, Gad AF. Exploring the mechanisms underlying the toxicity of boric acid against the land snail, Theba pisana. PEST MANAGEMENT SCIENCE 2023; 79:1692-1701. [PMID: 36585830 DOI: 10.1002/ps.7342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/20/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The land snail, Theba pisana, is one of the most important threats facing agriculture around the globe. Boric acid (BOA) is currently used as a safe alternative molluscicide to control land snails in sustainable agriculture, but the mechanisms of toxicity have not yet been investigated. The present study characterizes the lethal and sub-lethal (0.5 and 1 mg g-1 ) toxic effects of BOA-contaminated food for 14 days by examining physiological, biochemical and histopathological indicators in T. pisana to understand the mechanisms underlying its toxic action. RESULTS BOA was found to be lethal against T. pisana with LC50 values of 24.7 and 8.05 mg g-1 after 3 and 7 days of exposure, respectively. BOA sublethal concentrations led to a significant reduction in food consumption and growth of snails after 14 days of exposure. BOA also caused a significant increase in testosterone levels, whereas an opposite effect was observed in estradiol levels. An increase in progesterone levels in snails in the 0.5 mg g-1 BOA group and a decrease in the 1 mg g-1 BOA group were observed after all exposure times. Moreover, the lipid peroxidation level and catalase activity were elevated, whereas acetylcholinesterase activity was inhibited in the treated snails. Alteration in glutathione-S-transferase activity was noticed after exposure to both sublethal concentrations. In addition, BOA induced histopathological alterations in the digestive gland of T. pisana. CONCLUSION Our findings provide novel insights into how physiological, biochemical and histopathological alterations can be used to explore the mechanisms underlying BOA toxicity against snails. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohamed A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
| | - Amira F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
5
|
Cardoso CP, da Silva Nunes G, da Silva JLF, de Mello Prado R, de Farias Guedes VH, de Bortoli SA, de Souza Júnior JP. Silicon and boron on cauliflower induce attractiveness and mortality in Plutella xylostella. PEST MANAGEMENT SCIENCE 2022; 78:5432-5436. [PMID: 36057848 DOI: 10.1002/ps.7165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Boron (B) and silicon (Si) are fundamental for brassica nutrition, and in some cases, they have potential as an insecticide. Plutella xylostella (L.) (Lepidoptera: Plutellidae), one of the most economically important agricultural pests, is difficult to control due to the resistance to insecticides and the absence of alternative control methods. RESULTS Cauliflower leaves sprayed with Si and B showed a higher concentration of the beneficial element and micronutrient, respectively. When evaluating the firmness of the cauliflower leaves, it was found that the plants with leaf sprayings of Si and B did not differ statistically from each other. However, they showed an increase in firmness, in relation to the plants of the control treatment. Leaf spraying of Si and B on cauliflower did not influence the number of eggs/female. The attractiveness index showed that both Si and B applications stimulated the presence of second instar larvae, being more stimulating in relation to the control treatment. However, the use of Si and B in isolation showed a positive result, since it caused high mortality in diamondback moth larvae compared to the control treatment. CONCLUSION The application of both foliar fertilizers positively affects the attractiveness index of the larvae, being attractive; however, both Si and B caused high mortality (~80%). The results showed that Si and B have the potential to control P. xylostella and serve as a basis for alternative pest management in brassica crops. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Camila Pires Cardoso
- Laboratory of Biology and Insect Rearing, Department of Agricultural Production Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Gilmar da Silva Nunes
- Laboratory of Biology and Insect Rearing, Department of Agricultural Production Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - José Lucas Farias da Silva
- Laboratory of Plant Nutrition, Sector of Soil Science and Fertilizer, Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Sector of Soil Science and Fertilizer, Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Victor Hugo de Farias Guedes
- Laboratory of Plant Nutrition, Sector of Soil Science and Fertilizer, Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Sergio Antonio de Bortoli
- Laboratory of Biology and Insect Rearing, Department of Agricultural Production Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| | - Jonas Pereira de Souza Júnior
- Laboratory of Plant Nutrition, Sector of Soil Science and Fertilizer, Department of Agricultural Sciences, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, Brazil
| |
Collapse
|
6
|
Gwokyalya R, Herren JK, Weldon CW, Khamis FM, Ndlela S, Mohamed SA. Differential immune responses in new and old fruit fly-parasitoid associations: Implications for their management. Front Physiol 2022; 13:945370. [PMID: 36091407 PMCID: PMC9458847 DOI: 10.3389/fphys.2022.945370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), and marula fruit fly, Ceratitis cosyra (Walker), are major fruit-infesting tephritids across sub-Saharan Africa. Biological control of these pests using parasitic wasps has been widely adopted but with varying levels of success. Most studies investigating host-parasitoid models have focused on functional and evolutionary aspects leaving a knowledge gap about the physiological mechanisms underpinning the efficacy of parasitoids as biocontrol agents of tephritids. To better understand these physiological mechanisms, we investigated changes in the cellular immune responses of C. cosyra and B. dorsalis when exposed to the parasitic wasps, Diachasmimorpha longicaudata (Ashmaed) and Psyttalia cosyrae (Wilkinson). We found that B. dorsalis was more resistant to parasitisation, had a higher hemocyte count, and encapsulated more parasitoid eggs compared to C. cosyra, achieving up to 100% encapsulation when exposed to P. cosyrae. Exposing B. dorsalis to either parasitoid species induced the formation of a rare cell type, the giant multinucleated hemocyte, which was not observed in C. cosyra. Furthermore, compared to P. cosyrae-parasitized larvae, those of both host species parasitized by D. longicaudata had lower encapsulation rates, hemocyte counts and spreading abilities and yielded a higher number of parasitoid progeny with the highest parasitoid emergence (72.13%) recorded in C. cosyra. These results demonstrate that cellular immune responses are central to host-parasitoid interaction in tephritid fruit flies and further suggest that D. longicaudata presents greater potential as a biocontrol agent of B. dorsalis and C. cosyra in horticultural cropping systems.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Rehemah Gwokyalya, , ; Samira Abuelgasim Mohamed,
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Samira Abuelgasim Mohamed
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- *Correspondence: Rehemah Gwokyalya, , ; Samira Abuelgasim Mohamed,
| |
Collapse
|
7
|
Duman Erbaş E, Gwokyalya R, Altuntaş H, Kutrup B. Screening the immunotoxicity of different food preservative agents on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Drug Chem Toxicol 2022:1-11. [PMID: 35758106 DOI: 10.1080/01480545.2022.2091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunotoxic effects of sodium benzoate (SB, E211), sodium nitrate (SNa, E251), and sodium nitrite (SNi, E250), a few of the most common food preservatives, on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae were investigated in this study. The last instar larvae were used for all experimental analyses. For this purpose, median lethal doses of SB, SNa, and SNi were applied to the larvae by the force-feeding method. We found that force-feeding G. mellonella larvae with SB, SNa, and SNi significantly reduced the larval total hemocyte counts, prohemocyte, and granulocyte ratios but increased plasmatocyte, spherulocyte, and oenocyte ratios, as well as the hemocyte mitotic indices and micronucleus frequency. The spreading ability of hemocytes and hemocyte-mediated immune responses were lower in the SB, SNa-, and SNi-treated larval groups compared to controls. Apoptotic indices were higher in all larval groups treated with food preservatives, but increments in necrotic indices were only significantly higher in SNi-treated larvae compared to controls. Our research shows that SB, SNa, and SNi have immunotoxic and cytotoxic potential on G. mellonella larvae. Thus, we suggest that G. mellonella larvae can be used as preliminary in vivo models to screen the immunotoxic effects of food preservative agents.
Collapse
Affiliation(s)
- Emine Duman Erbaş
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - Bilal Kutrup
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Tunçsoy B, Sugeçti S, Büyükgüzel E, Özalp P, Büyükgüzel K. Effects of Copper Oxide Nanoparticles on Immune and Metabolic Parameters of Galleria mellonella L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:412-420. [PMID: 34002248 DOI: 10.1007/s00128-021-03261-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, the effects of dietary CuO nanoparticles (NPs) on metabolic enzyme activity, biochemical parameters, and total (THC) and differential hemocyte counts (DHC) were determined in Galleria mellonella larvae. Using concentrations of 10, 100, 1000 mg/L and the LC10 and LC30 levels of CuO NPs, we determined that the NPs negatively impacted metabolic enzyme activity and biochemical parameters in larval hemolymph. Compared with the control, the greatest increase in THC was observed in larvae fed on diets with 100 mg L-1 of CuO NPs. Plasmatocytes and granulocytes were among the most numerous hemocytes in all treatments. These results suggest that dietary CuO NPs effects the metabolic metabolism and immune system of G. mellonella and provide indirect information regarding the toxic effects of CuO NPs in mammalian immune system given similarities between mammalian blood cells and insect hemocytes.
Collapse
Affiliation(s)
- Benay Tunçsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Pınar Özalp
- Department of Biology, Faculty of Science and Art, Çukurova University, Adana, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
9
|
|
10
|
Eskin A, Bozdoğan H. Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes. Drug Chem Toxicol 2021; 45:1870-1880. [PMID: 33657947 DOI: 10.1080/01480545.2021.1892948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, 38 nm-sized and flake-like-shaped CuO NPs (10, 50, 100, 150 μg/10 µl/larva) were force-fed to fourth instar (100 ± 20 mg) Galleria mellonella (Lepidoptera: Pyralidae) larvae under the laboratory conditions. The effects of CuO NPs on total hemocyte counts (THCs) and the frequency of viable, mitotic, apoptotic, necrotic, and micronucleated hemocyte indices were detected with the double-staining protocol by hematoxylin and eosin (H&E) stains. The total hemocyte counts (THCs) did not change significantly in G. mellonella larvae at all concentrations for 24 h and 72 h post-force-feeding treatment. The ratio of viable hemocytes decreased at 50, 100, 150 μg/10 µl concentrations in 24 h and 72 h when compared with untreated larvae. The increases in the percentage of mitotic and micronucleated hemocytes were statistically significant at 150 μg/10 µl in 24 h. The results showed that high concentrations (>10 μg/10 µl) of CuO NPs increased the percentage of apoptotic hemocytes in 24 h. 100 and 150 μg/10 µl of CuO NPs caused a significant increase in the percentage of necrotic hemocytes in 24 h. The decrease in the percentage of mitotic hemocytes at 10, 100 and 150 μg/10 µl in 72 h was statistically significant. Apoptotic hemocytes increased and were found to be higher at 100 and 150 μg/10 µl of CuO NPs in 72 h in comparison with the untreated larvae. Finally, we observed an increase in the percentage of necrotic hemocytes at 150 μg/10 µl in 72 h.
Collapse
Affiliation(s)
- A Eskin
- Department of Crop Animal Production, Avanos Vocational School, University of Nevşehir Hacı Bektaş Veli, Nevşehir, Turkey
| | - Hakan Bozdoğan
- Department of Plant and Animal Production, Vocational School of Technical Sciences, University of Kırşehir Ahi Evran, Kırşehir, Turkey
| |
Collapse
|
11
|
Senior NJ, Titball RW. Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Res 2021; 9:1392. [PMID: 33520196 PMCID: PMC7818094 DOI: 10.12688/f1000research.27504.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 02/02/2023] Open
Abstract
Galleria mellonella larvae are increasingly used to study the mechanisms of virulence of microbial pathogens and to assess the efficacy of antimicrobials. The G. mellonella model can faithfully reproduce many aspects of microbial disease which are seen in mammals, and therefore allows a reduction in the use of mammals. The model is now being widely used by researchers in universities, research institutes and industry. An attraction of the model is the interaction between pathogen and host. Hemocytes are specialised phagocytic cells which resemble neutrophils in mammals and play a major role in the response of the larvae to infection. However, the detailed interactions of hemocytes with pathogens is poorly understood, and is complicated by the presence of different sub-populations of cells. We report here a method for the isolation of hemocytes from Galleria mellonella. A needle-stick injury of larvae, before harvesting, markedly increased the recovery of hemocytes in the hemolymph. The majority of the hemocytes recovered were granulocyte-like cells. The hemocytes survived for at least 7 days in culture at either 28°C or 37°C. Pre-treatment of larvae with antibiotics did not enhance the survival of the cultured hemocytes. Our studies highlight the importance of including sham injected, rather than un-injected, controls when the G. mellonella model is used to test antimicrobial compounds. Our method will now allow investigations of the interactions of microbial pathogens with insect hemocytes enhancing the value of G. mellonella as an alternative model to replace the use of mammals, and for studies on hemocyte biology.
Collapse
Affiliation(s)
- Nicola J. Senior
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Richard W. Titball
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK,
| |
Collapse
|
12
|
Altuntaş H, Gwokyalya R, Bayram N. Immunotoxic effects of force-fed ethephon on model organism Galleria mellonella (Lepidoptera: Pyralidae). Drug Chem Toxicol 2021; 45:1761-1768. [PMID: 33461353 DOI: 10.1080/01480545.2021.1873358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Incorporation of chemical substances like plant growth regulators in agricultural practices to boost production has become inevitable; thus, they have accumulated in the environment in tremendous amounts. However, due to their nonselective nature, they affect several components of the ecosystem like the invertebrates. In this study, therefore, the effects of force-fed Ethephon on the cellular mediated immune system of model insect G. mellonella larvae were investigated using the lethal doses LD25 and LD50 determined in a previous study. Our results indicated that treating G. mellonella larvae with ETF significantly reduces the number of circulating hemocytes and also reduces the number of live cells while increasing the apoptotic and necrotic cell ratios at all doses. Additionally, ETF increased the number of spherulocytes, oenocytes and prohemocytes as well as the mitotic indices while reducing the number of granulocytes in circulation but did not alter the number of plasmatocytes. Moreover, the in vivo encapsulation assays showed significant suppression of the encapsulation abilities of the ETF treated G. mellonella larval hemocytes at both ETF doses. The findings of the current study are indicative of the ecotoxic effects that may arise due to ETF and that its usage should be controlled or monitored as it poses major threats to several organisms and the ecosystem at large.
Collapse
Affiliation(s)
- Hülya Altuntaş
- Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| | - Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Nur Bayram
- Instıtute of Graduate Programs, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
13
|
Senior NJ, Titball RW. Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Res 2020; 9:1392. [PMID: 33520196 PMCID: PMC7818094 DOI: 10.12688/f1000research.27504.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 10/10/2023] Open
Abstract
Galleria mellonella larvae are increasingly used to study the mechanisms of virulence of microbial pathogens and to assess the efficacy of antimicrobials. The G. mellonella model can faithfully reproduce many aspects of microbial disease which are seen in mammals, and therefore allows a reduction in the use of mammals. The model is now being widely used by researchers in universities, research institutes and industry. An attraction of the model is the interaction between pathogen and host. Hemocytes are specialised phagocytic cells which resemble neutrophils in mammals and play a major role in the response of the larvae to infection. However, the detailed interactions of hemocytes with pathogens is poorly understood, and is complicated by the presence of different sub-populations of cells. We report here a method for the isolation of hemocytes from Galleria mellonella. A needle-stick injury of larvae, before harvesting, markedly increased the recovery of hemocytes in the hemolymph. The majority of the hemocytes recovered were granulocyte-like cells. The hemocytes survived for at least 7 days in culture at either 28°C or 37°C. Pre-treatment of larvae with antibiotics did not enhance the survival of the cultured hemocytes. Our studies highlight the importance of including sham injected, rather than un-injected, controls when the G. mellonella model is used to test antimicrobial compounds. Our method will now allow investigations of the interactions of microbial pathogens with insect hemocytes enhancing the value of G. mellonella as an alternative model to replace the use of mammals, and for studies on hemocyte biology.
Collapse
Affiliation(s)
- Nicola J. Senior
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Richard W. Titball
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| |
Collapse
|