1
|
Stone EA, Cutrona KJ, Miller SJ. Asymmetric Catalysis upon Helically Chiral Loratadine Analogues Unveils Enantiomer-Dependent Antihistamine Activity. J Am Chem Soc 2020; 142:12690-12698. [PMID: 32579347 DOI: 10.1021/jacs.0c03904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Analogues of the conformationally dynamic Claritin (loratadine) and Clarinex (desloratadine) scaffolds have been enantio- and chemoselectively N-oxidized using an aspartic acid containing peptide catalyst to afford stable, helically chiral products in up to >99:1 er. The conformational dynamics and enantiomeric stability of the N-oxide products have been investigated experimentally and computationally with the aid of crystallographic data. Furthermore, biological assays show that rigidifying the core structure of loratadine and related analogues through N-oxidation affects antihistamine activity in an enantiomer-dependent fashion. Computational docking studies illustrate the observed activity differences.
Collapse
Affiliation(s)
- Elizabeth A Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Kara J Cutrona
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
2
|
Kumar A, Pasam VR, Thakur RK, Singh M, Singh K, Shukla M, Yadav A, Dogra S, Sona C, Umrao D, Jaiswal S, Ahmad H, Rashid M, Singh SK, Wahajuddin M, Dwivedi AK, Siddiqi MI, Lal J, Tripathi RP, Yadav PN. Novel Tetrahydroquinazolinamines as Selective Histamine 3 Receptor Antagonists for the Treatment of Obesity. J Med Chem 2019; 62:4638-4655. [PMID: 30998358 DOI: 10.1021/acs.jmedchem.9b00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The histamine 3 receptor (H3R) is a presynaptic receptor, which modulates several neurotransmitters including histamine and various essential physiological processes, such as feeding, arousal, cognition, and pain. The H3R is considered as a drug target for the treatment of several central nervous system disorders. We have synthesized and identified a novel series of 4-aryl-6-methyl-5,6,7,8-tetrahydroquinazolinamines that act as selective H3R antagonists. Among all the synthesized compounds, in vitro and docking studies suggested that the 4-methoxy-phenyl-substituted tetrahydroquinazolinamine compound 4c has potent and selective H3R antagonist activity (IC50 < 0.04 μM). Compound 4c did not exhibit any activity on the hERG ion channel and pan-assay interference compounds liability. Pharmacokinetic studies showed that 4c crosses the blood brain barrier, and in vivo studies demonstrated that 4c induces anorexia and weight loss in obese, but not in lean mice. These data reveal the therapeutic potential of 4c as an anti-obesity candidate drug via antagonizing the H3R.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chandan Sona
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| | | | | | | | | | | | | | | | | | | | - Rama Pati Tripathi
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India.,National Institute of Pharmaceutical Education and Research Raebareli , New Transit Campus, Bijnor Road , Sarojani Nagar, Near CRPF Base Camp, Lucknow , 226002 Uttar Pradesh , India
| | - Prem N Yadav
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| |
Collapse
|
3
|
Jończyk J, Malawska B, Bajda M. Hybrid approach to structure modeling of the histamine H3 receptor: Multi-level assessment as a tool for model verification. PLoS One 2017; 12:e0186108. [PMID: 28982153 PMCID: PMC5629032 DOI: 10.1371/journal.pone.0186108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand-receptor interactions for reference compounds.
Collapse
Affiliation(s)
- Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| |
Collapse
|
4
|
Sader S, Cai J, Muller ACG, Wu C. Can human allergy drug fexofenadine, an antagonist of histamine (H 1) receptor, be used to treat dog and cat? Homology modeling, docking and molecular dynamic Simulation of three H 1 receptors in complex with fexofenadine. J Mol Graph Model 2017; 75:106-116. [PMID: 28544909 DOI: 10.1016/j.jmgm.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/17/2023]
Abstract
Fexofenadine, a potent antagonist to human histamine 1 (H1) receptor, is a non-sedative third generation antihistamine that is widely used to treat various human allergic conditions such as allergic rhinitis, conjunctivitis and atopic dermatitis. Encouragingly, it's been successfully used to treat canine atopic dermatitis, this supports the notion that it might have a great potential for treating other canine allergic conditions and other mammal pets such as dog. Regrettably, while there is a myriad of studies conducted on the interactions of antihistamines with human H1 receptor, the similar studies on non-human pet H1 are considerably scarce. The published studies using the first and second generation antihistamines drugs have shown that the antihistamine response is varied and unpredictable. Thus, to probe its efficacy on pet, the homology models of dog and cat H1 receptors were built based on the crystal structure of human H1 receptor bound to antagonist doxepin (PDB 3RZE) and fexofenadine was subsequently docked to human, dog and cat H1 receptors. The docked complexes are then subjected to 1000ns molecular dynamics (MD) simulations with explicit membrane. Our calculated MM/GBSA binding energies indicated that fexofenadine binds comparably to the three receptors; and our MD data also showed the binding poses, structural and dynamic features among three receptors are very similar. Therefore, our data supported the application of fexofenadine to the H1 related allergic conditions of dog and cat. Nonetheless, subtle systemic differences among human, dog and cat H1 receptors were also identified. Clearly, there is still a space to develop a more selective, potent and safe antihistamine alternatives such as Fexofenadine for dog or cat based on these differences. Our computation approach might provide a fast and economic way to predict if human antihistamine drugs can also be safely and efficaciously administered to animals.
Collapse
Affiliation(s)
- Safaa Sader
- Department Chemistry & Biochemistry and Department of Translational Biomedical Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA
| | - Jun Cai
- Department Chemistry & Biochemistry and Department of Translational Biomedical Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA
| | - Anna C G Muller
- Department Chemistry & Biochemistry and Department of Translational Biomedical Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA
| | - Chun Wu
- Department Chemistry & Biochemistry and Department of Translational Biomedical Sciences, College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
5
|
Naporra F, Gobleder S, Wittmann HJ, Spindler J, Bodensteiner M, Bernhardt G, Hübner H, Gmeiner P, Elz S, Strasser A. Dibenzo[b,f][1,4]oxazepines and dibenzo[b,e]oxepines: Influence of the chlorine substitution pattern on the pharmacology at the H 1R, H 4R, 5-HT 2AR and other selected GPCRs. Pharmacol Res 2016; 113:610-625. [PMID: 27697645 DOI: 10.1016/j.phrs.2016.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022]
Abstract
Inspired by VUF6884 (7-Chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine), reported as a dual H1/H4 receptor ligand (pKi: 8.11 (human H1R (hH1R)), 7.55 (human H4R (hH4R))), four known and 28 new oxazepine and related oxepine derivatives were synthesised and pharmacologically characterized at histamine receptors and selected aminergic GPCRs. In contrast to the oxazepine series, within the oxepine series, the new compounds showed high affinity to the hH1R (pKi: 6.8-8.7), but no or moderate affinity to the hH4R (pKi:≤5.3). For one oxepine derivative (1-(2-Chloro-6,11-dihydrodibenzo[b,e]oxepin-11-yl)-4-methylpiperazine), the enantiomers were separated and the R-enantiomer was identified as the eutomer at the hH1R (pKi: 8.83 (R), 7.63 (S)) and the guinea-pig H1R (gpH1R) (pKi: 8.82 (R), 7.41 (S)). Molecular dynamic studies suggest that the tricyclic core of the compounds is bound in a similar mode into the binding pocket, as described for doxepine in the hH1R crystal structure. Moreover, docking studies of all oxepine derivatives at the hH1R indicate that the oxygen and the position of the chlorine in the tricyclic core determines, if the R- or the S-enantiomer is the eutomer. For some of the oxazepines and oxepines the affinity to other aminergic GPCRs is in the same range as to hH1R or hH4R, thus, those compounds have to be classified as dirty drugs. However, one oxazepine derivative (3,7-Dichloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine was identified as dual hH1/h5-HT2A receptor ligand (pKi: 9.23 (hH1R), 8.74 (h5-HT2AR), ≤7 at other analysed GPCRs), whereas one oxepine derivative (1-(3,8-Dichloro-6,11-dihydrodibenzo[b,e]oxepin-11-yl)-4-methylpiperazine) was identified as selective hH1R antagonist (pKi: 8.44 (hH1R), ≤6.7 at other analyzed GPCRs). Thus, the pharmacological results suggest that the oxazepine/oxepine moiety and additionally the chlorine substitution pattern toggles receptor selectivity and specificity.
Collapse
Affiliation(s)
- Franziska Naporra
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Susanne Gobleder
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Julia Spindler
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Günther Bernhardt
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Sigurd Elz
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
6
|
Bains W. Low potency toxins reveal dense interaction networks in metabolism. BMC SYSTEMS BIOLOGY 2016; 10:19. [PMID: 26897366 PMCID: PMC4761184 DOI: 10.1186/s12918-016-0262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/29/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. RESULTS Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. CONCLUSIONS The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved.
Collapse
Affiliation(s)
- William Bains
- Earth, Atmospheric and Planetary Sciences Department, MIT, 77 Mass Avenue, Cambridge, MA, 02139, USA.
- Rufus Scientific Ltd., 37 The Moor, Melbourn, Royston, Herts, SG8 6ED, UK.
| |
Collapse
|
7
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
8
|
Sadek B, Stark H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology 2015; 106:56-73. [PMID: 26581501 DOI: 10.1016/j.neuropharm.2015.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022]
Abstract
Histamine, a biogenic amine, is considered as a principle mediator of multiple physiological effects through binding to its H1, H2, H3, and H4 receptors (H1-H4Rs). Currently, the HRs have gained attention as important targets for the treatment of several diseases and disorders ranging from allergy to Alzheimer's disease and immune deficiency. Accordingly, medicinal chemistry studies exploring histamine-like molecules and their physicochemical properties by binding and interacting with the four HRs has led to the development of a diversity of agonists and antagonists that display selectivity for each HR subtype. An overview on H1-R4Rs and developed ligands representing some key steps in development is provided here combined with a short description of structure-activity relationships for each class. Main chemical diversities, pharmacophores, and pharmacological profiles of most innovative H1-H4R agonists and antagonists are highlighted. Therefore, this overview should support the rational choice for the optimal ligand selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates.
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Sato M, Hirokawa T. Extended Template-Based Modeling and Evaluation Method Using Consensus of Binding Mode of GPCRs for Virtual Screening. J Chem Inf Model 2014; 54:3153-61. [DOI: 10.1021/ci500499j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Miwa Sato
- Department
of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
- Molecular
Profiling Research Center of Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
- Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Takatsugu Hirokawa
- Molecular
Profiling Research Center of Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| |
Collapse
|
10
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
11
|
Wittmann HJ, Seifert R, Strasser A. Influence of the N-terminus and the E2-loop onto the binding kinetics of the antagonist mepyramine and the partial agonist phenoprodifen to H1R. Biochem Pharmacol 2011; 82:1910-8. [DOI: 10.1016/j.bcp.2011.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
12
|
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S. Structure of the human histamine H1 receptor complex with doxepin. Nature 2011; 475:65-70. [PMID: 21697825 PMCID: PMC3131495 DOI: 10.1038/nature10236] [Citation(s) in RCA: 627] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/01/2011] [Indexed: 11/09/2022]
Abstract
The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H(1) receptor (H(1)R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H(1)R complex with doxepin, a first-generation H(1)R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp 428(6.48), a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H(1)R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys 191(5.39) and/or Lys 179(ECL2), both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H(1)R antagonist specificity against H(1)R.
Collapse
Affiliation(s)
- Tatsuro Shimamura
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mitsunori Shiroishi
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Simone Weyand
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Hirokazu Tsujimoto
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Graeme Winter
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | - Vsevolod Katritch
- Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vadim Cherezov
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wei Liu
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gye Won Han
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Takuya Kobayashi
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Raymond C. Stevens
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - So Iwata
- Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045 Japan
| |
Collapse
|
13
|
Reed T, Lushington GH, Xia Y, Hirakawa H, Travis DM, Mure M, Scott EE, Limburg J. Crystal structure of histamine dehydrogenase from Nocardioides simplex. J Biol Chem 2010; 285:25782-91. [PMID: 20538584 PMCID: PMC2919140 DOI: 10.1074/jbc.m109.084301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 05/24/2010] [Indexed: 11/06/2022] Open
Abstract
Histamine dehydrogenase (HADH) isolated from Nocardioides simplex catalyzes the oxidative deamination of histamine to imidazole acetaldehyde. HADH is highly specific for histamine, and we are interested in understanding the recognition mode of histamine in its active site. We describe the first crystal structure of a recombinant form of HADH (HADH) to 2.7-A resolution. HADH is a homodimer, where each 76-kDa subunit contains an iron-sulfur cluster ([4Fe-4S](2+)) and a 6-S-cysteinyl flavin mononucleotide (6-S-Cys-FMN) as redox cofactors. The overall structure of HADH is very similar to that of trimethylamine dehydrogenase (TMADH) from Methylotrophus methylophilus (bacterium W3A1). However, some distinct differences between the structure of HADH and TMADH have been found. Tyr(60), Trp(264), and Trp(355) provide the framework for the "aromatic bowl" that serves as a trimethylamine-binding site in TMADH is comprised of Gln(65), Trp(267), and Asp(358), respectively, in HADH. The surface Tyr(442) that is essential in transferring electrons to electron-transfer flavoprotein (ETF) in TMADH is not conserved in HADH. We use this structure to propose the binding mode for histamine in the active site of HADH through molecular modeling and to compare the interactions to those observed for other histamine-binding proteins whose structures are known.
Collapse
Affiliation(s)
| | | | - Yan Xia
- Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045
| | | | | | | | | | | |
Collapse
|
14
|
Straßer A, Wittmann HJ. In silico analysis of the histaprodifen induced activation pathway of the guinea-pig histamine H1-receptor. J Comput Aided Mol Des 2010; 24:759-69. [DOI: 10.1007/s10822-010-9372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
15
|
Straßer A, Wittmann HJ. 3D-QSAR CoMFA Study to Predict Orientation of Suprahistaprodifens and Phenoprodifens in the Binding-Pocket of Four Histamine H1-Receptor Species. Mol Inform 2010; 29:333-41. [DOI: 10.1002/minf.200900036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/22/2010] [Indexed: 11/08/2022]
|
16
|
Shah JR, Mosier PD, Roth BL, Kellogg GE, Westkaemper RB. Synthesis, structure-affinity relationships, and modeling of AMDA analogs at 5-HT2A and H1 receptors: structural factors contributing to selectivity. Bioorg Med Chem 2009; 17:6496-504. [PMID: 19700330 PMCID: PMC3088504 DOI: 10.1016/j.bmc.2009.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/06/2009] [Accepted: 08/09/2009] [Indexed: 11/15/2022]
Abstract
Histamine H(1) and serotonin 5-HT(2A) receptors present in the CNS have been implicated in various neuropsychiatric disorders. 9-Aminomethyl-9,10-dihydroanthracene (AMDA), a conformationally constrained diarylalkyl amine derivative, has affinity for both of these receptors. A structure-affinity relationship (SAFIR) study was carried out studying the effects of N-methylation, varying the linker chain length and constraint of the aromatic rings on the binding affinities of the compounds with the 5-HT(2A) and H(1) receptors. Homology modeling of the 5-HT(2A) and H(1) receptors suggests that AMDA and its analogs, the parent of which is a 5-HT(2A) antagonist, can bind in a fashion analogous to that of classical H(1) antagonists whose ring systems are oriented toward the fifth and sixth transmembrane helices. The modeled orientation of the ligands are consistent with the reported site-directed mutagenesis data for 5-HT(2A) and H(1) receptors and provide a potential explanation for the selectivity of ligands acting at both receptors.
Collapse
Affiliation(s)
- Jitesh R. Shah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Philip D. Mosier
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Richard B. Westkaemper
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298 USA
| |
Collapse
|
17
|
Strasser A. Molecular modeling and QSAR-based design of histamine receptor ligands. Expert Opin Drug Discov 2009; 4:1061-75. [DOI: 10.1517/17460440903264972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Straßer A, Wittmann HJ, Seifert R. Ligand-Specific Contribution of the N Terminus and E2-Loop to Pharmacological Properties of the Histamine H1-Receptor. J Pharmacol Exp Ther 2008; 326:783-91. [DOI: 10.1124/jpet.108.140913] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Jongejan A, Lim HD, Smits RA, de Esch IJP, Haaksma E, Leurs R. Delineation of agonist binding to the human histamine H4 receptor using mutational analysis, homology modeling, and ab initio calculations. J Chem Inf Model 2008; 48:1455-63. [PMID: 18553960 DOI: 10.1021/ci700474a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A three-dimensional homology model of the human histamine H 4 receptor was developed to investigate the binding mode of a series of structurally diverse H 4-agonists, i.e. histamine, clozapine, and the recently described selective, nonimidazole agonist VUF 8430. Mutagenesis studies and docking of these ligands in a rhodopsin-based homology model revealed two essential points of interactions in the binding pocket, i.e. Asp3.32 and Glu5.46 (Ballesteros-Weinstein numbering system). It is postulated that Asp3.32 interacts in its anionic state, whereas Glu5.46 interacts in its neutral form. The hypothesis was tested with the point mutations D3.32N and E5.46Q. For the D3.32N no binding affinity toward any of the ligands could be detected. This is in sharp contrast to the E5.46Q mutant, which discriminates between various ligands. The affinity of histamine-like ligands was decreased approximately a 1000-fold, whereas the affinity of all other ligands remained virtually unchanged. The proposed model for agonist binding as well as ab initio calculations for histamine and VUF 8430 explain the observed differences in binding to the H 4R mutants. These studies provide a molecular understanding for the action of a variety of H 4 receptor-ligands. The resulting H 4 receptor model will be the basis for the development of new H 4 receptor-ligands.
Collapse
Affiliation(s)
- Aldo Jongejan
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Straßer A, Striegl B, Wittmann HJ, Seifert R. Pharmacological Profile of Histaprodifens at Four Recombinant Histamine H1Receptor Species Isoforms. J Pharmacol Exp Ther 2007; 324:60-71. [DOI: 10.1124/jpet.107.129601] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 2007; 17:237-53. [PMID: 17496723 DOI: 10.1097/fpc.0b013e3280119d62] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The zebrafish is an ideally suited vertebrate animal model for large-scale genetic screens and is emerging as a model organism in pharmacological and behavioral research. We investigated the effects of sedative hypnotics commonly used in humans on zebrafish locomotor activity and identified the corresponding genomic and receptor binding targets. METHODS We studied radioreceptor binding and behavioral responses to compounds with known sedative hypnotic properties representing multiple pharmacological classes. These included GABAergic hypnotics such as benzodiazepines, barbiturates, and baclofen; alpha-2 adrenergic agonists; and histaminergic H1 antagonists. An automated system was used to quantify behavioral effects. Zebrafish homologs of histamine receptor H1, gamma-amino-n-butyric acid type A (alpha-subunit), and gamma-amino-n-butyric acid type B (1 and 2) receptor genes were identified through translating queries of the zebrafish Zv4 database with human receptor protein sequences. A pilot screen of 154 N-ethyl-N-nitroso-urea-mutagenized F2 families was conducted with pentobarbital, flurazepam and mepyramine. RESULTS Radioreceptor binding studies revealed high affinity binding sites for known gamma-amino-n-butyric acid type A, gamma-amino-n-butyric acid type B, and histaminergic ligands. Drug immersion of 5-7-day-old larvae reduced mobility and, in some cases, produced a complete state of unresponsive immobility similar to anesthesia. These effects were dose-dependent and rapidly reversible in water. As established in mammals, (R)-baclofen was more active behaviorally and had higher affinity in binding studies when compared with (S)-baclofen. In this model, (S)-baclofen only partially reduced activity at high dose and blocked (R)-baclofen behavioral hypnotic effects. Genomic sequences with high similarity to the corresponding pharmacological targets were identified, but no mutants were found in the pilot screen. CONCLUSIONS These results demonstrate conservation of gene, protein and function for many established sedative hypnotic pathways. The results indicate feasibility of conducting large-scale pharmacogenomic screens to isolate novel proteins modulating susceptibility to hypnotic compounds in a vertebrate system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baclofen/chemistry
- Baclofen/pharmacology
- Behavior, Animal/drug effects
- Binding Sites/genetics
- Conserved Sequence
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Larva/drug effects
- Larva/metabolism
- Larva/physiology
- Molecular Sequence Data
- Motor Activity/drug effects
- Motor Activity/genetics
- Pharmacogenetics
- Phylogeny
- Radioligand Assay
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Histamine H1/drug effects
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Sequence Homology, Amino Acid
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish/physiology
Collapse
Affiliation(s)
- Corinne Renier
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ratnala VRP, Kiihne SR, Buda F, Leurs R, de Groot HJM, DeGrip WJ. Solid-State NMR Evidence for a Protonation Switch in the Binding Pocket of the H1 Receptor upon Binding of the Agonist Histamine. J Am Chem Soc 2007; 129:867-72. [PMID: 17243823 DOI: 10.1021/ja0652262] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein coupled receptors (GPCRs) represent a major superfamily of transmembrane receptor proteins that are crucial in cellular signaling and are major pharmacological targets. While the activity of GPCRs can be modulated by agonist binding, the mechanisms that link agonist binding to G protein coupling are poorly understood. Here we present a method to accurately examine the activity of ligands in their bound state, even at low affinity, by solid-state NMR dipolar correlation spectroscopy and confront this method with the human H1 receptor. The analysis reveals two different charge states of the bound agonist, dicationic with a charged imidazole ring and monocationic with a neutral imidazole ring, with the same overall conformation. The combination of charge difference and pronounced heterogeneity agrees with converging evidence that the active and inactive states of the GPCR represent a dynamic equilibrium of substates and that proton transfer between agonist and protein side chains can shift this equilibrium by stabilizing the active receptor population relative to the inactive one. In fact, the data suggest a global functional analogy between H1 receptor activation and the meta I/meta II charge/discharge equilibrium in rhodopsin (GPCR). This corroborates current ideas on unifying principles in GPCR structure and function.
Collapse
Affiliation(s)
- Venkata R P Ratnala
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Gao F, Handl H, Vagner J, Hruby V, Gillies R. Convenient and Efficient Synthesis of a Lanthanide-Coordinated, Diethylene Triamine Pentaacetic Acid Labeled Biopolymer as an Assay for the Cholecystokinin B Receptor. J Appl Polym Sci 2007; 106:2683-2688. [PMID: 19562042 DOI: 10.1002/app.26910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To develop an assay for the cholecystokinin B receptor with an Eu(3+)-labeled cholecystokinin peptide via a diethylene triamine pentaacetic acid chelating linker, a commercial dianhydride diethylene triamine pentaacetic acid precursor was directly attached to the N-terminus of cholecystokinin peptides by a solid-phase synthesis method with a satisfactory yield and purity after reverse-phase high-performance liquid chromatography separation. Lanthanide was then coordinated to the peptide via a diethylene triamine pentaacetic acid bifunctional agent. This method is a useful approach to the large-scale synthesis of lanthanide(3+)-coordinated, diethylene triamine pentaacetic acid labeled biopolymers. This research provides not only a simple and convenient method for the preparation of lanthanide-based peptide ligand libraries but also possible lanthanide-based high-throughput screening of peptide receptors with a timeresolved fluorescence assay system. Five biopolymers were synthesized and characterized with high-resolution electrospray ionization in this study.
Collapse
Affiliation(s)
- F Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China 400044
| | | | | | | | | |
Collapse
|
24
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|