1
|
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, Bojarska J, Ziora ZM. Tetrazoles: A multi-potent motif in drug design. Eur J Med Chem 2024; 279:116870. [PMID: 39316842 DOI: 10.1016/j.ejmech.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Muzi Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; Institute for Health and Sport, Immunology and Translational Research, Victoria University, Werribee, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| | - John Matsoukas
- New Drug, Patras Science Park, 26500 Patras, Greece; Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, AB, T2N 4N1, Canada
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland.
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Thevinoic acid fluoroalkyl esters. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
3
|
Marton J, Fekete A, Cumming P, Hosztafi S, Mikecz P, Henriksen G. Diels-Alder Adducts of Morphinan-6,8-Dienes and Their Transformations. Molecules 2022; 27:2863. [PMID: 35566212 PMCID: PMC9102320 DOI: 10.3390/molecules27092863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
6,14-ethenomorphinans are semisynthetic opiate derivatives containing an ethylene bridge between positions 6 and 14 in ring-C of the morphine skeleton that imparts a rigid molecular structure. These compounds represent an important family of opioid receptor ligands in which the 6,14-etheno bridged structural motif originates from a [4 + 2] cycloaddition of morphinan-6,8-dienes with dienophiles. Certain 6,14-ethenomorphinans having extremely high affinity for opioid receptors are often non-selective for opioid receptor subtypes, but this view is now undergoing some revision. The agonist 20R-etorphine and 20R-dihydroetorphine are several thousand times more potent analgesics than morphine, whereas diprenorphine is a high-affinity non-selective antagonist. The partial agonist buprenorphine is used as an analgesic in the management of post-operative pain or in substitution therapy for opiate addiction, sometimes in combination with the non-selective antagonist naloxone. In the context of the current opioid crisis, we communicated a summary of several decades of work toward generating opioid analgesics with lesser side effects or abuse potential. Our summary placed a focus on Diels-Alder reactions of morphinan-6,8-dienes and subsequent transformations of the cycloadducts. We also summarized the pharmacological aspects of radiolabeled 6,14-ethenomorphinans used in molecular imaging of opioid receptors.
Collapse
Affiliation(s)
- János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Anikó Fekete
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (A.F.); (P.M.)
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, 3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Sándor Hosztafi
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Högyes Endre utca 9, H-1092 Budapest, Hungary;
| | - Pál Mikecz
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (A.F.); (P.M.)
| | - Gjermund Henriksen
- Norwegian Medical Cyclotron Centre Ltd., Sognsvannsveien 20, N-0372 Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Institute of Physics, University of Oslo, Sem Sælands vei 24, N-0371 Oslo, Norway
| |
Collapse
|
4
|
Comparative Study of the Synthetic Approaches and Biological Activities of the Bioisosteres of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles over the Past Decade. Molecules 2022; 27:molecules27092709. [PMID: 35566059 PMCID: PMC9102899 DOI: 10.3390/molecules27092709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles are well-known pharmacophores for many medicinally important drugs. Throughout the past 10 years, 1,3,4-oxa-/thiadiazole nuclei have been very attractive to researchers for drug design, synthesis, and the study of their potential activity towards a variety of diseases, including microbial and viral infections, cancer, diabetes, pain, and inflammation. This work is an up-to-date comparative study that identifies the differences between 1,3,4-thiadiazoles and 1,3,4-oxadiazoles concerning their methods of synthesis from different classes of starting compounds under various reaction conditions, as well as their biological activities and structure–activity relationship.
Collapse
|
5
|
Rana P, Dixit R, Sharma S, Dutta S, Yadav S, Sharma A, Kaushik B, Rana P, Adholeya A, Sharma RK. Enhanced catalysis through structurally modified hybrid 2-D boron nitride nanosheets comprising of complexed 2-hydroxy-4-methoxybenzophenone motif. Sci Rep 2021; 11:24429. [PMID: 34952896 PMCID: PMC8709843 DOI: 10.1038/s41598-021-03992-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Tuning the structural architecture of the pristine two dimensional hexagonal boron nitride (h-BN) nanosheets through rational surface engineering have proven advantageous in the fabrication of competent catalytic materials. Inspired by the performance of h-BN based nanomaterials in expediting key organic transformations, we channelized our research efforts towards engineering the inherent surface properties of the exclusively stacked h-BN nanosheets through the incorporation of a novel competent copper complex of a bidentate chelating ligand 2-hydroxy-4-methoxybenzophenone (BP). Delightfully, this hybrid nanomaterial worked exceptionally well in boosting the [3 + 2] cycloaddition reaction of azide and nitriles, providing a facile access to a diverse variety of highly bioactive tetrazole motifs. A deep insight into the morphology of the covalently crafted h-BN signified the structural integrity of the exfoliated h-BN@OH nanosheets that exhibited lamellar like structures possessing smooth edges and flat surface. This interesting morphology could also be envisioned to augment the catalysis by allowing the desired surface area for the reactants and thus tailoring their activity. The work paves the way towards rational design of h-BN based nanomaterials and adjusting their catalytic potential by the use of suitable complexes for promoting sustainable catalysis, especially in view of the fact that till date only a very few h-BN nanosheets based catalysts have been devised.
Collapse
Affiliation(s)
- Pooja Rana
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Ranjana Dixit
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Shivani Sharma
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Sriparna Dutta
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Sneha Yadav
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Aditi Sharma
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Bhawna Kaushik
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Pooja Rana
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurugram, 122102, India.
| | - Rakesh K. Sharma
- grid.8195.50000 0001 2109 4999Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
6
|
Finke AO, Ravaeva MY, Krasnov VI, Cheretaev IV, Chuyan EN, Baev DS, Shults EE. Cross‐Coupling‐Cyclocondensation Reaction Sequence to Access a Library of Ring‐C Bridged Pyrimidino‐tetrahydrothebaines and Pyrimidinotetrahydrooripavines. ChemistrySelect 2021. [DOI: 10.1002/slct.202101790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anastasija O. Finke
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Marina Y. Ravaeva
- Biology and chemical department V.I. Vernadsky Crimean Federal University Republic of Crimea Vernadskogo Avenue, 4 Simferopol 295007 Russian Federation
| | - Vyacheslav I. Krasnov
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Igor V. Cheretaev
- Biology and chemical department V.I. Vernadsky Crimean Federal University Republic of Crimea Vernadskogo Avenue, 4 Simferopol 295007 Russian Federation
| | - Elena N. Chuyan
- Biology and chemical department V.I. Vernadsky Crimean Federal University Republic of Crimea Vernadskogo Avenue, 4 Simferopol 295007 Russian Federation
| | - Dmitry S. Baev
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| | - Elvira E. Shults
- Laboratory of Medicinal Chemistry Laboratory of Pharmaceutical reseach Laboratory of magnetic radiospectroscopy Novosibirsk institute of Organic Chemistry Lavrentyev Ave 9 630090 Novosibirsk Russian Federation
| |
Collapse
|
7
|
Sandulenko IV, Ambartsumyan AA, Moiseev SK. Fluorinated and [ 18F]fluorinated morphinan based opioid ligands. Org Biomol Chem 2020; 18:5533-5557. [PMID: 32672314 DOI: 10.1039/d0ob00619j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is well documented in the literature that opioid receptors modulate a large number of physiological functions (pain perception, breathing, mood, gastrointestinal motility, etc.). Natural opiates and 4,5α-epoxymorphinan derivatives obtained by their chemical modifications, which are frequently referred to as semi-synthetic opioids, are among the most important types of opioid ligands. On the other hand, fluorinated compounds have a remarkable record in medicinal chemistry providing developmental candidates for therapeutic applications. The reasons are very similar steric impacts of hydrogen and fluorine along with the influence of substituting fluorine for hydrogen in the molecules of exogenous compounds on their lipophilicity, metabolism, conformation and other properties. This review focuses on the functionalization of 4,5α-epoxymorphinans and their derivatives via substitutions with fluorine or fluorine-containing groups in the search for improved pharmacological profile opioid ligands and 18F-containing opioid receptor radioligands for PET. These functionalizations are typically associated with substituents either at the C(3)-O, C(6)-O, and N(17) positions of the 4,5α-epoxymorphinan core or at C(7) in the thebaine based Diels-Alder type adducts. The syntheses resulted in the preparation of both single fluorinated derivatives or short sets of fluorinated derivatives and the families of fluorine-containing opioids allowing, in principle, the structure-activity relationship studies.
Collapse
Affiliation(s)
- Irina V Sandulenko
- Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, V-334, Moscow 119991, Russia.
| | - Asmik A Ambartsumyan
- Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, V-334, Moscow 119991, Russia.
| | - Sergey K Moiseev
- Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, V-334, Moscow 119991, Russia.
| |
Collapse
|
8
|
Li S, Wang HX, Liu HY, Jing F, Fu XY, Li CW, Shi YP, Chen BQ. Synthesis and biological evaluation of novel disulfides incorporating 1,3,4-thiadiazole scaffold as promising antitumor agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Popova EA, Trifonov RE, Ostrovskii VA. Tetrazoles for biomedicine. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4864] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Padvi SA, Dalal DS. Choline chloride–ZnCl2: Recyclable and efficient deep eutectic solvent for the [2+3] cycloaddition reaction of organic nitriles with sodium azide. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1285033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Swapnil A. Padvi
- School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| | - Dipak S. Dalal
- School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra, India
| |
Collapse
|
11
|
Esirden İ, Tanç M, Supuran CT, Kaya M. Microwave assisted synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene skeletons as inhibitors of the carbonic anhydrases isoforms I, II, IV and VII. Bioorg Med Chem Lett 2016; 27:86-89. [PMID: 27876475 DOI: 10.1016/j.bmcl.2016.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/08/2016] [Accepted: 11/11/2016] [Indexed: 11/20/2022]
Abstract
The synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene scaffold by using microwave (MW) assisted techniques is reported in this study. These synthesized hybrid compounds were assayed for the inhibition of carbonic anhydrase (CA, EC 4.2.1.1). The inhibitory activities were determined against three cytosolic human isoforms (hCA I, II and VII) and one membrane-associated (hCA IV) isoform. Some of the newly synthesized sulfonamides showed micromolar to nanomolar inhibitory activity against these enzymes.
Collapse
Affiliation(s)
- İbrahim Esirden
- Chemistry Department, Faculty of Arts and Science, Dumlupınar University, 43100 Kütahya, Turkey
| | - Muhammet Tanç
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, 50019 Sesto Fiorentino (Florence), Italy.
| | - Muharrem Kaya
- Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, 43100 Kütahya, Turkey.
| |
Collapse
|
12
|
Altıntop MD, Can ÖD, Demir Özkay Ü, Kaplancıklı ZA. Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Antinociceptive Agents. Molecules 2016; 21:molecules21081004. [PMID: 27490523 PMCID: PMC6273905 DOI: 10.3390/molecules21081004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
In the current work, new 1,3,4-thiadiazole derivatives were synthesized and investigated for their antinociceptive effects on nociceptive pathways of nervous system. The effects of these compounds against mechanical, thermal and chemical stimuli were evaluated by tail-clip, hot-plate and acetic acid-induced writhing tests, respectively. In addition, activity cage was performed to assess the locomotor activity of animals. The obtained data indicated that compounds 3b, 3c, 3d, 3e, 3g and 3h increased the reaction times of mice both in the hot-plate and tail-clip tests, indicating the centrally mediated antinociceptive activity of these compounds. Additionally, the number of writhing behavior was significantly decreased by the administration of compounds 3a, 3c, 3e and 3f, which pointed out the peripherally mediated antinociceptive activity induced by these four compounds. According to the activity cage tests, compounds 3a, 3c and 3f significantly decreased both horizontal and vertical locomotor activity of mice. Antinociceptive behavior of these three compounds may be non-specific and caused by possible sedative effect or motor impairments.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey.
| |
Collapse
|
13
|
Esirden İ, Erken E, Kaya M, Sen F. Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00864f] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monodisperse Pt NPs@rGO catalyst showed excellent yield and the shortest reaction time for the synthesis of 5-substituted 1H-tetrazoles.
Collapse
Affiliation(s)
- İbrahim Esirden
- Chemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- Evliya Çelebi Campus
- 43100 Kütahya
| | - Esma Erken
- Biochemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- Evliya Çelebi Campus
- 43100 Kütahya
| | - Muharrem Kaya
- Biochemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- Evliya Çelebi Campus
- 43100 Kütahya
| | - Fatih Sen
- Biochemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- Evliya Çelebi Campus
- 43100 Kütahya
| |
Collapse
|
14
|
Esirden İ, Başar E, Kaya M. facile, highly efficient and novel method for synthesis of 5-substituted 1H-tetrazoles catalysed by copper(I) chloride. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe present study on tetrazole compounds, which have a wide area of application, proposes a new, simple and highly effective method. A series of 5-substituted 1H-tetrazoles were synthesised in DMF via the [3 + 2] cycloaddition reaction, in which different aryl nitriles with sodium azide were used and copper(I) chloride served as a catalyst. Short reaction times, high yields and simple procedures rendered this method attractive and useful for the organic synthesis of 5-substituted 1H-tetrazoles. A further advantage was the use of an environmentally friendly catalyst.
Collapse
|
15
|
Erken E, Esirden İ, Kaya M, Sen F. A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv 2015. [DOI: 10.1039/c5ra11426h] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Monodisperse Pt NPs@AC catalyst showed excellent yield, one of the shortest reaction time for the synthesis of 5-substituted 1H-tetrazoles under the microwave irradiation.
Collapse
Affiliation(s)
- Esma Erken
- Biochemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- 43100 Kütahya
- Turkey
| | - İbrahim Esirden
- Chemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- 43100 Kütahya
- Turkey
| | - Muharrem Kaya
- Biochemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- 43100 Kütahya
- Turkey
| | - Fatih Sen
- Biochemistry Department
- Faculty of Arts and Science
- Dumlupınar University
- 43100 Kütahya
- Turkey
| |
Collapse
|