1
|
SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
2
|
Esmer Yİ, Çınar E, Başaran E. Design, Docking, Synthesis and Biological Evaluation of Novel Nicotinohydrazone Derivatives as Potential Butyrylcholinesterase Enzyme Inhibitor. ChemistrySelect 2022. [DOI: 10.1002/slct.202202771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf İslam Esmer
- Department of Chemistry Graduate Education Institute Batman University 72060 Batman Turkey
| | - Ercan Çınar
- Department of Nursing, Faculty of Health Sciences Batman University 72060 Batman Turkey
| | - Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences Batman University 72060 Batman Turkey
| |
Collapse
|
3
|
Mohajer F, Soltani HasanKiadeh F, Mohammadi Ziarani G, Zandiyeh M, Badiei A, Varma RS. Greener assembly of Pyrano[3,4-b]pyran derivative as a novel Hg2+ ion chemosensor. OPTICAL MATERIALS: X 2022; 15:100182. [DOI: 10.1016/j.omx.2022.100182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
4
|
Sadafi Kohnehshahri M, Chehardoli G, Bahiraei M, Akbarzadeh T, Ranjbar A, Rastegari A, Najafi Z. Novel tacrine-based acetylcholinesterase inhibitors as potential agents for the treatment of Alzheimer's disease: Quinolotacrine hybrids. Mol Divers 2021; 26:489-503. [PMID: 34491490 DOI: 10.1007/s11030-021-10307-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
A new series of quinolotacrine hybrids including cyclopenta- and cyclohexa-quinolotacrine derivatives were designed, synthesized, and assessed as anti-cholinesterase (ChE) agents. The designed derivatives indicated higher inhibitory effect on the acetylcholinesterase (AChE) with IC50 values of 0.285-100 µM compared to butyrylcholinesterase (BChE) with IC50 values of > 100 µM. Of these compounds, cyclohexa-quinolotacrine hybrids displayed a little better anti-AChE activity than cyclopenta-quinolotacrine hybrids. Compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6m) including 3-hydroxyphenyl and cyclohexane ring moieties exhibited the best AChE inhibitory activity with IC50 value of 0.285 µM. The kinetic and molecular docking studies indicated that compound 6m occupied both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE as a mixed inhibitor. Using neuroprotective assay against H2O2-induced cell death in PC12 cells, the compound 6h illustrated significant protection among the assessed compounds. In silico ADME studies estimated good drug-likeness for the designed compounds. As a result, these quinolotacrine hybrids can be very encouraging AChE inhibitors to treat Alzheimer's disease. A novel series of quinolotacrine hybrids were designed, synthesized, and evaluated against AChE and BChE enzymes as potential agents for the treatment of AD. The hybrids showed good to significant inhibitory activity against AChE (0.285-100 μM) compared to butyrylcholinesterase (BChE) with IC50 values of > 100 μM. Among them, compound 8-amino-7-(3-hydroxyphenyl)-5,7,9,10,11,12-hexahydro-6H-pyrano[2,3-b:5,6-c'] diquinolin-6-one (6 m) bearing 3-hydroxyphenyl moiety and cyclohexane ring exhibited the highest anti-AChE activity with IC50 value of 0.285 μM. The kinetic and molecular docking studies illustrated that compound 6 m is a mixed inhibitor and binds to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE.
Collapse
Affiliation(s)
- Mehrdad Sadafi Kohnehshahri
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoomeh Bahiraei
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rastegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Almeida MP, Kock FVC, de Jesus HCR, Carlos RM, Venâncio T. Probing the acetylcholinesterase inhibitory activity of a novel Ru(II) polypyridyl complex and the supramolecular interaction by (STD)-NMR. J Inorg Biochem 2021; 224:111560. [PMID: 34399231 DOI: 10.1016/j.jinorgbio.2021.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Currently, acetylcholinesterase (AChE) inhibitors are the only anti-Alzheimer drugs commercially available. Despite their wide use those drugs are all dose dependent and their effect last for no longer than two years, with several side effects. The search of novel acetylcholinesterase (AChE) inhibitors remains as the main scientific route. Here we describe the synthesis, characterization, biological activity and an NMR binding-target study of a novel cis-[Ru(Bpy)2(EtPy)2]2+, (RuEtPy), Bpy = 2,2'-bipyridine and EtPy = 4,2-Ethylamino-pyridine) as a potential AChE inhibitor. The classic Ellman's colorimetric assay suggests that the RuEtPy exhibits a high inhibitory activity, following a competitive mechanism, with a remarkable low inhibition constant (Ki ≈ 16.8 μM), together with a IC50 = 39 μM. Hence, we have studied the spatial interactions for this novel candidate towards the human acetylcholinesterase (hAChE) using saturation transfer difference (STD)-NMR, in order to describe the mechanism of the interaction. NMR binding-target results shows that the 4,2-Ethylamino-Pyridine group is spatially closer to hAChE surface chemical arrangement than 2,2' bipyridine counterpart, exerting an efficient intermolecular interaction, with a low dissociation constant (KD ≈ 55 μM), probing that 4,2-Ethylamino-pyridine motif plays a key role in the inhibitory action.
Collapse
Affiliation(s)
- Marlon P Almeida
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Flávio V C Kock
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil
| | - Hugo C R de Jesus
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil; Centre for Blood Research, Life Sciences Centre, 4.420 Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia (UBC), Vancouver, Canada
| | - Rose M Carlos
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Tiago Venâncio
- Chemistry Department of Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Babaee S, Chehardoli G, Akbarzadeh T, Zolfigol MA, Mahdavi M, Rastegari A, Homayouni Moghadam F, Najafi Z. Design, Synthesis, and Molecular Docking of Some Novel Tacrine Based Cyclopentapyranopyridine- and Tetrahydropyranoquinoline-Kojic Acid Derivatives as Anti-Acetylcholinesterase Agents. Chem Biodivers 2021; 18:e2000924. [PMID: 33861892 DOI: 10.1002/cbdv.202000924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A novel series of tacrine based cyclopentapyranopyridine- and tetrahydropyranoquinoline-kojic acid derivatives were designed, synthesized, and evaluated as anti-cholinesterase agents. The chemical structures of all target compounds were characterized by 1 H-NMR, 13 C-NMR, and elemental analyses. The synthesized compounds mostly inhibited acetylcholinesterase enzyme (AChE) with IC50 values of 4.18-48.71 μM rather than butyrylcholinesterase enzyme (BChE) with IC50 values of >100 μM. Among them, cyclopentapyranopyridine-kojic acid derivatives showed slightly better AChE inhibitory activity compared to tetrahydropyranoquinoline-kojic acid. The compound 10-amino-2-(hydroxymethyl)-11-(4-isopropylphenyl)-7,8,9,11-tetrahydro-4H-cyclopenta[b]pyrano[2',3' : 5,6]pyrano[3,2-e]pyridin-4-one (6f) bearing 4-isopropylphenyl moiety and cyclopentane ring exhibited the highest anti-AChE activity with IC50 value of 4.18 μM. The kinetic study indicated that the compound 6f acts as a mixed inhibitor and the molecular docking studies also illustrated that the compound 6f binds to both the catalytic site (CS) and peripheral anionic site (PAS) of AChE. The compound 6f showed moderate neuroprotective properties against H2 O2 -induced cytotoxicity in PC12 cells. The theoretical ADME study also predicted good drug-likeness for the compound 6f. Based on these results, the compound 6f seems to be a very promising AChE inhibitor for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Gholamabbas Chehardoli
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Mahdavi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 8165131378, Iran
| | - Arezoo Rastegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Farshad Homayouni Moghadam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| |
Collapse
|
7
|
Ghafary S, Ghobadian R, Mahdavi M, Nadri H, Moradi A, Akbarzadeh T, Najafi Z, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Design, synthesis, and evaluation of novel cinnamic acid-tryptamine hybrid for inhibition of acetylcholinesterase and butyrylcholinesterase. Daru 2020; 28:463-477. [PMID: 32372339 PMCID: PMC7704987 DOI: 10.1007/s40199-020-00346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Acetylcholine deficiencies in hippocampus and cortex, aggregation of β-amyloid, and β-secretase over activity have been introduced as main reasons in pathogenesis of Alzheimer's disease. METHODS Colorimetric Ellman's method was used for determination of IC50 value in AChE and BChE inhibitory activity. The kinetic studies, neuroprotective and β-secretase inhibitory activities, evaluation of inhibitory potency on β-amyloid (Aβ) aggregations induced by AChE, and docking study were performed for prediction of the mechanism of action. RESULT AND DISCUSSION A new series of cinnamic acids-tryptamine hybrid was designed, synthesized, and evaluated as dual cholinesterase inhibitors. These compounds demonstrated in-vitro inhibitory activities against acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE). Among of these synthesized compounds, (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(3,4-dimethoxyphenyl)acrylamide (5q) demonstrated the most potent AChE inhibitory activity (IC50 = 11.51 μM) and (E)-N-(2-(1H-indol-3-yl)ethyl)-3-(2-chlorophenyl)acrylamide (5b) were the best anti-BChE (IC50 = 1.95 μM) compounds. In addition, the molecular modeling and kinetic studies depicted 5q and 5b were mixed type inhibitor and bound with both the peripheral anionic site (PAS) and catalytic sites (CAS) of AChE and BChE. Moreover, compound 5q showed mild neuroprotective in PC12 cell line and weak β-secretase inhibitory activities. This compound also inhibited aggregation of β-amyloid (Aβ) in self-induced peptide aggregation test at concentration of 10 μM. CONCLUSION It is worth noting that both the kinetic study and the molecular modeling of 5q and 5b depicted that these compounds simultaneously interacted with both the catalytic active site and the peripheral anionic site of AChE and BChE. These findings match with those resulted data from the enzyme inhibition assay. Graphical abstract A new series of cinnamic-derived acids-tryptamine hybrid derivatives were designed, synthesized and evaluated as butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors and neuroprotective agents. Compound 5b and 5q, as the more potent compounds, interacted with both the peripheral site and the choline binding site having mixed type inhibition. Results suggested that derivatives have a therapeutic potential for the treatment of AD.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Ghobadian
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Department of Medicinal Chemistry, School of Pharmacy, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015-Present: Synthesis and Biological Activity. Int J Mol Sci 2020; 21:ijms21175965. [PMID: 32825138 PMCID: PMC7504404 DOI: 10.3390/ijms21175965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Acetylcholinesterase is an important biochemical enzyme in that it controls acetylcholine-mediated neuronal transmission in the central nervous system, contains a unique structure with two binding sites connected by a gorge region, and it has historically been the main pharmacological target for treatment of Alzheimer's disease. Given the large projected increase in Alzheimer's disease cases in the coming decades and its complex, multifactorial nature, new drugs that target multiple aspects of the disease at once are needed. Tacrine, the first acetylcholinesterase inhibitor used clinically but withdrawn due to hepatotoxicity concerns, remains an important starting point in research for the development of multitarget-directed acetylcholinesterase inhibitors. This review highlights tacrine-based, multitarget-directed acetylcholinesterase inhibitors published in the literature since 2015 with a specific focus on merged compounds (i.e., compounds where tacrine and a second pharmacophore show significant overlap in structure). The synthesis of these compounds from readily available starting materials is discussed, along with acetylcholinesterase inhibition data, relative to tacrine, and structure activity relationships. Where applicable, molecular modeling, to elucidate key enzyme-inhibitor interactions, and secondary biological activity is highlighted. Of the numerous compounds identified, there is a subset with promising preliminary screening results, which should inspire further development and future research in this field.
Collapse
|
9
|
Ghafary S, Nadri H, Mahdavi M, Moradi A, Akbarzadeh T, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Anticholinesterase Activity of Cinnamic Acids Derivatives: In Vitro, In Vivo Biological Evaluation, and Docking Study. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666191224094049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Acetylcholine deficiency in the hippocampus and cortex, aggregation of
amyloid-beta, and beta-secretase overactivity have been introduced as the main reasons in the
formation of Alzheimer’s disease.
Objective:
A new series of cinnamic derived acids linked to 1-benzyl-1,2,3-triazole moiety were
designed, synthesized, and evaluated for their acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) inhibitory activities.
Methods:
Colorimetric Ellman’s method was used for the determination of IC50% of AchE and
BuChE inhibitory activity. The kinetic studies, neuroprotective activity, BACE1 inhibitory activity,
evaluation of inhibitory potency on Aβ1-42 self-aggregation induced by AchE, and docking study
were performed for studying the mechanism of action.
Results:
Some of the synthesized compounds, compound 7b-4 ((E)-3-(3,4-dimethoxyphenyl)-N-((1-
(4-fluorobenzyl)-1H-1,2,3-triazole-4-yl) methyl) acrylamide) depicted the most potent
acetylcholinesterase inhibitory activities ( IC50 = 5.27 μM ) and compound 7a-1 (N- ( (1- benzyl-
1H- 1, 2, 3- triazole - 4-yl) methyl) cinnamamide) demonstrated the most potent
butyrylcholinesterase inhibitory activities (IC50 = 1.75 μM). Compound 7b-4 showed
neuroprotective and β-secretase (BACE1) inhibitory activitiy. In vivo studies of compound 7b-4 in
Scopolamine-induced dysfunction confirmed memory improvement.
Conculusion:
It should be noted that molecular modeling (compounds 7b-4 and 7a-1) and kinetic
studies (compounds 7a-1 and 7b-4) showed that these synthesis compounds interacted
simultaneously with both the catalytic site (CS) and peripheral anionic site (PAS) of AChE and
BuChE.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Saeedi M, Safavi M, Allahabadi E, Rastegari A, Hariri R, Jafari S, Bukhari SNA, Mirfazli SS, Firuzi O, Edraki N, Mahdavi M, Akbarzadeh T. Thieno[2,3-b]pyridine amines: Synthesis and evaluation of tacrine analogs against biological activities related to Alzheimer's disease. Arch Pharm (Weinheim) 2020; 353:e2000101. [PMID: 32657467 DOI: 10.1002/ardp.202000101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/06/2022]
Abstract
In search of safer tacrine analogs, various thieno[2,3-b]pyridine amine derivatives were synthesized and evaluated for their inhibitory activity against cholinesterases (ChEs). Among the synthesized compounds, compounds 5e and 5d showed the highest activity towards acetylcholinesterase and butyrylcholinesterase, with IC50 values of 1.55 and 0.23 µM, respectively. The most active ChE inhibitors (5e and 5d) were also candidates for further complementary assays, such as kinetic and molecular docking studies as well as studies on inhibitory activity towards amyloid-beta (βA) aggregation and β-secretase 1, neuroprotectivity, and cytotoxicity against HepG2 cells. Our results indicated efficient anti-Alzheimer's activity of the synthesized compounds.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Emad Allahabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafari
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Saudi Arabia
| | - Seyedeh S Mirfazli
- Department of Medicinal Chemistry, Iran University of Medical Sciences, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
12
|
Design, synthesis, and in vitro evaluation of novel 1,3,4-oxadiazolecarbamothioate derivatives of Rivastigmine as selective inhibitors of BuChE. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02475-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Zarei A, Yarie M, Zolfigol MA, Niknam K. Synthesis of a novel bifunctional oxyammonium‐based ionic liquid: Application for the synthesis of pyrano[4,3‐b]pyrans and tetrahydrobenzo[b]pyrans. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azra Zarei
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr Iran
| |
Collapse
|
14
|
Mollazadeh M, Mohammadi-Khanaposhtani M, Zonouzi A, Nadri H, Najafi Z, Larijani B, Mahdavi M. New benzyl pyridinium derivatives bearing 2,4-dioxochroman moiety as potent agents for treatment of Alzheimer’s disease: Design, synthesis, biological evaluation, and docking study. Bioorg Chem 2019; 87:506-515. [DOI: 10.1016/j.bioorg.2019.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
|
15
|
Mahdavi M, Hariri R, Mirfazli SS, Lotfian H, Rastergari A, Firuzi O, Edraki N, Larijani B, Akbarzadeh T, Saeedi M. Synthesis and Biological Activity of Some Benzochromenoquinolinones: Tacrine Analogs as Potent Anti-Alzheimer's Agents. Chem Biodivers 2019; 16:e1800488. [PMID: 30720917 DOI: 10.1002/cbdv.201800488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a well-known neurodegenerative disorder affecting millions of old people worldwide and the corresponding epidemiological data emphasize the importance of the disease. As AD is a multifactorial illness, various single target directed drugs that have reached clinical trials have failed. Therefore, various factors associated with outset of AD have been considered in targeted drug discovery. In this work, various benzochromenoquinolinones were synthesized and evaluated for their cholinesterase and BACE1 inhibitory activities as well as neuroprotective and metal-chelating properties. Among the synthesized compounds, 14-amino-13-(3-nitrophenyl)-2,3,4,13-tetrahydro-1H-benzo[6,7]chromeno[2,3-b]quinoline-7,12-dione (6m) depicted the best inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 s of 0.86 and 6.03 μm, respectively. Also, the compound could inhibit β-secretase 1 (BACE1) with IC50 =19.60 μm and showed metal chelating ability toward Cu2+ , Fe2+ , and Zn2+ . In addition, docking study demonstrated desirable interactions of compound 6m with amino acid residues characterizing AChE, BChE, and BACE1.
Collapse
Affiliation(s)
- Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran, University of Medical Sciences, Tehran, 1416753955, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Hania Lotfian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran, University of Medical Sciences, Tehran, 1416753955, Iran
| | - Arezoo Rastergari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran, University of Medical Sciences, Tehran, 1416753955, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71345-1978, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran, University of Medical Sciences, Tehran, 1416753955, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mina Saeedi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.,Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| |
Collapse
|
16
|
Rastegari A, Nadri H, Mahdavi M, Moradi A, Mirfazli SS, Edraki N, Moghadam FH, Larijani B, Akbarzadeh T, Saeedi M. Design, synthesis and anti-Alzheimer's activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg Chem 2018; 83:391-401. [PMID: 30412794 DOI: 10.1016/j.bioorg.2018.10.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a well-known neurodegenerative disorder affecting millions of old people worldwide and the corresponding epidemiological data highlights the significance of the disease. As AD is a multifactorial illness, various single-target directed drugs that have reached clinical trials have failed. Therefore, various factors associated with outset of AD have been considered in targeted drug discovery and development. In this work, a wide range of 1,2,3-triazole-chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase inhibitory activity. Among them, N-(1-benzylpiperidin-4-yl)-7-((1-(3,4-dimethylbenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-oxo-2H-chromene-3-carboxamide (11b) showed the best acetylcholinesterase inhibitory activity (IC50 = 1.80 µM), however, it was inactive toward butyrylcholinesterase. It should be noted that compound 11b was evaluated for its BACE1 inhibitory activity and calculated IC50 = 21.13 µM confirmed desired inhibitory activity. Also, this compound revealed satisfactory neuroprotective effect against H2O2-induced cell death in PC12 neurons at 50 µM as well as metal chelating ability toward Fe2+, Cu2+, and Zn2+ ions.
Collapse
Affiliation(s)
- Arezoo Rastegari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorg Chem 2018; 77:311-319. [DOI: 10.1016/j.bioorg.2018.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/25/2023]
|
18
|
Lashgari N, Mohammadi Ziarani G, Moradi R, Zandiyeh M. 4-Hydroxy-6-methyl-2-pyrone: A Versatile Synthon in the Synthesis of Heterocyclic Scaffolds via Multicomponent Reactions. HETEROCYCLES 2018. [DOI: 10.3987/rev-17-872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|