1
|
Fu J, Luo X, Lin M, Xiao Z, Huang L, Wang J, Zhu Y, Liu Y, Tao H. Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage. Mar Drugs 2023; 21:616. [PMID: 38132937 PMCID: PMC10745037 DOI: 10.3390/md21120616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.
Collapse
Affiliation(s)
- Jun Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zimin Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Jiaxi Wang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| |
Collapse
|
2
|
Peng BR, Zheng LG, Chen LY, El-Shazly M, Hwang TL, Su JH, Lee MH, Lai KH, Sung PJ. Nor-24-homoscalaranes, Neutrophilic Inflammatory Mediators from the Marine Sponge Lendenfeldia sp. Pharmaceuticals (Basel) 2023; 16:1258. [PMID: 37765066 PMCID: PMC10537518 DOI: 10.3390/ph16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The marine sponge Lendenfeldia sp., collected from the Southern waters of Taiwan, was subjected to chemical composition screening, resulting in the isolation of four new 24-homoscalarane compounds, namely lendenfeldaranes R-U (1-4). The structures and relative stereochemistry of the new metabolites 1-4 were assigned based on NMR studies. The absolute configurations of compounds 1-4 were determined by comparing the calculated and experimental values of specific optical rotation. The antioxidant and anti-inflammatory activities of the isolated compounds were assayed using superoxide anion generation and elastase release assays. These assays are used to determine neutrophilic inflammatory responses of respiratory burst and degranulation. Compounds 2 and 4 inhibited superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB) with IC50: 3.98-4.46 μM. Compounds 2 and 4 inhibited fMLP/CB-induced elastase release, with IC50 values ranging from 4.73 to 5.24 μM. These findings suggested that these new 24-homoscalarane compounds possess unique structures and potential anti-inflammatory activity.
Collapse
Affiliation(s)
- Bo-Rong Peng
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
| | - Li-Guo Zheng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan;
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.-R.P.); (L.-Y.C.); (M.-H.L.)
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
3
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Tewari U, Sharma D, Srivastava S, Kumar BK, Faheem, Murugesan S. Anti‐Tubercular Insights of Carbolines – A Decade Critique. ChemistrySelect 2021. [DOI: 10.1002/slct.202100181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Upasana Tewari
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Divya Sharma
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Shrey Srivastava
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Faheem
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| |
Collapse
|
5
|
Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PVT, Sharifi-Rad M, Mahady GB, Sharifi-Rad M, Masjedi MR, Lawal TO, Ayatollahi SA, Masjedi J, Sharifi-Rad R, Setzer WN, Sharifi-Rad M, Kobarfard F, Rahman AU, Choudhary MI, Ata A, Iriti M. Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnol Adv 2020; 44:107629. [PMID: 32896577 DOI: 10.1016/j.biotechadv.2020.107629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
Abstract
Tuberculosis is a highly infectious disease declared a global health emergency by the World Health Organization, with approximately one third of the world's population being latently infected with Mycobacterium tuberculosis. Tuberculosis treatment consists in an intensive phase and a continuation phase. Unfortunately, the appearance of multi drug-resistant tuberculosis, mainly due to low adherence to prescribed therapies or inefficient healthcare structures, requires at least 20 months of treatment with second-line, more toxic and less efficient drugs, i.e., capreomycin, kanamycin, amikacin and fluoroquinolones. Therefore, there exists an urgent need for discovery and development of new drugs to reduce the global burden of this disease, including the multi-drug-resistant tuberculosis. To this end, many plant species, as well as marine organisms and fungi have been and continue to be used in various traditional healing systems around the world to treat tuberculosis, thus representing a nearly unlimited source of active ingredients. Besides their antimycobacterial activity, natural products can be useful in adjuvant therapy to improve the efficacy of conventional antimycobacterial therapies, to decrease their adverse effects and to reverse mycobacterial multi-drug resistance due to the genetic plasticity and environmental adaptability of Mycobacterium. However, even if some natural products have still been investigated in preclinical and clinical studies, the validation of their efficacy and safety as antituberculosis agents is far from being reached, and, therefore, according to an evidence-based approach, more high-level randomized clinical trials are urgently needed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Patrick Valere Tsouh Fokou
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra LG 581, Ghana; Antimicrobial Agents Unit, LPMPS, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé 812, Cameroon
| | - Marzieh Sharifi-Rad
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Gail B Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Mohammad-Reza Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Temitope O Lawal
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA; Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Javid Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Razieh Sharifi-Rad
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663335 Zabol, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Iran
| | - Atta-Ur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex The University of Winnipeg, Winnipeg, Canada
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy.
| |
Collapse
|
6
|
Šudomová M, Shariati MA, Echeverría J, Berindan-Neagoe I, Nabavi SM, Hassan STS. A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on Mycobacterium tuberculosis and the Enzymes Implicated in Its Cell Wall: A Link Between Mycobacterial Infection and Autoimmune Diseases. Mar Drugs 2019; 17:md17110641. [PMID: 31739453 PMCID: PMC6891772 DOI: 10.3390/md17110641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
This study explored the antitubercular properties of fucoxanthin, a marine carotenoid, against clinical isolates of Mycobacterium tuberculosis (Mtb). Two vital enzymes involved in Mtb cell wall biosynthesis, UDP-galactopyranose mutase (UGM) and arylamine-N-acetyltransferase (TBNAT), were selected as drug targets to reveal the mechanism underlying the antitubercular effect of fucoxanthin. The obtained results showed that fucoxanthin showed a clear bacteriostatic action against the all Mtb strains tested, with minimum inhibitory concentrations (MIC) ranging from 2.8 to 4.1 µM, along with a good degree of selectivity index (ranging from 6.1 to 8.9) based on cellular toxicity evaluation compared with standard drug isoniazid (INH). The potent inhibitory actions of fucoxanthin and standard uridine-5’-diphosphate against UGM were recorded to be 98.2% and 99.2%, respectively. TBNAT was potently inactivated by fucoxanthin (half maximal inhibitory concentration (IC50) = 4.8 µM; 99.1% inhibition) as compared to INH (IC50 = 5.9 µM; 97.4% inhibition). Further, molecular docking approaches were achieved to endorse and rationalize the biological findings along with envisaging structure-activity relationships. Since the clinical evidence of the last decade has confirmed the correlation between bacterial infections and autoimmune diseases, in this study we have discussed the linkage between infection with Mtb and autoimmune diseases based on previous clinical observations and animal studies. In conclusion, we propose that fucoxanthin could demonstrate great therapeutic value for the treatment of tuberculosis by acting on multiple targets through a bacteriostatic effect as well as by inhibiting UGM and TBNAT. Such outcomes may lead to avoiding or decreasing the susceptibility to autoimmune diseases associated with Mtb infection in a genetically susceptible host.
Collapse
Affiliation(s)
- Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan;
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, 400337 Cluj-Napoca, Romania;
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, 400349 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
- Correspondence: (S.M.N.); (S.T.S.H.); Tel.: +420-774-630-604 (S.T.S.H.)
| | - Sherif T. S. Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: (S.M.N.); (S.T.S.H.); Tel.: +420-774-630-604 (S.T.S.H.)
| |
Collapse
|
7
|
Hou XM, Wang CY, Gerwick WH, Shao CL. Marine natural products as potential anti-tubercular agents. Eur J Med Chem 2019; 165:273-292. [PMID: 30685527 DOI: 10.1016/j.ejmech.2019.01.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/01/2023]
Abstract
Tuberculosis has been one of the greatest global health challenges of all time. Although the current first-line anti-tuberculosis (anti-TB) medicines used in the clinic have reduced mortality, multidrug-resistance and extensively drug-resistance forms of the disease have now spread worldwide and become a global problem. Even so, few new clinically approved drugs have emerged during the past 30 years. Highly biodiverse marine organisms have received considerable attention for drug discovery in the past couple of decades, and emerging TB drug resistance has motivated interest in assessing marine natural products (MNPs) in the treatment of this disease. So far, more than 170 compounds have been isolated from marine organisms with anti-TB properties, ten of which exhibit potent activity and have the potential for further development. This review systematically surveys MNPs with anti-TB activity and illustrates the impact of these compounds on drug discovery research against tuberculosis.
Collapse
Affiliation(s)
- Xue-Mei Hou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States.
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
8
|
van Geelen L, Meier D, Rehberg N, Kalscheuer R. (Some) current concepts in antibacterial drug discovery. Appl Microbiol Biotechnol 2018; 102:2949-2963. [PMID: 29455386 DOI: 10.1007/s00253-018-8843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Abstract
The rise of multidrug resistance in bacteria rendering pathogens unresponsive to many clinical drugs is widely acknowledged and considered a critical global healthcare issue. There is broad consensus that novel antibacterial chemotherapeutic options are extremely urgently needed. However, the development pipeline of new antibacterial drug lead structures is poorly filled and not commensurate with the scale of the problem since the pharmaceutical industry has shown reduced interest in antibiotic development in the past decades due to high economic risks and low profit expectations. Therefore, academic research institutions have a special responsibility in finding novel treatment options for the future. In this mini review, we want to provide a broad overview of the different approaches and concepts that are currently pursued in this research field.
Collapse
Affiliation(s)
- Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Nidja Rehberg
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225, Dusseldorf, Germany.
| |
Collapse
|
9
|
Symbiotic Microbes from Marine Invertebrates: Driving a New Era of Natural Product Drug Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ, Fokou PVT, Sharifi-Rad M, Mahady GB, Sharifi-Rad M, Masjedi MR, Lawal TO, Ayatollahi SA, Masjedi J, Sharifi-Rad R, Setzer WN, Sharifi-Rad M, Kobarfard F, Rahman AU, Choudhary MI, Ata A, Iriti M. RETRACTED: Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnol Adv 2017:S0734-9750(17)30077-0. [PMID: 28694178 DOI: 10.1016/j.biotechadv.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/30/2022]
Abstract
Tuberculosis is a highly infectious disease declared a global health emergency by the World Health Organization, with approximately one third of the world's population being latently infected with Mycobacterium tuberculosis. Tuberculosis treatment consists in an intensive phase and a continuation phase. Unfortunately, the appearance of multi drug-resistant tuberculosis, mainly due to low adherence to prescribed therapies or inefficient healthcare structures, requires at least 20months of treatment with second-line, more toxic and less efficient drugs, i.e., capreomycin, kanamycin, amikacin and fluoroquinolones. Therefore, there exists an urgent need for discovery and development of new drugs to reduce the global burden of this disease, including the multi-drug-resistant tuberculosis. To this end, many plant species, as well as marine organisms and fungi have been and continue to be used in various traditional healing systems around the world to treat tuberculosis, thus representing a nearly unlimited source of active ingredients. Besides their antimycobacterial activity, natural products can be useful in adjuvant therapy to improve the efficacy of conventional antimycobacterial therapies, to decrease their adverse effects and to reverse mycobacterial multi-drug resistance due to the genetic plasticity and environmental adaptability of Mycobacterium. However, even if some natural products have still been investigated in preclinical and clinical studies, the validation of their efficacy and safety as antituberculosis agents is far from being reached, and, therefore, according to an evidence-based approach, more high-level randomized clinical trials are urgently needed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zorica Z Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Višegradska 33, Niš, Serbia
| | - Patrick Valere Tsouh Fokou
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra LG 581, Ghana; Antimicrobial Agents Unit, LPMPS, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé 812, Cameroon
| | - Marzieh Sharifi-Rad
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Gail B Mahady
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran
| | - Mohammad-Reza Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Temitope O Lawal
- Department of Pharmacy Practice, Clinical Pharmacognosy Laboratories, University of Illinois at Chicago, USA; Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Javid Masjedi
- Tobacco Control Strategic Research Center, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Razieh Sharifi-Rad
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663335 Zabol, Iran.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Iran
| | - Atta-Ur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex The University of Winnipeg, Winnipeg, Canada
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, Milan 20133, Italy.
| |
Collapse
|
11
|
Stark H. Further Developments. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201770010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|