1
|
Deng X, Niu H, Zhang Q, Wen J, Zhao Y, Naren G, Liu H, Guo X, Zhang F, Wu C. Plasma metabolites and inflammatory proteins profiling predict outcome of Fufang Duzhong Jiangu granules treating Kashin-Beck disease. Biomed Chromatogr 2024; 38:e5945. [PMID: 38973475 DOI: 10.1002/bmc.5945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 07/09/2024]
Abstract
To investigate predictive biomarkers that could be used to identify patients' response to treatment, plasma metabolomics and proteomics analyses were performed in Kashin-Beck disease (KBD) patients treated with Fufang Duzhong Jiangu Granules (FDJG). Plasma was collected from 12 KBD patients before treatment and 1 month after FDJG treatment. LC-MS and olink proteomics were employed for obtaining plasma metabolomics profiling and inflammatory protein profiles. Patients were classified into responders and non-responders based on drug efficacy. Enrichment analyses of differential metabolites and proteins of the responders at baseline and after treatment were conducted to study the mechanism of drug action. Differential metabolites and proteins between the two groups were screened as biomarkers to predict the drug efficacy. The receiver operating characteristic curve was used to evaluate the prediction accuracy of biomarkers. The changes in metabolites and inflammatory proteins in responders after treatment reflected the mechanism of FDJG treatment for KBD, which may act on glycerophospholipid metabolism, d-glutamine and d-glutamate metabolism, nitrogen metabolism and NF-kappa B signaling pathway. Three metabolites were identified as potential predictors: N-undecanoylglycine, β-aminopropionitrile and PC [18:3(6Z,9Z,12Z)/20:4(8Z,11Z,14Z,17Z)]. For inflammatory protein, interleukin-8 was identified as a predictive biomarker to detect responders. Combined use of these four biomarkers had high predictive ability (area under the curve = 0.972).
Collapse
Affiliation(s)
- Xingxing Deng
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Niu
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qian Zhang
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinfeng Wen
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yijun Zhao
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gaowa Naren
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huan Liu
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cuiyan Wu
- Key Laboratory of Environmental and Endemic Diseases of National Health Commission of the People's Republic of China, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
2
|
Wolfe PN, Stoker AM, Leary E, Crist BD, Bozynski CC, Cook JL. Evaluation of Serum and Urine Biomarker Panels for Developmental Dysplasia of the Hip Prior to Onset of Secondary Osteoarthritis. Cartilage 2024; 15:164-174. [PMID: 37051936 PMCID: PMC11368892 DOI: 10.1177/19476035231163032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Evaluate serum and urine biomarker panels for their capabilities in discriminating between individuals (13- to 34-years-olds) with healthy hips versus those with developmental dysplasia of the hip (DDH) prior to diagnosis of secondary hip osteoarthritis (OA). DESIGN Urine and serum were collected from individuals (15-33 years old) with DDH, prior to and following diagnosis of hip OA, and from age-matched healthy-hip controls. Samples were analyzed for panels of protein biomarkers with potential for differentiation of hip status using receiver operator characteristic curve (area under curve [AUC]) assessments. RESULTS Multiple urine and serum biomarker panels effectively differentiated individuals with DDH from healthy-hip controls in a population at risk for developing secondary hip OA with the best performing panel demonstrating an AUC of 0.959. The panel comprised of two serum and two urinary biomarkers provided the highest combined values for sensitivity, 0.85, and specificity, 1.00, while a panel of four serum biomarkers provided the highest sensitivity, 0.93, while maintaining adequate specificity, 0.71. CONCLUSION Results of this study indicate that panels of protein biomarkers measured in urine and serum may be able to differentiate young adults with DDH from young adults with healthy hips. These data suggest the potential for clinical application of a routine diagnostic method for cost-effective and timely screening for DDH in at-risk populations. Further development and validation of these biomarker panels may result in highly sensitive and specific tools for early diagnosis, staging, and prognostication of DDH, as well as treatment decision making and monitoring capabilities. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Preston N. Wolfe
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Aaron M. Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Emily Leary
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
- School of Medicine, University of Missouri, Columbia, MO, USA
| | - Brett D. Crist
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - Chantelle C. Bozynski
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Extensive cytokine analysis in synovial fluid of osteoarthritis patients. Cytokine 2021; 143:155546. [PMID: 33895075 DOI: 10.1016/j.cyto.2021.155546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a joint disease characterized by articular cartilage loss and afflicts many people worldwide. However, diagnostic methods and treatment options remain limited and are often characterized by low sensitivity and low efficacy. The focus of the present study was to identify proteomic biomarkers in synovial fluid to improve diagnosis and therapy of OA patients. METHODS Antibody array technology was utilized for protein expression profiling of synovial fluid from 24 OA patients and 24 healthy persons. RESULTS Compared with healthy persons, twenty proteins showed lower expression levels in OA patients, while thirty proteins had higher levels. Among these differential proteins, GITRL, CEACAM-1, FSH, EG-VEGF, FGF-4, PIGF, Cystatin EM and NT-4 were found for the first time to be differentially expressed in OA. Bioinformatics analysis showed that most of these differential proteins were involved leukocytes events, and some differentially expressed proteins including IL-18, CXCL1, CTLA4, MIP-3b, CD40, MMP-1, THBS1, CCL11, PAI-1, BAFF, aggrecan, angiogenin and follistatin were located in central positions of the protein-protein interaction (PPI) network. CONCLUSION We speculate that leukocyte proliferation and migration to the joint may be an important pathogenesis of OA, which needs a further validation. The central proteins of the PPI network may play a more pivotal role in OA. The newly identified differentially expressed proteins may be novel biomarkers for OA diagnosis and targets for OA therapy.
Collapse
|
4
|
Synovial Cytokines Significantly Correlate with Osteoarthritis-Related Knee Pain and Disability: Inflammatory Mediators of Potential Clinical Relevance. J Clin Med 2019; 8:jcm8091343. [PMID: 31470613 PMCID: PMC6780543 DOI: 10.3390/jcm8091343] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to identify inflammatory mediators of potential clinical relevance in synovial fluid (SF) samples of patients with knee osteoarthritis (OA). Therefore, radiographic OA severity, knee pain and function of 34 OA patients undergoing unicompartmental (UC) and bicompartmental (BC) knee arthroplasty were assessed prior to surgery and SF samples were analyzed for a broad variety of inflammatory mediators, including interleukins (ILs), interferons (IFNs), C-X-C motif ligand chemokines (CXCLs), and growth factors (nerve growth factor; NGF, vascular endothelial growth factor; VEGF, and stem cell growth factor β; SCGF-β) using multiplex assay. Significant differences were observed between the SF levels of different inflammatory markers. When compared to UC OA, significantly higher concentrations of IL-7, IL-8, IL-10, IL-12, IL-13, IFN-γ, VEGF and CXCL1 were detected in BC OA. Correlation analyses revealed significant associations between OA severity and IL-6, IL-8, IFN-γ, SCGF-β, VEGF, CXCL1. Interestingly, increases in both anti- (IL-10, IL-13) and pro-inflammatory (IL-7, IL-12, IFN-γ) cytokines, as well as growth factors (SCGF-β, VEGF), correlated significantly with the level of knee pain. Poorer knee function was associated with higher IL-6, IL-10, IL-12, IL-13, IL-18, βNGF, SCGF-β, VEGF and CXCL9 levels. In conclusion, this study provides an extensive profile of synovial inflammatory mediators in knee OA and identifies cytokines of potential clinical relevance. In fact, five of the mediators examined (IL-10, IL-12, IL-13, SCGF-β, VEGF) significantly correlate with both knee pain and function.
Collapse
|
5
|
Gao K, Zhu W, Li H, Ma D, Liu W, Yu W, Wang L, Cao Y, Jiang Y. Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod Rheumatol 2019; 30:758-764. [PMID: 31370732 DOI: 10.1080/14397595.2019.1651445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Cytokines in synovial fluid (SF) play a crucial role in knee osteoarthritis (KOA). Exosomes are nanovesicles that are abundant in SF and carry a large quantity of signaling molecules. The purpose of this study was to evaluate the cytokine profiles of SF-derived exosomes and try to explore its biological function.Methods: Twenty-four KOA patients who were scheduled for their first intra-articular injection or knee replacement surgery were enrolled and divided into the KL1-2 group and the KL3-4 group according to the Kellgren and Lawrence (KL) classification. SF was collected from the patient's knee for the isolation of exosomes. A multiplex cytokine assay was performed to detect the 21 cytokines in the exosomes. The SF derived-exosomes were exposed to PBMCs and chondrocytes to assess their immunomodulatory potential.Results: Exosomes were successfully extracted from the SF, with an average diameter of 92 nm. Most cytokines were detectable in the SF-derived exosomes. Twelve inflammatory cytokines and eight chemokines were elevated in the exosomes of the KL3-4 group compared to that of the KL1-2 group (p < .05). A higher number of PBMCs were chemo attracted and the proliferation of chondrocytes was restrained by the SF-derived exosomes from the KL3-4 group in comparison with the KL1-2 group (p < .05).Conclusion: Our data indicated that most cytokines in SF are not only in a free form but also associated with and enriched in exosomes. Exosomes from end-stage KOA patients have a higher level of cytokines, especially chemokines, in comparison with the cytokine profiles of the soluble SF. SF-derived exosomes recruit inflammatory cells and inhibit cartilage proliferation, thus promoting joint degeneration. These data provide a new perspective for understanding the changes in the inner environment of KOA.
Collapse
Affiliation(s)
- Kun Gao
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Wenxiu Zhu
- Shenzhen Longgang Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Heng Li
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Dujun Ma
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weidong Liu
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weiji Yu
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lixin Wang
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yafei Cao
- Department of Orthopedics and Traumatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yong Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Stoker AM, Caldwell KM, Stannard JP, Cook JL. Metabolic responses of osteochondral allografts to re-warming. J Orthop Res 2019; 37:1530-1536. [PMID: 30912859 DOI: 10.1002/jor.24290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Symptomatic chondral and osteochondral defects affect a large and growing number of patients. A safe and effective surgical treatment for large articular defects is osteochondral allograft (OCA) transplantation. One of the major causes of failure for OCA transplantation is loss of essential chondrocyte viability during the preservation and storage period. It is also possible that metabolic responses of the OCA when transitioning from storage temperature to body temperature may contribute to mechanisms causing failure. The present study was designed to compare MOPSSM -preserved OCAs to those stored using the current standard of care (SOC) method with respect to metabolic responses when rewarmed for transplantation to and maintenance at body temperature (37°C). It was theorized that grafts stored using the MOPSSM protocol would maintain significantly higher chondrocyte viability and produce significantly lower levels of inflammatory mediators and degradative enzymes, and significantly higher levels of chemokines compared to grafts stored using the SOC protocol. Left over SOC and MOPSSM -stored OCA tissues were collected after surgery, and cartilage explants were cultured for 6 days. Media was analyzed for biomarkers using commercially available assays. Cartilage from SOC grafts released significantly higher levels of PGE2, MMP-1, MMP-2, and MMP-13, and significantly lower levels of IL-8 and Gro-α, compared to cartilage from MOPSSM -stored grafts. Clinical significance: These data suggest that OCAs stored using the MOPSSM protocol have potentially less detrimental initial inflammatory and degradative responses to re-warming for transplantation compared to OCAs stored using the current tissue bank protocols. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1530-1536, 2019.
Collapse
Affiliation(s)
- Aaron M Stoker
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia, 65212, Missouri
| | | | - James P Stannard
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia, 65212, Missouri
| | - James L Cook
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri.,Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Ave., DC953.00, Columbia, 65212, Missouri
| |
Collapse
|
7
|
Raman S, FitzGerald U, Murphy JM. Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis. Front Bioeng Biotechnol 2018; 6:22. [PMID: 29594113 PMCID: PMC5861204 DOI: 10.3389/fbioe.2018.00022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/22/2018] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA), a degenerative disease of diarthrodial joints, is influenced by mechanical and inflammatory factors with aging, obesity, chronic injuries, and secondary diseases thought to be major factors driving the process of articular cartilage degeneration. Chondrocytes, the cellular component of cartilage, reside in an avascular environment and normally have limited potential to replicate. However, extrinsic factors such as injury to the joint or intrinsic alterations to the chondrocytes themselves can lead to an altered phenotype and development of OA. Synovial inflammation is also a pivotal element of the osteoarthritic, degenerative process: influx of pro-inflammatory cytokines and production of matrix metalloproteinases accelerate advanced cellular processes such as synovitis and cartilage damage. As well as a genetic input, recent data have highlighted epigenetic factors as contributing to disease. Studies conducted over the last decade have focused on three key aspects in OA; inflammation and the immune response, genome-wide association studies that have identified important genes undergoing epigenetic modifications, and finally how chondrocytes transform in their function during development and disease. Data highlighted here have identified critical inflammatory genes involved in OA and how these factors impact chondrocyte hypertrophy in the disease. This review also addresses key inflammatory factors in synovial inflammation, epigenetics, and chondrocyte fate, and how agents that inhibit epigenetic mechanisms like DNA methylation and histone modifications could aid in development of long-term treatment strategies for the disease.
Collapse
Affiliation(s)
- Swarna Raman
- Orthobiology, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Una FitzGerald
- School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - J Mary Murphy
- Orthobiology, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3075293. [PMID: 29599894 PMCID: PMC5828476 DOI: 10.1155/2018/3075293] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of Osteoarthritis (OA) is increasing because of the progressive aging and unhealthy lifestyle. These risk factors trigger OA by removing constraints that keep the tightly regulated low turnover of the extracellular matrix (ECM) of articular cartilage, the correct chondrocyte phenotype, and the functionality of major homeostatic mechanisms, such as mitophagy, that allows for the clearance of dysfunctional mitochondria, preventing increased production of reactive oxygen species, oxidative stress, and senescence. After OA onset, the presence of ECM degradation products is perceived as a “danger” signal by the chondrocytes and the synovial macrophages that release alarmins with autocrine/paracrine effects on the same cells. Alarmins trigger innate immunity in the joint, with important systemic crosstalks that explain the beneficial effects of dietary interventions and improved lifestyle. Alarmins also boost low-grade inflammation: the release of inflammatory molecules and chemokines sustained by continuous triggering of NF-κB within an altered cellular setting that allows its higher transcriptional activity. Chemokines exert pleiotropic functions in OA, including the recruitment of inflammatory cells and the induction of ECM remodeling. Some chemokines have been successfully targeted to attenuate structural damage or pain in OA animal models. This represents a promising strategy for the future management of human OA.
Collapse
|
9
|
Sun F, Zhang Y, Li Q. Therapeutic mechanisms of ibuprofen, prednisone and betamethasone in osteoarthritis. Mol Med Rep 2016; 15:981-987. [DOI: 10.3892/mmr.2016.6068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/10/2016] [Indexed: 11/05/2022] Open
|
10
|
Jia L, Chen J, Wang Y, Zhang Y, Chen W. Focused Low-intensity Pulsed Ultrasound Affects Extracellular Matrix Degradation via Decreasing Chondrocyte Apoptosis and Inflammatory Mediators in a Surgically Induced Osteoarthritic Rabbit Model. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:208-219. [PMID: 26403700 DOI: 10.1016/j.ultrasmedbio.2015.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
We investigated whether focused low-intensity pulsed ultrasound (FLIPUS) affects extracellular matrix (ECM) production in osteoarthritic (OA) rabbits by decreasing chondrocyte apoptosis and pro-inflammatory mediators. An OA model using New Zealand White rabbits (N = 30) and 30 normal rabbits were randomized into three groups (2-, 4- and 8-wk groups; n = 10 knees each). A knee from each rabbit was randomly selected to receive FLIPUS and the other knee received a sham treatment as a control. Another 30 normal rabbits were blank controls. We measured ECM degradation, joint effusion volume and levels of prostaglandin E2 and nitric oxide. Also, ratios of chondrocyte proliferation and apoptosis were calculated. Compared with sham stimulation, FLIPUS attenuated release of type II collagen and proteoglycans and reduced chondrocyte apoptosis as well as total joint effusion volume and significantly alleviated OA-induced accretion of prostaglandin E2 and nitric oxide in the synovial fluid. FLIPUS application promoted ECM production in OA through down regulation inflammatory mediators, joint effusion volume and chondrocyte apoptosis.
Collapse
Affiliation(s)
- Lang Jia
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; Department of Rehabilitation Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Takahashi A, de Andrés M, Hashimoto K, Itoi E, Oreffo R. Epigenetic regulation of interleukin-8, an inflammatory chemokine, in osteoarthritis. Osteoarthritis Cartilage 2015; 23:1946-54. [PMID: 26521741 PMCID: PMC4638192 DOI: 10.1016/j.joca.2015.02.168] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine whether altered IL8 methylation status is associated with increased expression of IL8 in human osteoarthritic (OA) chondrocytes. METHODS IL8 expression levels and the percentage CpG methylation in human chondrocytes were quantified by qRT-PCR and pyrosequencing in OA patients and in non-OA osteoporotic controls. The effect of CpG methylation on IL8 promoter activity was determined using a CpG-free vector; co-transfections with expression vectors encoding nuclear factor-kappa B (NF-κB), AP-1 and C/EBP were subsequently undertaken to analyse for IL8 promoter activity in response to changes in methylation status. RESULTS IL8 expression in OA patients was 37-fold higher than in osteoporotic controls. Three CpG sites in the IL8 promoter were significantly demethylated in OA patients. Multiple regression analysis revealed that the degree of methylation of the CpG site located at -116-bp was the strongest predictor of IL8 expression. In vitro DNA methylation was noted to decrease IL8 promoter basal activity. Furthermore, NF-κB, AP-1 and C/EBP strongly enhanced IL8 promoter activity whilst DNA methylation inhibited the effects of these three transcription factors. CONCLUSIONS The present study demonstrates the key role of DNA methylation status on the expression of IL8 in human chondrocytes. We demonstrate a quantitative relationship between percentage methylation and gene expression within clinical samples. These studies provide direct evidence linking the activation of IL8, DNA demethylation and the induction of the OA process with important therapeutic implications therein for patients with this debilitating disease.
Collapse
Affiliation(s)
- A. Takahashi
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK,Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - M.C. de Andrés
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK
| | - K. Hashimoto
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - E. Itoi
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - R.O.C. Oreffo
- Bone and Joint Research Group, Centre for Human Development Stem Cells and Regeneration, Institute of Developmental Science, University of Southampton Medical School, Southampton, UK,Address correspondence and reprint requests to: R.O.C. Oreffo, Bone and Joint Research Group, MP 887, Institute of Developmental Science, University of Southampton Medical School, Tremona Road, Southampton, SO16 6YD, UK. Tel: 44-(0)23-81-208502; Fax: 44-(0)23-81-205255.
| |
Collapse
|
12
|
CXC chemokine ligand 12a enhances chondrocyte proliferation and maturation during endochondral bone formation. Osteoarthritis Cartilage 2015; 23:966-74. [PMID: 25659654 DOI: 10.1016/j.joca.2015.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We investigated the roles of CXC chemokine ligand 12a (CXCL12a), also known as stromal cell-derived factor-1α (SDF-1α), in endochondral bone growth, which can give us important clues to understand the role of CXCL12a in osteoarthritis (OA). METHODS Primary chondrocytes and tibial explants from embryonic 15.5 day-old mice were cultured with recombinant mouse CXCL12a. To assess the role of CXCL12a in chondrogenic differentiation, we conducted mesenchymal cell micromass culture. RESULTS In tibia organ cultures, CXCL12a increased total bone length in a dose-dependent manner through proportional effects on cartilage and bone. In accordance with increased length, CXCL12a increased the protein level of proliferation markers, such as cyclin D1 and proliferating cell nuclear antigen (PCNA), in primary chondrocytes as well as in tibia organ culture. In addition, CXCL12a increased the expression of Runx2, Col10 and MMP13 in primary chondrocytes and tibia organ culture system, implying a role of CXCL12a in chondrocyte maturation. Micromass cultures of limb-bud mesenchymal progenitor cells (MPCs) revealed that CXCL12a has a limited effect on early chondrogenesis, but significantly promoted maturation of chondrocytes. CXCL12a induced the phosphorylation of p38 and Erk1/2 MAP kinases and IκB. The increased expression of cyclin D1 by CXCL12a was significantly attenuated by inhibitors of MEK1 and NF-κB. On the other hand, p38 and Erk1/2 MAP kinase and NF-κB signaling were associated with CXCL12a-induced expression of Runx2 and MMP13, the marker of chondrocyte maturation. CONCLUSION CXCL12a promoted the proliferation and maturation of chondrocytes, which strongly suggest that CXCL12a may have a negative effect on articular cartilage and contribute to OA progression.
Collapse
|
13
|
Battistelli M, Salucci S, Olivotto E, Facchini A, Minguzzi M, Guidotti S, Pagani S, Flamigni F, Borzì RM, Facchini A, Falcieri E. Cell death in human articular chondrocyte: a morpho-functional study in micromass model. Apoptosis 2015; 19:1471-83. [PMID: 25015553 DOI: 10.1007/s10495-014-1017-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chondrocyte death and loss of extracellular matrix are the central features in articular cartilage degeneration during osteoarthritis pathogenesis. Cartilage diseases and, in particular, osteoarthritis are widely correlated to apoptosis but, chondrocytes undergoing apoptosis "in vivo" more often display peculiar features that correspond to a distinct process of programmed cell death termed "chondroptosis". Programmed cell death of primary human chondrocyte has been here investigated in micromasses, a tridimensional culture model, that represents a convenient means for studying chondrocyte biology. Cell death has been induced by different physical or chemical apoptotic agents, such as UVB radiation, hyperthermia and staurosporine delivered at both 1 and 3 weeks maturation. Conventional electron microscopy was used to analyse morphological changes. Occurrence of DNA fragmentation and caspase involvement were also investigated. At Transmission Electron Microscopy, control cells appear rounding or slightly elongated with plurilobated nucleus and diffusely dispersed chromatin. Typically UVB radiation and staurosporine induce chromatin apoptotic features, while hyperthermia triggers the "chondroptotic" phenotype. A weak TUNEL positivity appears in control, correlated to the well known cell death patterns occurring along cartilage differentiation. UVB radiation produces a strong positivity, mostly localized at the micromass periphery. After hyperthermia a higher number of fluorescent nuclei appears, in particular at 3 weeks. Staurosporine evidences a diffuse, but reduced, positivity. Therefore, DNA fragmentation is a common pattern in dying chondrocytes, both in apoptotic and "chondroptotic" cells. Moreover, all triggers induce caspase pathway activation, even if to a different extent, suggesting a fundamental role of apoptotic features, in chondrocyte cell death.
Collapse
Affiliation(s)
- M Battistelli
- DiSTeVA, Campus Scientifico Enrico Mattei, Università degli Studi di Urbino Carlo Bo, Via Ca' le Suore 2, 61029, Urbino, PU, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Amin AR, Islam ABMMK. Genomic analysis and differential expression of HMG and S100A family in human arthritis: upregulated expression of chemokines, IL-8 and nitric oxide by HMGB1. DNA Cell Biol 2014; 33:550-65. [PMID: 24905701 DOI: 10.1089/dna.2013.2198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We applied global gene expression arrays, quantitative real-time PCR, immunostaining, and functional assays to untangle the role of High Mobility Groups proteins (HMGs) in human osteoarthritis (OA)-affected cartilage. Bioinformatics analysis showed increased mRNA expression of Damage-Associated Molecular Patterns (DAMPs): HMGA, HMGB, HMGN, SRY, LEF1, HMGB1, MMPs, and HMG/RAGE-interacting molecules (spondins and S100A4, S100A10, and S100A11) in human OA-affected cartilage as compared with normal cartilage. HMGB2 was down-regulated in human OA-affected cartilage. Immunohistological staining identified HMGB1 in chondrocytes in the superficial cartilage. Cells of the deep cartilage and subchondral bone showed increased expression of HMGB1 in OA-affected cartilage. HMGB1 was expressed in the nucleus, cytosol, and extracellular milieu of chondrocytes in cartilage. Furthermore, HMGB1 was spontaneously released from human OA-affected cartilage in ex vivo conditions. The effects of recombinant HMGB1 was tested on human cartilage and chondrocytes in vitro. HMGB1 stimulated mRNA of 2 NFκB gene enhancers (NFκB1 and NFκB2), 16 CC and CXC chemokines (IL-8, CCL2, CCL20, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L1, CCL4L2, CCL5, CCL8, CXCL1, CXCL10, CXCL2, CXCL3, and CXCL6) by ≥10-fold. Furthermore, HMGB1 and IL-1β and/or tumor necrosis factor α (but not HMGI/Y) also significantly induced inducible nitric oxide synthase, NO, and interleukin (IL)-8 production in human cartilage and chondrocytes. The recombinant HMGB1 utilized in this study shows properties that are similar to disulfide-HMGB1. The differential, stage and/or tissue-specific expression of HMGB1, HMGB2, and S100A in cartilage was associated with regions of pathology and/or cartilage homeostasis in human OA-affected cartilage. Noteworthy similarities in the expression of mouse and human HMGB1 and HMGB2 were conserved in normal and arthritis-affected cartilage. The multifunctional forms of HMGB1 and S100A could perpetuate damage-induced cartilage inflammation in late-stage OA-affected joints similar to sterile inflammation. The paracrine effects of HMGB1 can induce chemokines and NO that are perceived to change cartilage homeostasis in human OA-affected cartilage.
Collapse
Affiliation(s)
- Ashok R Amin
- 1 Department of Bio-Medical Engineering, Virginia Tech and Virginia College of Osteopathic Medicine , RheuMatrix, Inc., Blacksburg, Virginia
| | | |
Collapse
|
15
|
The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648459. [PMID: 24959581 PMCID: PMC4052144 DOI: 10.1155/2014/648459] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/24/2014] [Indexed: 12/21/2022]
Abstract
Cartilage extracellular matrix (ECM) is composed primarily of the network type II collagen (COLII) and an interlocking mesh of fibrous proteins and proteoglycans (PGs), hyaluronic acid (HA), and chondroitin sulfate (CS). Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO) signal, protein kinase C (PKC), and retinoic acid (RA) signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.
Collapse
|
16
|
Hashimoto S, Rai MF, Gill CS, Zhang Z, Sandell LJ, Clohisy JC. Molecular characterization of articular cartilage from young adults with femoroacetabular impingement. J Bone Joint Surg Am 2013; 95:1457-64. [PMID: 23965695 PMCID: PMC3748995 DOI: 10.2106/jbjs.l.00497] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Femoroacetabular impingement is a frequent cause of hip pain and may lead to secondary osteoarthritis, yet little is known about the molecular events linking mechanical hip impingement and articular cartilage degeneration. The first goal of this study was to quantify the expression of inflammatory cytokine and chemokine, matrix-degrading, and extracellular matrix genes in articular cartilage harvested from control hips and hips with femoroacetabular impingement and end-stage osteoarthritis. The second goal was to analyze the relative expression of these genes in articular cartilage harvested at various stages of osteoarthritis. METHODS Cartilage samples were obtained from thirty-two hips undergoing hip preservation surgery for femoroacetabular impingement or hip arthroplasty. Three control cartilage samples were also analyzed. Specimens were graded intraoperatively with regard to the severity of cartilage damage, the radiographic osteoarthritis grade was recorded, and quantitative RT-PCR (real-time polymerase chain reaction) was performed to determine relative gene expression. RESULTS Except for interleukin-1β (IL-1β) and CXCL2, the mRNA (messenger RNA) expression of all other chemokine (IL-8, CXCL1, CXCL3, CXCL6, CCL3, and CCL3L1), matrix-degrading (matrix metalloproteinase [MMP]-13 and ADAMTS-4), and structural matrix (COL2A1 [collagen, type II, alpha] and ACAN [aggregan]) genes was higher overall in cartilage from hips with femoroacetabular impingement compared with hips with osteoarthritis and normal controls. The differences reached significance (p ≤ 0.05) for seven of these ten quantified genes, with CXCL3, CXCL6, and COL2A1 being elevated in the femoroacetabular impingement group compared with only the control group and IL-8, CCL3L1, ADAMTS-4, and ACAN being elevated compared with both the osteoarthritis and control groups. When samples were grouped according to the stage of the degenerative cascade, mRNA expression was relatively higher in one of the two middle stages of femoroacetabular impingement (chondromalacia or cleavage/thinning), with the difference reaching significance for IL-8, CXCL2, CXCL3, CCL3L1, and ACAN. ACAN expression was diminished in hips with osteoarthritis compared with femoroacetabular impingement but elevated compared with the control articular cartilage. CONCLUSIONS Articular cartilage from the impingement zone of hips with femoroacetabular impingement (and particularly those hips in the cleavage/thinning stage) expressed higher levels of certain inflammatory, anabolic, and catabolic genes, representing a heightened metabolic state. CLINICAL RELEVANCE The articular cartilage from the impingement zone of hips with femoroacetabular impingement was metabolically hyperactive, supporting the concept that such impingement is a structural precursor to hip osteoarthritis.
Collapse
Affiliation(s)
- Shingo Hashimoto
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Box 8233, St. Louis, MO 63110. E-mail address for S. Hashimoto: . E-mail address for M.F. Rai: . E-mail address for C.S. Gill: . E-mail address for Z. Zhang: . E-mail address for L.J. Sandell: . E-mail address for J.C. Clohisy:
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Box 8233, St. Louis, MO 63110. E-mail address for S. Hashimoto: . E-mail address for M.F. Rai: . E-mail address for C.S. Gill: . E-mail address for Z. Zhang: . E-mail address for L.J. Sandell: . E-mail address for J.C. Clohisy:
| | - Corey S. Gill
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Box 8233, St. Louis, MO 63110. E-mail address for S. Hashimoto: . E-mail address for M.F. Rai: . E-mail address for C.S. Gill: . E-mail address for Z. Zhang: . E-mail address for L.J. Sandell: . E-mail address for J.C. Clohisy:
| | - Zhiqi Zhang
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Box 8233, St. Louis, MO 63110. E-mail address for S. Hashimoto: . E-mail address for M.F. Rai: . E-mail address for C.S. Gill: . E-mail address for Z. Zhang: . E-mail address for L.J. Sandell: . E-mail address for J.C. Clohisy:
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Box 8233, St. Louis, MO 63110. E-mail address for S. Hashimoto: . E-mail address for M.F. Rai: . E-mail address for C.S. Gill: . E-mail address for Z. Zhang: . E-mail address for L.J. Sandell: . E-mail address for J.C. Clohisy:
| | - John C. Clohisy
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, Box 8233, St. Louis, MO 63110. E-mail address for S. Hashimoto: . E-mail address for M.F. Rai: . E-mail address for C.S. Gill: . E-mail address for Z. Zhang: . E-mail address for L.J. Sandell: . E-mail address for J.C. Clohisy:
| |
Collapse
|
17
|
Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol 2013; 146:185-96. [PMID: 23360836 DOI: 10.1016/j.clim.2012.12.011] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 12/25/2022]
Abstract
Even though osteoarthritis (OA) is mainly considered as a degradative condition of the articular cartilage, there is increasing body of data demonstrating the involvement of all branches of the immune system. Genetic, metabolic or mechanical factors cause an initial injury to the cartilage resulting in release of several cartilage specific auto-antigens, which trigger the activation of immune response. Immune cells including T cells, B cells and macrophages infiltrate the joint tissues, cytokines and chemokines are released from different kinds of cells present in the joint, complement system is activated, and cartilage degrading factors such as matrix metalloproteinases (MMPs) and prostaglandin E2 (PGE2) are released, resulting in further damage to the articular cartilage. There is considerable success in the treatment of rheumatoid arthritis using anti-cytokine therapies. In OA, however, these therapies did not show much effect, highlighting more complex nature of pathogenesis of OA. This needs the development of more novel approaches to treat OA, which may include therapies that act on multiple targets. Plant natural products have this kind of property and may be considered for future drug development efforts. Here we reviewed the studies implicating different components of the immune system in the pathogenesis of OA.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Anatomy & Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | | |
Collapse
|
18
|
Phillips KLE, Chiverton N, Michael ALR, Cole AA, Breakwell LM, Haddock G, Bunning RAD, Cross AK, Le Maitre CL. The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc. Arthritis Res Ther 2013; 15:R213. [PMID: 24325988 PMCID: PMC3979161 DOI: 10.1186/ar4408] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 11/21/2013] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The aims of these studies were to identify the cytokine and chemokine expression profile of nucleus pulposus (NP) cells and to determine the relationships between NP cell cytokine and chemokine production and the characteristic tissue changes seen during intervertebral disc (IVD) degeneration. METHODS Real-time q-PCR cDNA Low Density Array (LDA) was used to investigate the expression of 91 cytokine and chemokine associated genes in NP cells from degenerate human IVDs. Further real-time q-PCR was used to investigate 30 selected cytokine and chemokine associated genes in NP cells from non-degenerate and degenerate IVDs and those from IVDs with immune cell infiltrates (‘infiltrated’). Immunohistochemistry (IHC) was performed for four selected cytokines and chemokines to confirm and localize protein expression in human NP tissue samples. RESULTS LDA identified the expression of numerous cytokine and chemokine associated genes including 15 novel cytokines and chemokines. Further q-PCR gene expression studies identified differential expression patterns in NP cells derived from non-degenerate, degenerate and infiltrated IVDs. IHC confirmed NP cells as a source of IL-16, CCL2, CCL7 and CXCL8 and that protein expression of CCL2, CCL7 and CXCL8 increases concordant with histological degenerative tissue changes. CONCLUSIONS Our data indicates that NP cells are a source of cytokines and chemokines within the IVD and that these expression patterns are altered in IVD pathology. These findings may be important for the correct assessment of the ‘degenerate niche’ prior to autologous or allogeneic cell transplantation for biological therapy of the degenerate IVD.
Collapse
Affiliation(s)
- Kate L E Phillips
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - Neil Chiverton
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Ashley A Cole
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lee M Breakwell
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Gail Haddock
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - Rowena AD Bunning
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - Alison K Cross
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| | - Christine L Le Maitre
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire S1 1WB, UK
| |
Collapse
|
19
|
Madry H, Luyten FP, Facchini A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2012; 20:407-22. [PMID: 22009557 DOI: 10.1007/s00167-011-1705-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/04/2011] [Indexed: 01/15/2023]
Abstract
PURPOSE Early OA primarily affects articular cartilage and involves the entire joint, including the subchondral bone, synovial membrane, menisci and periarticular structures. The aim of this review is to highlight the molecular basis and histopathological features of early OA. METHODS Selective review of literature. RESULTS Risk factors for developing early OA include, but are not limited to, a genetic predisposition, mechanical factors such as axial malalignment, and aging. In early OA, the articular cartilage surface is progressively becoming discontinuous, showing fibrillation and vertical fissures that extend not deeper than into the mid-zone of the articular cartilage, reflective of OARSI grades 1.0-3.0. Early changes in the subchondral bone comprise a progressive increase in subchondral plate and subarticular spongiosa thickness. Early OA affects not only the articular cartilage and the subchondral bone but also other structures of the joint, such as the menisci, the synovial membrane, the joint capsule, ligaments, muscles and the infrapatellar fat pad. Genetic markers or marker combinations may become useful in the future to identify early OA and patients at risk. CONCLUSION The high socioeconomic impact of OA suggests that a better insight into the mechanisms of early OA may be a key to develop more targeted reconstructive therapies at this first stage of the disease. LEVEL OF EVIDENCE Systematic review, Level II.
Collapse
Affiliation(s)
- Henning Madry
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Kirrbergerstrasse, Building 37, 66421, Homburg, Germany.
| | | | | |
Collapse
|
20
|
Chauffier K, Laiguillon MC, Bougault C, Gosset M, Priam S, Salvat C, Mladenovic Z, Nourissat G, Jacques C, Houard X, Berenbaum F, Sellam J. Induction of the chemokine IL-8/Kc by the articular cartilage: possible influence on osteoarthritis. Joint Bone Spine 2012; 79:604-9. [PMID: 22342065 DOI: 10.1016/j.jbspin.2011.12.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/16/2011] [Indexed: 01/15/2023]
Abstract
PURPOSE IL-8 and its murine equivalent keratinocyte chemoattractant (Kc), chemokines produced by chondrocytes, contribute to the pathophysiology of osteoarthritis. However, the mechanisms leading to their production are poorly known. We aimed to investigate whether mechanical (compression), inflammatory (IL-1β) and metabolic (visfatin) stresses may induce the release of Kc when applied on murine cartilage. METHODS Mouse cartilage explants were subjected to intermittent compression for 4, 6 and 24h. Primary cultures of immature murine articular chondrocytes were obtained by enzymatic digestion of articular cartilage from 6-days-old newborns mice. The effect of compression, IL-1β (10, 50, 100pg/mL) and of visfatin (5μg/mL) on the release of Kc was assessed by ELISA. IL-8 levels in conditioned media from human OA joint tissues (cartilage or synovium) were also assessed. RESULTS In comparison with non-compressed explants, loading increased Kc release of 3.2-, 1.9- and 2.0-fold at 4, 6 and 24h respectively (P<0.004, n=9). IL-1β triggered an increase of Kc release by primary cultured chondrocytes of 4.1-, 15.5- and 35.2-fold at 10, 50 and 100pg/mL of IL-1β respectively (P<0.05, n=4). Likewise, visfatin (5μg/mL) induced an increase in Kc release of 56.5±25.2 fold (P=0.002, n=6). IL-8 was released in conditioned media by synovium as well as by cartilage. CONCLUSION We show for the first time that IL-8/Kc is highly responsive to mechanical, inflammatory and metabolic stresses, strengthening the hypothesis that IL-8/Kc could be added to the cytokines which may have a deleterious impact in osteoarthritis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cells, Cultured
- Chemokine CXCL1/metabolism
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Dinoprostone/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Humans
- Interleukin-1beta/pharmacology
- Interleukin-8/metabolism
- Mice
- Nicotinamide Phosphoribosyltransferase/pharmacology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/physiopathology
- Receptors, Interleukin-8B/metabolism
- Stress, Mechanical
Collapse
Affiliation(s)
- Karine Chauffier
- Department of Rheumatology, Saint-Antoine Hospital, AP-HP, Pierre & Marie Curie University, 184 rue du Faubourg-Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wenke AK, Niebler S, Grässel S, Bosserhoff AK. The transcription factor AP-2ɛ regulates CXCL1 during cartilage development and in osteoarthritis. Osteoarthritis Cartilage 2011; 19:206-12. [PMID: 21134476 DOI: 10.1016/j.joca.2010.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/13/2010] [Accepted: 11/26/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recently, the transcription factor AP-2ɛ was shown to be a regulator of hypertrophy in cartilage and to be differentially expressed in osteoarthritis (OA). However, the only known target gene of AP-2ɛ up to date is integrin alpha10. To better characterize the function of AP-2ɛ in cartilage we screened for additional target genes. DESIGN Promoter analysis, ChIP-assays and electrophoretic mobility shift assay were used to characterize the regulation of a new AP-2ɛ target gene in detail. RESULTS In this study, we determined the chemokine CXCL1, already known to be important in osteoarthritis (OA), as a new target gene of AP-2ɛ. We could confirm that CXCL1 is expressed in chondrocytes and significantly over-expressed in OA-chondrocytes. Transient transfection of chondrocytes with an AP-2ɛ expression construct led to a significant increase of the CXCL1 mRNA level in these cells. We identified three potential AP-2 binding sites within the CXCL1 promoter and performed luciferase assays, indicating that an AP-2 binding motif (AP-2.2) ranging from position -135 to -144 bp relative to the translation start is responsive to AP-2ɛ. This result was further addressed by site-directed mutagenesis demonstrating that activation of the CXCL1 promoter by AP-2ɛ is exclusively dependent on AP-2.2. Chromatin immunoprecipitation and electromobility shift assays confirmed the direct binding of AP-2ɛ to the CXCL1 promoter in OA-chondrocytes at this site. CONCLUSION These findings revealed CXCL1 as a novel target gene of AP-2ɛ in chondrocytes and support the important role of AP-2ɛ in cartilage.
Collapse
Affiliation(s)
- A-K Wenke
- Institute of Pathology, University Regensburg, Regensburg 93053, Germany
| | | | | | | |
Collapse
|
22
|
Vergunst CE, van de Sande MGH, Lebre MC, Tak PP. The role of chemokines in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol 2009; 34:415-25. [PMID: 16393761 DOI: 10.1080/03009740500439159] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The directed movement of immune cells is highly dependent on the chemokine network. Chemokines are key molecules early in the embryogenesis of lymph nodes and throughout adult life, where they regulate immune responses against pathogens. Although immune cells are best known for expressing chemokine receptors, through which they can respond to matching chemokines, endothelial cells also express chemokine receptors. The directed movement of endothelial cells facilitates angiogenesis. In chronic inflammatory conditions, such as rheumatoid arthritis (RA), chemokines are abundantly present at the site of inflammation and form a group of potential therapeutic targets. Some agents that block chemokine-chemokine receptor interaction are already under clinical investigation. The expression of chemokine receptors has also been found in cell types other than immune cells and endothelial cells. Chondrocytes, for instance, express several chemokine receptors. Elucidating their function may provide new insights into joint degradation in RA as well as in other conditions, including osteoarthritis (OA).
Collapse
Affiliation(s)
- C E Vergunst
- Division of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
23
|
Andreas K, Lübke C, Häupl T, Dehne T, Morawietz L, Ringe J, Kaps C, Sittinger M. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res Ther 2008; 10:R9. [PMID: 18205922 PMCID: PMC2374452 DOI: 10.1186/ar2358] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 12/28/2007] [Accepted: 01/18/2008] [Indexed: 02/10/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, inflammatory and systemic autoimmune disease that leads to progressive cartilage destruction. Advances in the treatment of RA-related destruction of cartilage require profound insights into the molecular mechanisms involved in cartilage degradation. Until now, comprehensive data about the molecular RA-related dysfunction of chondrocytes have been limited. Hence, the objective of this study was to establish a standardized in vitro model to profile the key regulatory molecules of RA-related destruction of cartilage that are expressed by human chondrocytes. Methods Human chondrocytes were cultured three-dimensionally for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatants from SV40 T-antigen immortalized human synovial fibroblasts (SF) derived from a normal donor (NDSF) and from a patient with RA (RASF), respectively. To identify RA-related factors released from SF, supernatants of RASF and NDSF were analyzed with antibody-based protein membrane arrays. Stimulated cartilage-like cultures were used for subsequent gene expression profiling with oligonucleotide microarrays. Affymetrix GeneChip Operating Software and Robust Multi-array Analysis (RMA) were used to identify differentially expressed genes. Expression of selected genes was verified by real-time RT-PCR. Results Antibody-based protein membrane arrays of synovial fibroblast supernatants identified RA-related soluble mediators (IL-6, CCL2, CXCL1–3, CXCL8) released from RASF. Genome-wide microarray analysis of RASF-stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (adenosine A2A receptor, cyclooxygenase-2), the NF-κB signaling pathway (toll-like receptor 2, spermine synthase, receptor-interacting serine-threonine kinase 2), cytokines/chemokines and receptors (CXCL1–3, CXCL8, CCL20, CXCR4, IL-1β, IL-6), cartilage degradation (matrix metalloproteinase (MMP)-10, MMP-12) and suppressed matrix synthesis (cartilage oligomeric matrix protein, chondroitin sulfate proteoglycan 2). Conclusion Differential transcriptome profiling of stimulated human chondrocytes revealed a disturbed catabolic–anabolic homeostasis of chondrocyte function and disclosed relevant pharmacological target genes of cartilage destruction. This study provides comprehensive insight into molecular regulatory processes induced in human chondrocytes during RA-related destruction of cartilage. The established model may serve as a human in vitro disease model of RA-related destruction of cartilage and may help to elucidate the molecular effects of anti-rheumatic drugs on human chondrocyte gene expression.
Collapse
Affiliation(s)
- Kristin Andreas
- Tissue Engineering Laboratory and Berlin - Brandenburg Center for Regenerative Therapies, Department of Rheumatology, Charité - Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Olivotto E, Vitellozzi R, Fernandez P, Falcieri E, Battistelli M, Burattini S, Facchini A, Flamigni F, Santi S, Facchini A, Borzi' RM. Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. J Cell Physiol 2007; 210:417-27. [PMID: 17096385 DOI: 10.1002/jcp.20864] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CXCR2 ligands contribute to chondrocyte hypertrophy and apoptosis, important determinants in cartilage pathophysiology. We unraveled the kinetics of signaling, biochemical, transcriptional, and morphological events triggered by GROalpha in human osteoarthritic chondrocytes kept in three-dimensional culture. p38 MAPK activation was assessed with a highly sensitive ELISA. Effector caspase activation was evaluated by cleavage of a fluorogenic substrate. Gene expression of key markers of hypertrophy (MMP-13, Runx-2) and matrix synthesis (aggrecan), and of cathepsin B isoform CB(-2,3) was evaluated by real time PCR. Occurrence of the morphological markers of apoptosis was investigated by transmission electron microscopy (TEM). GROalpha led to p38 MAPK activation in passaged chondrocytes cultured in micromass but not as a high-density monolayer. This caused the downstream triggering of chondrocyte hypertrophy (MMP-13 and Runx-2 upregulation, and calcium deposition) and apoptosis/anoikis following concurrence of matrix degrading activity, and inhibition of matrix synthesis which also involved the induction of CB(-2,3). These phenomena proved to be dependent on the co-receptor role of sulfated glycosaminoglycans (sGAG) and the activation of p38 MAPK, since they were abrogated either by preincubation with soluble chondroitin-4 sulfate or p38 MAPK inhibitors. The co-receptor role of sGAG was further demonstrated by colocalization experiments of these molecules with GROalpha in the stimulated micromasses. These findings suggest that extracellular matrix exerts a regulatory role in chondrocytes differentiation, and that meaningful investigation of the effects of chemokines on chondrocyte biology requires culture conditions respectful of both the differentiated status of the chondrocytes and of their three-dimensional interaction with the extracellular matrix.
Collapse
Affiliation(s)
- Eleonora Olivotto
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Franco R, Bortner CD, Cidlowski JA. Potential Roles of Electrogenic Ion Transport and Plasma Membrane Depolarization in Apoptosis. J Membr Biol 2006; 209:43-58. [PMID: 16685600 DOI: 10.1007/s00232-005-0837-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Indexed: 12/15/2022]
Abstract
Apoptosis is characterized by the programmed activation of specific biochemical pathways leading to the organized demise of cells. To date, aspects of the intracellular signaling machinery involved in this phenomenon have been extensively dissected and characterized. However, recent studies have elucidated a novel role for changes in the intracellular milieu of the cells as important modulators of the cell death program. Specially, intracellular ionic homeostasis has been reported to be a determinant in both the activation and progression of the apoptotic cascade. Several apoptotic insults trigger specific changes in ionic gradients across the plasma membrane leading to depolarization of the plasma membrane potential (PMP). These changes lead to ionic imbalance early during apoptosis. Several studies have also suggested the activation and/or modulation of specific ionic transport mechanisms including ion channels, transporters and ATPases, as mediators of altered intracellular ionic homeostasis leading to PMP depolarization during apoptosis. However, the role of PMP depolarization and of the changes in ionic homeostasis during the progression of apoptosis are still unclear. This review summarizes the current knowledge regarding the causes and consequences of PMP depolarization during apoptosis. We also review the potential electrogenic ion transport mechanisms associated with this event, including the net influx/efflux of cations and anions. An understanding of these mechamisms could lead to the generation of new therapeutic approaches for a variety of diseases involving apoptosis.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
26
|
Battistelli M, Borzì RM, Olivotto E, Vitellozzi R, Burattini S, Facchini A, Falcieri E. Cell and matrix morpho-functional analysis in chondrocyte micromasses. Microsc Res Tech 2005; 67:286-95. [PMID: 16173090 DOI: 10.1002/jemt.20210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Micromass cultures represent a convenient means of studying chondrocyte physiology in the context of a tridimensional culture model. In this study, we present the first ultrastructural analysis of the distribution and organization of the extracellular components in micromasses in comparison with their cartilaginous counterparts. Primary chondrocytes obtained from osteoarthritis patients were pelleted in micromasses. Transmission electron microscopy and immunofluorescence were used to evaluate the distribution of major extracellular matrix proteins, i.e., aggrecan, chondroitin-4-sulfate, chondroitin-6-sulfate, and collagen I and II. Both approaches revealed a number of morphological features shared by micromass and cartilage chondrocytes. In particular, in micromasses, chondrocytes are in close contact with an organized extracellular matrix that adequately mimics that of cartilage. Cells were observed to establish specialized junctions for cell-extracellular matrix crosstalk. Noteworthy, cells seem endowed in a chondroitin sulfate-rich microenvironment, and thus possibly ensuring the immobilization of chemokines, a family of molecules emerging in osteoarthritis pathogenesis, in a haptotactic-like gradient to the chondrocytes, which facilitates the binding to their receptors. To determine the suitability of this model to investigate osteoarthritis pathogenesis, a potential apoptotic stimulus (endothelial IL-8) was used, and ultrastructural analysis assessed apoptosis induction. Micromass cultures were proved to be an experimental technique providing a large number of properly differentiated chondrocytes, and thus allowing reliable biochemical and morphological studies. They represent, therefore, a novel approach to osteoarthritis investigation that promises more thorough understanding of chondrocyte physiology in osteoarthritis.
Collapse
Affiliation(s)
- Michela Battistelli
- Istituto di Scienze Morfologiche, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Ho LJ, Lin LC, Hung LF, Wang SJ, Lee CH, Chang DM, Lai JH, Tai TY. Retinoic acid blocks pro-inflammatory cytokine-induced matrix metalloproteinase production by down-regulating JNK-AP-1 signaling in human chondrocytes. Biochem Pharmacol 2005; 70:200-8. [PMID: 15946654 DOI: 10.1016/j.bcp.2005.04.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/13/2005] [Indexed: 12/31/2022]
Abstract
The development of osteoarthritis (OA) has recently been implicated as a result of immune-mediated damage of chondrocytes and their supporting matrixes. Pro-inflammatory cytokines like interleukin (IL)-1 and tumor necrosis factor alpha (TNF-alpha) play pivotal roles in immunopathogenesis of OA. Because vitamins preserving anti-oxidative effects are suggested to provide protection in OA patients from joint damage, in the present study, we examined the effects and mechanisms of all-trans retinoic acid (t-RA) in suppressing pro-inflammatory cytokine-induced matrix metalloproteinases (MMPs) production in human chondrocytes. Chondrocytes were prepared from cartilage specimens of OA patients receiving total hip or total knee replacement. The protein concentration was measured by ELISA, the mRNA expression by reverse transcriptase-polymerase chain reaction, the protein expression by Western blotting, the transcription factor DNA-binding activity by electrophoretic mobility shift assay and the protein kinase activity by kinase assay. We showed that both MMP-1 and MMP-13 mRNA expression, protein production and enzyme activity induced by either IL-1 or TNF-alpha were suppressed by t-RA or different retinoid derivatives. The molecular investigation revealed that the t-RA-mediated suppression was likely through blocking p38 kinase and c-Jun N-terminal kinase-activator protein-1 signaling pathways. In contrast, t-RA had no effect on extracellular signal-regulated kinase activity, nuclear factor (kappa)B (NF-(kappa)B) DNA-binding activity and I(kappa)B(alpha) degradation. Furthermore, we showed that t-RA could reduce IL-1-induced TNF-alpha production in chondrocytes. Our results suggest that vitamin A may protect OA patients from pro-inflammatory cytokine-mediated damage of chondrocytes and their supporting matrixes.
Collapse
Affiliation(s)
- Ling-Jun Ho
- Division of Gerontology Research, National Health Research Institute, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pulai JI, Chen H, Im HJ, Kumar S, Hanning C, Hegde PS, Loeser RF. NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. THE JOURNAL OF IMMUNOLOGY 2005; 174:5781-8. [PMID: 15843581 PMCID: PMC2903737 DOI: 10.4049/jimmunol.174.9.5781] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibronectin fragments (FN-f) that bind to the alpha(5)beta(1) integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene beta (GRO-beta). Constitutive and FN-f-inducible expression of GRO-alpha and GRO-gamma were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1beta expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-kappaB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction.
Collapse
Affiliation(s)
- Judit I. Pulai
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
| | - Hong Chen
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
| | - Hee-Jeong Im
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
- Department of Biochemistry, Rush Medical College, Chicago, IL 60612
| | - Sanjay Kumar
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426
| | - Charles Hanning
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426
| | - Priti S. Hegde
- Department of Musculoskeletal Diseases, GlaxoSmithKline, Collegeville, PA 19426
| | - Richard F. Loeser
- Departments of Internal Medicine, Section of Rheumatology, Rush Medical College, Chicago, IL 60612
- Department of Biochemistry, Rush Medical College, Chicago, IL 60612
- Address correspondence and reprint requests to Dr. Richard F. Loeser, Rheumatology, Rush University Medical Center, 1725 West Harrison, Suite 1017, Chicago, IL, 60612.
| |
Collapse
|
29
|
De Ceuninck F, Dassencourt L, Anract P. The inflammatory side of human chondrocytes unveiled by antibody microarrays. Biochem Biophys Res Commun 2004; 323:960-9. [PMID: 15381094 DOI: 10.1016/j.bbrc.2004.08.184] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Indexed: 11/20/2022]
Abstract
Although being largely used for pathobiological models of cartilage diseases such as osteoarthritis (OA), human chondrocytes are still enigmatic cells, in as much as a large part of their secretome is unknown. We took advantage of the recent development of antibody-based microarrays to study multiple protein expression by human chondrocytes obtained from one healthy and five osteoarthritic joints, in unstimulated conditions or after stimulation by the proinflammatory cytokines interleukin-1 (IL-1) or tumour necrosis factor (TNF). The secretion media of chondrocytes were incubated with array membranes consisting of 79 antibodies directed against cytokines, chemokines, and angiogenic or growth factors. Several proteins were identified as new secretion products of chondrocytes, including the growth or angiogenic factors EGF, thrombopoietin, GDNF, NT-3 and -4, and PlGF, the chemokines ENA-78, MCP-2, IP-10, MIP-3alpha, NAP-2, PARC, and the cytokines MIF, IL-12, and IL-16. Most of the newly identified chemokines were increased intensely after stimulation by IL-1 or TNF, as for other proteins of the array, including GRO proteins, GM-CSF, IL-6, IL-8, MIP-1beta, GCP-2, and osteoprotegerin. The up-regulation by cytokines suggested that these proteins may participate in the destruction of cartilage and/or in the initiation of chemotactic events within the joint during OA. In conclusion, the microarray approach enabled to unveil part of an as yet unexplored chondrocyte secretome. Our findings demonstrated that chondrocytes were equipped with a proinflammatory arsenal of proteins which may play an important part in the pathogenesis of OA and/or its drift towards an inflammatory, rheumatoid phenotype.
Collapse
|
30
|
Abstract
Besides the well-known activities of the prototypical inflammatory cytokines (IL-1beta, TNFalpha), a role for chemokines and their receptors in cartilage degradation in osteoarthritis has recently been reported. Human chondrocytes can produce CC and CXC chemokines and express chemokine receptors for both chemokine subfamilies. Engagement of these receptors can induce the release of matrix degrading enzymes such as matrix metalloproteinases 1, 3, and 13, and N-acetyl-beta-D-glucosaminidase. Furthermore GROalpha, a CXC chemokine acting on CXCR2, can activate an apoptotic pathway in chondrocytes that leads to chondrocyte cell death. These findings suggest that chemokines can act as an autocrine or paracrine loop on chondrocytes and can contribute to many pathophysiological patterns present in osteoarthritis. Chemokines and their downstream signaling pathways can be considered novel therapeutic targets in osteoarthritis.
Collapse
Affiliation(s)
- Rosa Maria Borzì
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | |
Collapse
|
31
|
Merz D, Liu R, Johnson K, Terkeltaub R. IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 171:4406-15. [PMID: 14530367 DOI: 10.4049/jimmunol.171.8.4406] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.
Collapse
Affiliation(s)
- Denise Merz
- Veterans Affairs Medical Center, University of California at San Diego, La Jolla 92161, USA
| | | | | | | |
Collapse
|