1
|
Yang J, Xiao S, Deng J, Li Y, Hu H, Wang J, Lu C, Li G, Zheng L, Wei Q, Zhong J. Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J Nanobiotechnology 2024; 22:491. [PMID: 39155382 PMCID: PMC11330606 DOI: 10.1186/s12951-024-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.
Collapse
Affiliation(s)
- Junxu Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shihui Xiao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuquan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, People's Republic of China
| | - Guanhua Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China.
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
2
|
Garcia-Motta H, Carvalho C, Guilherme EM, de Oliveira MPB, Rossi KNZP. Effects of intra-articular injection of platelet-rich plasma on the inflammatory process and histopathological characteristics of cartilage and synovium in animals with osteoarthritis: a systematic review with meta-analysis. Adv Rheumatol 2024; 64:24. [PMID: 38553767 DOI: 10.1186/s42358-024-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) affects the entire joint, causing structural changes in articular cartilage, subchondral bone, ligaments, capsule, synovial membrane, and periarticular muscles that afflicts millions of people globally, leading to persistent pain and diminished quality of life. The intra-articular use of platelet-rich plasma (PRP) is gaining recognition as a secure therapeutic approach due to its potential regenerative capabilities. However, there is controversial clinical data regarding efficacy of PRP for OA treatment. In this context, gathering scientific evidence on the effects of PRP in treating OA in animal models could provide valuable insights into understanding its impact on aspects like cartilage health, synovial tissue integrity, and the inflammatory process in affected joints. Thus, the objective of this study was to assess the effects of PRP injections on inflammation and histopathological aspects of cartilage and synovium in animal models of OA through a comprehensive systematic review with meta-analysis. METHODS A electronic search was conducted on Medline, Embase, Web of Science, The Cochrane Library, LILACS, and SciELO databases for relevant articles published until June 2022. A random-effects meta-analysis was employed to synthesize evidence on the histological characteristics of cartilage and synovium, as well as the inflammatory process. The GRADE approach was utilized to categorize the quality of evidence, and methodological quality was assessed using SYRCLE's RoB tool. RESULTS Twenty-one studies were included in the review, with twelve of them incorporated into the meta-analysis. PRP treatment demonstrated superior outcomes compared to the control group in terms of cartilage histology (very low quality; p = 0.0002), synovium histology (very low quality; p < 0.0001), and reductions in proinflammatory markers, including IL-1 (low quality; p = 0.002), IL-6 (very low quality; p < 0.00001), and TNF-α (very low; p < 0.00001). However, PRP treatment did not yield a significant impact on PDGF-A levels (very low quality; p = 0.81). CONCLUSION PRP appears capable of reducing proinflammatory markers (IL-1, IL-6, TNF-α) and mitigating cartilage and synovium damage in animals with OA. However, the levels of evidence of these findings are low to very low. Therefore, more rigorous studies with larger samples are needed to improve the quality of evidence. PROSPERO REGISTRATION CRD42022250314.
Collapse
Affiliation(s)
- Homero Garcia-Motta
- Morphology and Pathology Department, Federal University of São Carlos, São Carlos, Brazil
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil
| | - Cristiano Carvalho
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Rua Silva Jardim, 136, Santos, SP, 11015-020, Brazil.
- Physical Therapy Department, Federal University of São Carlos, São Carlos, Brazil.
| | | | | | | |
Collapse
|
3
|
Liu M, Tang Y, Du Y, Zhang J, Hu F, Zou Y, Li Y, Zhu L, He J, Guo J, Li Z. Leukocyte Ig-like receptor A3 facilitates inflammation, migration and invasion of synovial tissue-derived fibroblasts via ERK/JNK activation. Rheumatology (Oxford) 2024; 63:846-855. [PMID: 37462532 DOI: 10.1093/rheumatology/kead359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/30/2023] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVE Leukocyte Ig-like receptor A3 (LILRA3) is a soluble receptor belongs to the immunoglobulin superfamily. Our previous studies demonstrated that LILRA3 is a common genetic risk for multiple autoimmune diseases, including RA. Functional LILRA3 conferred increased risk of joint destruction in patients with early RA. We undertook this study to further investigate the pathological role of LILRA3 in joint inflammation of RA. METHODS Soluble LILRA3 was measured by ELISA. LILRA3 plasmids were transfected into human fibroblast-like synoviocytes (FLSs) using electroporation. Activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was determined by western blots. Cytokine transcripts were quantified by real-time PCR. Migratory and invasive capacities of FLSs were evaluated using transwell migration and Matrigel invasion assays. FLS apoptosis was analysed using flow cytometry. Colocalization of LILRA3, LILRB1 and HLA-G in RA-FLSs was visualized by immunofluorescence staining. RESULTS Soluble LILRA3 was specifically expressed in synovial fluid and serum LILRA3 was significantly increased and positively correlated with disease activity/severity in RA patients. LILRA3 induced an increased expression of IL-6, IL-8 and MMP3 in RA-FLSs. In vitro LILRA3 stimulation or overexpression promoted RA-FLS migration and invasion, and enhanced phosphorylation of ERK/JNK. Inhibition of ERK/JNK resulted in suppression of IL-6/IL-8 expression in LILRA3-stimulated RA-FLSs. LILRA3 was co-localized with its homologue LILRB1 and shared ligand HLA-G in RA-FLSs. CONCLUSION The present study provides the first evidence that soluble LILRA3 is a novel proinflammatory mediator involved in synovial inflammation by promoting RA-FLS activation, migration and invasion, probably through the ERK/JNK signalling pathways.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yundi Tang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yan Du
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yundong Zou
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|
4
|
Wei H, Huang H, He H, Xiao Y, Chun L, Jin Z, Li H, Zheng L, Zhao J, Qin Z. Pt-Se Hybrid Nanozymes with Potent Catalytic Activities to Scavenge ROS/RONS and Regulate Macrophage Polarization for Osteoarthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0310. [PMID: 38410279 PMCID: PMC10895487 DOI: 10.34133/research.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
The activation of pro-inflammatory M1-type macrophages by overexpression of reactive oxygen species (ROS) and reactive nitrogen species (RONS) in synovial membranes contributes to osteoarthritis (OA) progression and cartilage matrix degradation. Here, combing Pt and Se with potent catalytic activities, we developed a hybrid Pt-Se nanozymes as ROS and RONS scavengers to exert synergistic effects for OA therapy. As a result, Pt-Se nanozymes exhibited efficient scavenging effect on ROS and RONS levels, leading to repolarization of M1-type macrophages. Furthermore, the polarization of synovial macrophages to the M2 phenotype inhibited the expression of pro-inflammatory factors and salvaged mitochondrial function in arthritic chondrocytes. In vivo results also suggest that Pt-Se nanozymes effectively suppress the early progression of OA with an Osteoarthritis Research International Association score reduction of 68.21% and 82.66% for 4 and 8 weeks, respectively. In conclusion, this study provides a promising strategy to regulate inflammatory responses by macrophage repolarization processes for OA therapeutic.
Collapse
Affiliation(s)
- Hong Wei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuanming Xiao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute,
Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lu Chun
- School of Materials and Environment,
Guangxi Minzu University, Nanning, Guangxi 53000, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hanyang Li
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Lee KT, Lin CY, Liu SC, He XY, Tsai CH, Ko CY, Tsai YH, Chao CC, Chen PC, Tang CH. IL-17 promotes IL-18 production via the MEK/ERK/miR-4492 axis in osteoarthritis synovial fibroblasts. Aging (Albany NY) 2024; 16:1829-1844. [PMID: 38261743 PMCID: PMC10866453 DOI: 10.18632/aging.205462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
The concept of osteoarthritis (OA) as a low-grade inflammatory joint disorder has been widely accepted. Many inflammatory mediators are implicated in the pathogenesis of OA. Interleukin (IL)-18 is a pleiotropic cytokine with versatile cellular functions that are pathogenetically important in immune responses, as well as autoimmune, inflammatory, and infectious diseases. IL-17, a proinflammatory cytokine mainly secreted by Th17 cells, is upregulated in OA patients. However, the role of IL-17 in OA progression is unclear. The synovial tissues collected from healthy donors and OA patients were used to detect the expression level of IL-18 by IHC stain. The OA synovial fibroblasts (OASFs) were incubated with recombinant IL-17 and subjected to Western blot, qPCR, and ELISA to examine IL-18 expression level. The chemical inhibitors and siRNAs which targeted signal pathways were used to investigate signal pathways involved in IL-17-induced IL-18 expression. The microRNAs which participated IL-18 expression were surveyed with online databases miRWalk and miRDB, followed by validation with qPCR. This study revealed significantly higher levels of IL-18 expression in synovial tissue from OA patients compared with healthy controls, as well as increased IL-18 expression in OASFs from rats with severe OA. In vitro findings indicated that IL-17 dose-dependently promoted IL-18 production in OASFs. Molecular investigations revealed that the MEK/ERK/miR-4492 axis stimulated IL-18 production when OASFs were treated with IL-17. This study provides novel insights into the role of IL-17 in the pathogenesis of OA, which may help to inform OA treatment in the future.
Collapse
Affiliation(s)
- Kun-Tsan Lee
- Department of Post-Baccalaureate Medicine, National Chung-Hsing University, Taichung, Taiwan
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Xiu-Yuan He
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yuan-Hsin Tsai
- Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
6
|
Hossain MA, Lim S, Bhilare KD, Alam MJ, Chen B, Vijayakumar A, Yoon H, Kang CW, Kim JH. Bone marrow stem cells incubated with ellipticine regenerate articular cartilage by attenuating inflammation and cartilage degradation in rabbit model. J Vet Sci 2023; 24:e83. [PMID: 38031520 PMCID: PMC10694374 DOI: 10.4142/jvs.23128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. OBJECTIVES This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. METHODS A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. RESULTS The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. CONCLUSIONS The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.
Collapse
Affiliation(s)
- Mohammad Amjad Hossain
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Kiran D Bhilare
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Md Jahangir Alam
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Baicheng Chen
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Ajay Vijayakumar
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Hakyoung Yoon
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Chang Won Kang
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Jong-Hoon Kim
- Department of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
7
|
Li Z, Feng X, Luo S, Ding Y, Zhang Z, Shang Y, Lei D, Cai J, Zhao J, Zheng L, Gao M. High drug loading hydrophobic cross-linked dextran microspheres as novel drug delivery systems for the treatment of osteoarthritis. Asian J Pharm Sci 2023; 18:100830. [PMID: 37588991 PMCID: PMC10425896 DOI: 10.1016/j.ajps.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Drug delivery via intra-articular (IA) injection has proved to be effective in osteoarthritis (OA) therapy, limited by the drug efficiency and short retention time of the drug delivery systems (DDSs). Herein, a series of modified cross-linked dextran (Sephadex, S0) was fabricated by respectively grafting with linear alkyl chains, branched alkyl chains or aromatic chain, and acted as DDSs after ibuprofen (Ibu) loading for OA therapy. This DDSs expressed sustained drug release, excellent anti-inflammatory and chondroprotective effects both in IL-1β induced chondrocytes and OA joints. Specifically, the introduction of a longer hydrophobic chain, particularly an aromatic chain, distinctly improved the hydrophobicity of S0, increased Ibu loading efficiency, and further led to significantly improving OA therapeutic effects. Therefore, hydrophobic microspheres with greatly improved drug loading ratio and prolonged degradation rates show great potential to act as DDSs for OA therapy.
Collapse
Affiliation(s)
- Zhimin Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xianjing Feng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Shixing Luo
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi 536000, China
| | - Yanfeng Ding
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Spine and Osteopathic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhi Zhang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yifeng Shang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Doudou Lei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co- constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
8
|
Hu H, Yang J, Zhong Y, Wang J, Cai J, Luo C, Jin Z, Gao M, He M, Zheng L. Polydopamine-Pd nanozymes as potent ROS scavengers in combination with near-infrared irradiation for osteoarthritis treatment. iScience 2023; 26:106605. [PMID: 37182095 PMCID: PMC10172781 DOI: 10.1016/j.isci.2023.106605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in joints could lead to gradual degeneration of the extracellular matrix (ECM) and apoptosis of chondrocytes, contributing to the occurrence and development of osteoarthritis (OA). Mimicking natural enzymes, polydopamine (PDA)-based nanozymes showed great potential in treating various inflammatory diseases. In this work, PDA loaded with ultra-small palladium (PDA-Pd) nanoparticles (NPs) was employed to scavenge ROS for OA therapy. As a result, PDA-Pd effectively declined the intracellular ROS levels and exhibited efficient antioxidative and anti-inflammatory capacity with good biocompatibility in IL-1β stimulated chondrocytes. Significantly, assisted with near-infrared (NIR) irradiation, its therapeutic effect was further enhanced. Further, NIR-stimulated PDA-Pd suppressed the progression of OA after intra-articular injection in the OA rat model. With favorable biocompatibility, PDA-Pd exhibits efficient antioxidative and anti-inflammatory capacity, leading to the alleviation of OA in rats. Our findings may provide new insights into the treatment of various ROS-induced inflammatory diseases.
Collapse
Affiliation(s)
- Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanping Zhong
- Life Sciences Institute of Guangxi Medical University, Nanning 530021, China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Cuijuan Luo
- Life Sciences Institute of Guangxi Medical University, Nanning 530021, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Gao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| | - Maolin He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Corresponding author
| |
Collapse
|
9
|
Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes. Osteoarthritis Cartilage 2023; 31:60-71. [PMID: 36150677 DOI: 10.1016/j.joca.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Since the joint microenvironment and tissue homeostasis are highly dependent on synovial fluid, we aimed to compare the essential chondrocyte signaling signatures of non-osteoarthritic vs end-stage osteoarthritic knee synovial fluid. Moreover, we determined the phenotypic consequence of the distinct signaling patterns on articular chondrocytes. METHODS Protein profiling of synovial fluid was performed using antibody arrays. Chondrocyte signaling and phenotypic changes induced by non-osteoarthritic and osteoarthritic synovial fluid were analyzed using a phospho-kinase array, luciferase-based transcription factor activity assays, and RT-qPCR. The origin of osteoarthritic synovial fluid signaling was evaluated by comparing the signaling responses of conditioned media from cartilage, synovium, infrapatellar fat pad and meniscus. Osteoarthritic synovial fluid induced pathway-phenotype relationships were evaluated using pharmacological inhibitors. RESULTS Compared to non-osteoarthritic synovial fluid, osteoarthritic synovial fluid was enriched in cytokines, chemokines and growth factors that provoked differential MAPK, AKT, NFκB and cell cycle signaling in chondrocytes. Functional pathway analysis confirmed increased activity of these signaling events upon osteoarthritic synovial fluid stimulation. Tissue secretomes of osteoarthritic cartilage, synovium, infrapatellar fat pad and meniscus activated several inflammatory signaling routes. Furthermore, the distinct pathway signatures of osteoarthritic synovial fluid led to accelerated chondrocyte dedifferentiation via MAPK/ERK signaling, increased chondrocyte fibrosis through MAPK/JNK and PI3K/AKT activation, an elevated inflammatory response mediated by cPKC/NFκB, production of extracellular matrix-degrading enzymes by MAPK/p38 and PI3K/AKT routes, and enabling of chondrocyte proliferation. CONCLUSION This study provides the first mechanistic comparison between non-osteoarthritic and osteoarthritic synovial fluid, highlighting MAPKs, cPKC/NFκB and PI3K/AKT as crucial OA-associated intracellular signaling routes.
Collapse
|
10
|
Ye Q, Hickey J, Summers K, Falatovich B, Gencheva M, Eubank TD, Ivanov AV, Guo NL. Multi-Omics Immune Interaction Networks in Lung Cancer Tumorigenesis, Proliferation, and Survival. Int J Mol Sci 2022; 23:ijms232314978. [PMID: 36499305 PMCID: PMC9738413 DOI: 10.3390/ijms232314978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
There are currently no effective biomarkers for prognosis and optimal treatment selection to improve non-small cell lung cancer (NSCLC) survival outcomes. This study further validated a seven-gene panel for diagnosis and prognosis of NSCLC using RNA sequencing and proteomic profiles of patient tumors. Within the seven-gene panel, ZNF71 expression combined with dendritic cell activities defined NSCLC patient subgroups (n = 966) with distinct survival outcomes (p = 0.04, Kaplan-Meier analysis). ZNF71 expression was significantly associated with the activities of natural killer cells (p = 0.014) and natural killer T cells (p = 0.003) in NSCLC patient tumors (n = 1016) using Chi-squared tests. Overexpression of ZNF71 resulted in decreased expression of multiple components of the intracellular intrinsic and innate immune systems, including dsRNA and dsDNA sensors. Multi-omics networks of ZNF71 and the intracellular intrinsic and innate immune systems were computed as relevant to NSCLC tumorigenesis, proliferation, and survival using patient clinical information and in-vitro CRISPR-Cas9/RNAi screening data. From these networks, pan-sensitive and pan-resistant genes to 21 NCCN-recommended drugs for treating NSCLC were selected. Based on the gene associations with patient survival and in-vitro CRISPR-Cas9, RNAi, and drug screening data, MEK1/2 inhibitors PD-198306 and U-0126, VEGFR inhibitor ZM-306416, and IGF-1R inhibitor PQ-401 were discovered as potential targeted therapy that may also induce an immune response for treating NSCLC.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Justin Hickey
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Kathleen Summers
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | | | - Marieta Gencheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D. Eubank
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Alexey V. Ivanov
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (A.V.I.); (N.L.G.)
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (A.V.I.); (N.L.G.)
| |
Collapse
|
11
|
Gratal P, Mediero A, Lamuedra A, Matamoros-Recio A, Herencia C, Herrero-Beaumont G, Martín-Santamaría S, Largo R. 6-shogaol treatment improves experimental knee OA exerting a pleiotropic effect over immune innate signaling response in chondrocytes. Br J Pharmacol 2022; 179:5089-5108. [PMID: 35760458 DOI: 10.1111/bph.15908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/09/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of osteoarthritis (OA) implicates a low-grade inflammation associated to the activation of the innate immune system. Toll like receptor (TLR) stimulation triggers the release of inflammatory mediators, which aggravate OA severity. The aim was to study the preventive effect of 6-shogaol (6S), a potential TLR4 inhibitor, on the treatment of experimental knee OA. EXPERIMENTAL APPROACH OA was induced in C57BL6 mice by surgical section of the medial meniscotibial ligament, which received 6S for eight weeks. Cartilage damage, inflammatory mediator presence, and disease markers were assessed in the joint tissues by immunohistochemistry. Computational modelling was used to predict binding modes of 6S into the TLR4/MD2 receptor and its permeability across cellular membranes. Employing LPS-stimulated chondrocytes and MAPK assay, we clarified 6S action mechanisms. KEY RESULTS 6S treatment was able to prevent articular cartilage lesions, synovitis, and the presence of pro-inflammatory mediators and disease markers in OA animals. Molecular modelling studies predicted 6S interaction with the TLR4/MD-2 heterodimer in an antagonist conformation through its binding into the MD-2 pocket. In cell culture, we confirmed that 6S reduced LPS-induced TLR4 inflammatory signaling pathways. Besides, MAPK assay demonstrated that 6S directly inhibits the ERK1/2 phosphorylation activity. CONCLUSION AND IMPLICATIONS 6S evoked a preventive action on cartilage and synovial inflammation in OA mice. 6S effect may take place not only by hindering the interaction between TLR4 ligands and the TLR4/MD-2 complex in chondrocytes, but also through inhibition of ERK phosphorylation, implying a pleiotropic effect on different mediators activated during OA, which proposes it as an attractive drug for OA treatment.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Aránzazu Mediero
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Alejandra Matamoros-Recio
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Carmen Herencia
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Hossain MA, Alam MJ, Kim B, Kang CW, Kim JH. Ginsenoside-Rb1 prevents bone cartilage destruction through down-regulation of p-Akt, p-P38, and p-P65 signaling in rabbit. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154039. [PMID: 35344713 DOI: 10.1016/j.phymed.2022.154039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common joint complaint resulting in pain, disability, and loss of quality of life. On the other hand, ginsenoside-Rb1 is a plant product derived from ginseng that possesses immune-regulation and anti-inflammatory activities. However, it has been reported that different rout of administration but hydrogel-based Ginsenoside-Rb1 in an OA rabbit model has not been investigated. PURPOSE The aim of this study was to investigate the potential effects of ginsenoside-Rb1 such as anti-arthritic activity in a rabbit knee OA model via NF- κB, PI3K/Akt, and P38/(MAPK) pathways. STUDY DESIGN In the current study, rabbit osteoarthritis was induced by hollow trephine on the femur trochlea and the hydrogel-based Ginsenoside-Rb1 sheets were inserted on the rabbit knee to assess the anti-arthritis activity of ginsenoside-Rb1 which is sustained release. METHODS After the hydrogel-based Rb1 sheet insert on the rabbit knee, macroscopic and micro CT was performed for investigation of chondroprotective effect. Matrix metalloproteinases (MMPs) and apoptotic expression were assessed through Immunohistochemistry and RT-PCR assay. In addition, the flow cytometry technique was used for the investigation of intracellular reactive oxygen species (ROS) production and histological changes were examined by HE, safranin O, and Masson trichrome staining method. Furthermore, the NF- κB, PI3K/Akt, and P38/(MAPK) pathways were investigated using Western blot analysis. RESULTS Macroscopic and micro CT investigation of hydrogel-Rb1 treatment showed a dose-dependent chondroprotective effect. Immunohistochemistry and RT-PCR revealed that expression of matrix metalloproteinases (MMPs) and apoptotic markers TNF-α, caspase-3, and bax are down-regulated in a dose-dependent fashion following implantation of hydrogel-Rb. Higher levels of intracellular reactive oxygen species (ROS) were observed in the OA group. In histopathological investigation of hydrogel-Rb1 exhibited larger amounts of chondro cells, glycosaminoglycan's, and collagen compared to the defect group. Furthermore, the NF- κB, PI3K/Akt, and P38/(MAPK) pathways were downregulated by hydrogel-Rb1 while the disease model showed upstream. In the meantime, MMP expression level was considerably down-regulated. CONCLUSIONS Our results indicate the protective effect of ginsenoside-Rb1 against OA pathogenesis through prevention of apoptosis with suppression of ROS production and activation of NF-κB signaling through downregulation of the MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Mohammad Amjad Hossain
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 54596 79 Gobong-ro, Iksan-city, Jeollabuk-Do, Republic of Korea.
| | - Md Jahangir Alam
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 54596 79 Gobong-ro, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 54596 79 Gobong-ro, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Chang-Won Kang
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 54596 79 Gobong-ro, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, 54596 79 Gobong-ro, Iksan-city, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
13
|
Chou WC, Tsai KL, Hsieh PL, Wu CH, Jou IM, Tu YK, Ma CH. Galectin-3 facilitates inflammation and apoptosis in chondrocytes through upregulation of the TLR-4-mediated oxidative stress pathway in TC28a2 human chondrocyte cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:478-488. [PMID: 34894372 DOI: 10.1002/tox.23414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease. The pathological changes of chondrocytes involve oxidative stress, the pro-inflammatory response, and pro-apoptotic events. Galectin-3 (Gal-3) is a 35 kDa protein with a special chimeric structure. Gal-3 participates in the progression of many diseases, such as cancer metastasis and heart failure. A previous study demonstrated that Gal-3 expression in human cartilage with OA is increased. However, the role of Gal-3 in chondrocyte dysfunction in joints is still unclear. In this study, we applied Gal-3 (5-20 μg/ml) to TC28a2 human chondrocyte cells for 24 h to induce chondrocyte dysfunction. We found that Gal-3 upregulated TLR-4 and MyD88 expression and NADPH oxidase, thereby increasing intracellular ROS in the chondrocytes. Gal-3 increased phosphorylated MEK1/2 and ERK levels, and promoted NF-κB activity. This activation of NF-κB was reduced by silencing TLR-4 and NOX-2. In addition, Gal-3 caused apoptosis of chondrocytes through the mitochondrial-dependent pathway via the TLR-4/NADPH oxidase/MAPK axis. Our study proves the pathogenic role of Gal-3 in Gal-3-induced chondrocyte dysfunction and injuries.
Collapse
Affiliation(s)
- Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Hsien Wu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Ching-Hou Ma
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| |
Collapse
|
14
|
Ansari MY, Novak K, Haqqi TM. ERK1/2-mediated activation of DRP1 regulates mitochondrial dynamics and apoptosis in chondrocytes. Osteoarthritis Cartilage 2022; 30:315-328. [PMID: 34767958 PMCID: PMC8792336 DOI: 10.1016/j.joca.2021.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the Dynamin-related protein 1 (DRP1) regulation of mitochondrial fission in chondrocytes under pathological conditions, an area which is underexplored in osteoarthritis pathogenesis. DESIGN DRP1 protein expression was determined by immunohistochemistry (IHC) or immunofluorescence (IF) staining of cartilage sections. IL-1β-induced DRP1 mRNA expression in chondrocytes was quantified by qPCR and protein expression by immunoblotting. Mitochondrial fragmentation in chondrocytes was visualized by MitoTracker staining or IF staining of mitochondrial marker proteins or by transient expression of mitoDsRed. Mitochondrial reactive oxygen species (ROS) levels were determined by MitoSOX staining. Apoptosis was determined by lactate dehydrogenase (LDH) release assay, Caspase 3/7 activity assay, propidium iodide (PI), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and IF staining of cleaved caspase 3. Cytochrome c release was determined by confocal microscopy. Surgical destabilization of the medial meniscus (DMM) was used to induce osteoarthritis (OA) in mice. RESULTS Expression of DRP1 and mitochondrial damage was high in human OA cartilage and in the joints of mice subjected to DMM surgery which also showed increased chondrocytes apoptosis. IL-1β-induced mitochondrial network fragmentation and chondrocyte apoptosis via modulation of DRP1 expression and activity and induce apoptosis via Bax-mediated release of Cytochrome c. Pharmacological inhibition of DRP1 activity by Mdivi-1 blocked IL-1β-induced mitochondrial damage and apoptosis in chondrocytes. Additionally, IL-1β-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is crucial for DRP1 activation and induction of mitochondrial network fragmentation in chondrocytes as these were blocked by inhibiting ERK1/2 activation. CONCLUSIONS These findings demonstrate that ERK1/2 is a critical player in DRP1-mediated induction of mitochondrial fission and apoptosis in IL-1β-stimulated chondrocytes.
Collapse
Affiliation(s)
- Mohammad Y. Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA, 44272
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA, 44272
| | - Tariq M. Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA, 44272,Corresponding author: Telephone number: +1 330 325 6704, TMH:
| |
Collapse
|
15
|
Jayakumar T, Lin KC, Chang CC, Hsia CW, Manubolu M, Huang WC, Sheu JR, Hsia CH. Targeting MAPK/NF-κB Pathways in Anti-Inflammatory Potential of Rutaecarpine: Impact on Src/FAK-Mediated Macrophage Migration. Int J Mol Sci 2021; 23:ijms23010092. [PMID: 35008520 PMCID: PMC8745017 DOI: 10.3390/ijms23010092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Studies have discovered that different extracts of Evodia rutaecarpa and its phytochemicals show a variety of biological activities associated with inflammation. Although rutaecarpine, an alkaloid isolated from the unripe fruit of E. rutaecarpa, has been exposed to have anti-inflammatory properties, the mechanism of action has not been well studied. Thus, this study investigated the molecular mechanisms of rutaecarpine (RUT) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. RUT reserved the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukin (IL)-1β in the LPS-induced macrophages. RUT showed an inhibitory effect on the mitogen-activated protein kinases (MAPKs), and it also inhibited nuclear transcription factor kappa-B (NF-κB) by hindering IκBα and NF-κB p65 phosphorylation and p65 nuclear translocation. The phospho-PI3K and Akt was concentration-dependently suppressed by RUT. However, RUT not only suggestively reduced the migratory ability of macrophages and their numbers induced by LPS but also inhibited the phospho-Src, and FAK. Taken together, these results indicate that RUT participates a vital role in the inhibition of LPS-induced inflammatory processes in RAW 264.7 macrophages and that the mechanisms involve PI3K/Akt and MAPK-mediated downregulation of NF-κB signaling pathways. Notably, reducing the migration and number of cells induced by LPS via inhibiting of Src/FAK pathway was also included to the anti-inflammatory mechanism of RUT. Therefore, RUT may have potential benefits as a therapeutic agent against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (K.-C.L.); (C.-W.H.); (W.-C.H.)
| | - Kao-Chang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (K.-C.L.); (C.-W.H.); (W.-C.H.)
- Chi Mei Medical Center, Department of Neurology, Tainan 710, Taiwan
| | - Chao-Chien Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Cardiovascular Center, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (K.-C.L.); (C.-W.H.); (W.-C.H.)
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA;
| | - Wei-Chieh Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (K.-C.L.); (C.-W.H.); (W.-C.H.)
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (K.-C.L.); (C.-W.H.); (W.-C.H.)
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence: (J.-R.S.); (C.-H.H.); Tel.: +886-2-27361661-3199 (J.-R.S.); Fax: +886-2-27390450 (J.-R.S.)
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.J.); (K.-C.L.); (C.-W.H.); (W.-C.H.)
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
- Correspondence: (J.-R.S.); (C.-H.H.); Tel.: +886-2-27361661-3199 (J.-R.S.); Fax: +886-2-27390450 (J.-R.S.)
| |
Collapse
|
16
|
Ding X, Xiang W, Meng D, Chao W, Fei H, Wang W. Osteoblasts Regulate the Expression of ADAMTS and MMPs in Chondrocytes through ERK Signaling Pathway. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2021; 161:201-210. [PMID: 34500490 DOI: 10.1055/a-1527-7900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Degradative enzymes such as matrix metalloproteinase (MMP) and disintegrin metalloproteinase with platelet thrombin-sensitive protein-like motifs (ADAMTS) play a key role in the development of osteoarthritis (OA). We aimed to investigate the effects of OA subchondral osteoblasts on the expression of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 in chondrocytes and the regulation of mitogen-activated protein kinase (MAPK) signaling pathway. METHODS A rat knee OA model was constructed by cutting the anterior cruciate ligament of the knee joints, and normal rat articular cartilage chondrocytes (N-ACC), OA rat articular cartilage chondrocytes (O-ACC), normal subchondral bone osteoblasts (N-SBO), and OA subchondral bone osteoblasts (O-SBO) were isolated and extracted. The expressions of O-ACC and O-SBO COL1 and COL2 were detected respectively. Chondrocytes were identified by immunofluorescence of COL2 and toluidine blue staining, and osteoblasts were identified by COL1 immunofluorescence, alkaline phosphatase (ALP), and Alizarin Red staining. Gene expression of COL1, COL2, and aggrecan in normal chondrocytes and OA chondrocytes, and gene expression of osteoblast ALP and osteocalcin (OCN) were detected by RT-PCR to identify the two chondrocytes and the two osteoblast phenotypes. The constructing N-ACC group, O-ACC group, N-ACC + N-SBO group, N-ACC + O-SBO group, O-ACC + N-SBO group, O-ACC + O-SBO group, I + N-ACC + O-SBO group, and I + O-ACC + O-SBO group cell cultures, and the expression of ERK, ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes in chondrocytes cultured for 0, 24, 48, and 72 h were detected by RT-PCR. The protein expressions of pERK, ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 were detected by Western blot. RESULTS · The X-ray showed that the knee joint space of the affected limb became narrow.. · The results of RT-PCR of COL2 and aggrecan gene in OA and normal chondrocytes suggest that the relative expression of COL2 in OA articular chondrocytes (0.24 ± 0.07) is significantly lower than that in normal cartilage (0.61 ± 0.07) (p < 0.05). The relative expression of AGG (0.37 ± 0.16) in OA chondrocytes was significantly lower than that of normal chondrocytes AGG (1.30 ± 0.25) (p < 0.05). The expression of COL1 was very low, and was not statistically significant.. · The results of RT-PCR of the osteoblast ALP and OCN gene indicated that gene expression of ALP (12.30 ± 1.17) and OCN (20.47 ± 4.19)was upregulated when compared with the relative expression of ALP (4.66 ± 0.71) (p < 0.05) and OCN (12.17 ± 2.76) (p < 0.05) in normal osteoblasts, indicating that osteoblasts of OA have greater osteogenic potential than normal osteoblasts.. · The expressions of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes and proteins in OA chondrocytes or normal chondrocytes were basically unchanged when they were cocultured with normal osteoblasts. Indirect coculture of OA osteoblasts and chondrocytes could promote the expression of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes and proteins in chondrocytes. Overexpression of ADAMTS and MMP in coculture systems can be reversed by MAPK-ERK inhibitors.. CONCLUSIONS · OA subchondral bone osteoblasts can promote the overexpression of ADAMTS and MMPs in chondrocytes.. · The ERK signaling pathway may be involved in the regulation of the effect of subchondral bone osteoblasts on chondrocytes..
Collapse
Affiliation(s)
- Xiao Ding
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Wei Xiang
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Defeng Meng
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Wang Chao
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Han Fei
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Weishan Wang
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| |
Collapse
|
17
|
He M, Qin Z, Liang X, He X, Zhu B, Lu Z, Wei Q, Zheng L. A pH-responsive mesoporous silica nanoparticles-based drug delivery system with controlled release of andrographolide for OA treatment. Regen Biomater 2021; 8:rbab020. [PMID: 34221446 PMCID: PMC8242227 DOI: 10.1093/rb/rbab020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Andrographolide (AG) has favorable anti-inflammatory and antioxidative capacity. However, it has low bioavailability due to high lipophilicity and can be easily cleared by the synovial fluid after intra-articular injection, leading to low therapeutic efficiency in osteoarthritis (OA). Herein, we designed a nano-sized pH-responsive drug delivery system (DDS) for OA treatment by using modified mesoporous silica nanoparticles (MSNs) with pH-responsive polyacrylic acid (PAA) for loading of AG to form AG@MSNs-PAA nanoplatform. The nanoparticles have uniform size (∼120 nm), high drug loading efficiency (22.38 ± 0.71%) and pH-responsive properties, beneficial to sustained release in OA environment. Compared with AG, AG@MSNs-PAA showed enhanced antiarthritic efficacy and chondro-protective capacity based on IL-1β-stimulated chondrocytes and anterior cruciate ligament transection-induced rat OA model, as demonstrated by lower expression of inflammatory factors and better prevention of proteoglycan loss. Therefore, the AG@MSNs-PAA nanoplatform may be developed as a promising OA-specific and on-demand DDS.
Collapse
Affiliation(s)
- Mingwei He
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Xiaonan Liang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Xixi He
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Bikang Zhu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Qingjun Wei
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| |
Collapse
|
18
|
Hossain MA, Adithan A, Alam MJ, Kopalli SR, Kim B, Kang CW, Hwang KC, Kim JH. IGF-1 Facilitates Cartilage Reconstruction by Regulating PI3K/AKT, MAPK, and NF-kB Signaling in Rabbit Osteoarthritis. J Inflamm Res 2021; 14:3555-3568. [PMID: 34335042 PMCID: PMC8318731 DOI: 10.2147/jir.s316756] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The pathogenesis of osteoarthritis (OA) is characterized by joint degeneration. The pro-inflammatory cytokine interleukin (IL)-1β plays a vital role in the pathogenesis of OA by stimulation of specific signaling pathways like NF-κB, PI3K/Akt, and MAPKs pathways. The catabolic role of growth factors in the OA may be inhibited cytokine-activated pathogen. The purpose of this study was to investigate the potential effects of insulin-like growth factor-1 (IGF-1) on IL-1β-induced apoptosis in rabbit chondrocytes in vitro and in an in vivo rabbit knee OA model. Methods In the present study, the OA developed in chondrocyte with the treatment of IL-1β and articular cartilage ruptures by removal of cartilage from the rabbit knee femoral condyle. After IGF-1 treatment, immunohistochemistry and qRT-PCR were identified OA expression with changes in MMPs (matrix metalloproteinases). The production of ROS (intracellular reactive oxygen species) in the OA was detected by flow cytometry. Further, the disease progression was microscopically investigated and pathophysiological changes were analyzed using histology. The NF-κB, PI3K/Akt and P38 (MAPK) specific pathways that are associated with disease progression were also checked using the Western blot technique. Results The expression of MMPs and various apoptotic markers are down-regulated following administration of IGF-1 in a dose-dependent fashion while significantly up-regulation of TIMP-1. The results showed that higher levels of ROS were observed upon treatment of chondrocytes and chondral OA with IL-1β. Collectively, our results indicated that IGF-1 protected NF-κB pathway by suppression of PI3K/Akt and MAPKs specific pathways. Furthermore, the macroscopic and pathological investigation showed that it has a chondroprotective effect by the formation of hyaline cartilage. Conclusion Our results indicate a protective effect of IGF-1 against OA pathogenesis by inhibition of NF-κB signaling via regulation of the MAPK and PI3K/Akt signaling pathways and prevention of apoptosis by suppression of ROS production.
Collapse
Affiliation(s)
- Mohammad Amjad Hossain
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Aravinthan Adithan
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Md Jahangir Alam
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Chang-Won Kang
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Jeollabuk-Do, Republic of Korea
| |
Collapse
|
19
|
Xiong W, Lan Q, Liang X, Zhao J, Huang H, Zhan Y, Qin Z, Jiang X, Zheng L. Cartilage-targeting poly(ethylene glycol) (PEG)-formononetin (FMN) nanodrug for the treatment of osteoarthritis. J Nanobiotechnology 2021; 19:197. [PMID: 34217311 PMCID: PMC8254262 DOI: 10.1186/s12951-021-00945-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Intra-articular (IA) injection is an efficient treatment for osteoarthritis, which will minimize systemic side effects. However, the joint experiences rapid clearance of therapeutics after intra-articular injection. Delivering system modified through active targeting strategies to facilitate localization within specific joint tissues such as cartilage is hopeful to increase the therapeutic effects. In this study, we designed a nanoscaled amphiphilic and cartilage-targeting polymer-drug delivery system by using formononetin (FMN)-poly(ethylene glycol) (PEG) (denoted as PCFMN), which was prepared by PEGylation of FMN followed by coupling with cartilage-targeting peptide (CollBP). Our results showed that PCFMN was approximately regular spherical with an average diameter about 218 nm. The in vitro test using IL-1β stimulated chondrocytes indicated that PCFMN was biocompatible and upregulated anabolic genes while simultaneously downregulated catabolic genes of the articular cartilage. The therapeutic effects in vivo indicated that PCFMN could effectively attenuate the progression of OA as evidenced by immunohistochemical staining and histological analysis. In addition, PCFMN showed higher intention time in joints and better anti-inflammatory effects than FMN, indicating the efficacy of cartilage targeting nanodrug on OA. This study may provide a reference for clinical OA therapy.
Collapse
Affiliation(s)
- Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaonan Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xianfang Jiang
- Department of Oral Radiology, Guangxi Medical University College of Stomatology, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
20
|
Jeon SY, Yu SH, Lee BS, Kim HJ, Kim CG, Jang EJ, Lee JJ, Kim DS, Kim MR. Chondroprotective effect of Alpinia oxyphylla extract in experimentally induced cartilage degradation in rabbit articular cartilage explants. J Food Biochem 2021; 45:e13713. [PMID: 33818795 DOI: 10.1111/jfbc.13713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Alpinia oxyphylla is a widely used medicinal herb for diarrhea, gastralgia, tumors, hypertention, and cerebrovascular disorders. Here, we evaluated the chondroprotective effect of A. oxyphylla dried fruit ethanol extract (AOE) against cartilage degradation in rabbit articular cartilage explants. Treatment of interleukin-1α (IL-1α) and plasminogen increased degraded collagen release in culture supernatants, but pretreatment of AOE (50, 100, 200 µg/ml) inhibited the collagen release in dose-dependent manner. To examine the mechanism of action of AOE on chondroprotection, the level of matrix metalloproteinases-3 (MMP-3), matrix metalloproteinases-13 (MMP-13), tissue inhibitor of metalloprotease-1 (TIMP-1), and inflammatory mediators like prostaglandin E2 (PGE2 ) and nitric oxide (NO) was evaluated. AOE inhibited upregulation of MMP-3 and MMP-13 and downregulation of TIMP-1 and also reduced increase of PGE2 and NO level induced by exposure of IL-1α and plasminogen. These results indicate that AOE show chondroprotective effect through inhibiting collagen degradation via regulating MMPs, TIMP-1, and inflammatory mediators. PRACTICAL APPLICATIONS: Osteoarthritis (OA) is a one of the most common chronic disorders in elderly persons. Because the regenerative power of joint articular cartilage is very low, treatment of OA is difficult to expect complete recovery. Therefore, there is a need to develop a therapeutic agent that can safely and effectively inhibit the cartilage destruction. For the first time, we exhibited the inhibitory effect of AOE on collagen degradation through regulating MMPs and TIMP-1 in articular cartilage explants. These findings support AOE could be used as herbal therapeutic application for protecting articular cartilage to prevent OA.
Collapse
Affiliation(s)
- Se Yeong Jeon
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Su Hyun Yu
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Bo Su Lee
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Hyun Jin Kim
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Chang Geon Kim
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Eun-Ju Jang
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Jeong Jun Lee
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mi Ran Kim
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| |
Collapse
|
21
|
Columbianadin Dampens In Vitro Inflammatory Actions and Inhibits Liver Injury via Inhibition of NF-κB/MAPKs: Impacts on ∙OH Radicals and HO-1 Expression. Antioxidants (Basel) 2021; 10:antiox10040553. [PMID: 33918237 PMCID: PMC8067002 DOI: 10.3390/antiox10040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Columbianadin (CBN), a natural coumarin isolated from Angelica decursiva, is reported to have numerous biological activities, including anticancer and platelet aggregation inhibiting properties. Here, we investigated CBN’s anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell activation and deciphered the signaling process, which could be targeted by CBN as part of the mechanisms. Using a mouse model of LPS-induced acute liver inflammation, the CBN effects were examined by distinct histologic methods using trichrome, reticulin, and Weigert’s resorcin fuchsin staining. The result showed that CBN decreased LPS-induced expressions of TNF-α, IL-1β, and iNOS and NO production in RAW 264.7 cells and mouse liver. CBN inhibited LPS-induced ERK and JNK phosphorylation, increased IκBα levels, and inhibited NF-κB p65 phosphorylation and its nuclear translocation. Application of inhibitors for ERK (PD98059) and JNK (SP600125) abolished the LPS-induced effect on NF-κB p65 phosphorylation, which indicated that ERK and JNK signaling pathways were involved in CBN-mediated inhibition of NF-κB activation. Treatment with CBN decreased hydroxyl radical (•OH) generation and increased HO-1 expression in RAW 264.7 cells. Furthermore, LPS-induced liver injury, as indicated by elevated serum levels of liver marker enzymes (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and histopathological alterations, were reversed by CBN. This work demonstrates the utility of CBN against LPS-induced inflammation, liver injury, and oxidative stress by targeting JNK/ERK and NF-κB signaling pathways.
Collapse
|
22
|
Xiong F, Qin Z, Chen H, Lan Q, Wang Z, Lan N, Yang Y, Zheng L, Zhao J, Kai D. pH-responsive and hyaluronic acid-functionalized metal-organic frameworks for therapy of osteoarthritis. J Nanobiotechnology 2020; 18:139. [PMID: 32993662 PMCID: PMC7523381 DOI: 10.1186/s12951-020-00694-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Drug therapy of osteoarthritis (OA) is limited by the short retention and lacking of stimulus-responsiveness after intra-articular (IA) injection. The weak acid microenvironment in joint provides a potential trigger for controlled drug release systems in the treatment of OA. Herein, we developed an pH-responsive metal − organic frameworks (MOFs) system modified by hyaluronic acid (HA) and loaded with an anti-inflammatory protocatechuic acid (PCA), designated as MOF@HA@PCA, for the therapy of OA. Results demonstrated that MOF@HA@PCA could smartly respond to acidic conditions in OA microenvironment and gradually release PCA, which could remarkably reduce synovial inflammation in both IL-1β induced chondrocytes and the OA joints. MOF@HA@PCA also down-regulated the expression of inflammatory markers of OA and promoted the expression of cartilage-specific makers. This work may provide a new insight for the design of efficient nanoprobes for precision theranostics of OA .
Collapse
Affiliation(s)
- Feng Xiong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Orthopaedics, Langdong Hospital of Guangxi Medical University, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Haimin Chen
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Zetao Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Orthopaedics, Langdong Hospital of Guangxi Medical University, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China. .,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.,Guangxi Key Laboratory of Regenerative Medicine, Life Sciences Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| |
Collapse
|
23
|
Anti-Inflammatory and Antioxidant Effects of Carpesium cernuum L. Methanolic Extract in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm 2020; 2020:3164239. [PMID: 32848508 PMCID: PMC7439783 DOI: 10.1155/2020/3164239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
A hypernomic reaction or an abnormal inflammatory process could cause a series of diseases, such as cardiovascular disease, neurodegeneration, and cancer. Additionally, oxidative stress has been identified to induce severe tissue injury and inflammation. Carpesium cernuum L. (C. cernuum) is a Chinese folk medicine used for its anti-inflammatory, analgesic, and detoxifying properties. However, the underlying molecular mechanism of C. cernuum in inflammatory and oxidative stress conditions remains largely unknown. The aim of this study was to examine the effects of a methanolic extract of C. cernuum (CLME) on lipopolysaccharide- (LPS-) induced RAW 264.7 mouse macrophages and a sepsis mouse model. The data presented in this study indicated that CLME inhibited LPS-induced production of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 cells. CLME treatment also reduced reactive oxygen species (ROS) generation and enhanced the expression of heme oxygenase-1 (HO-1) protein in a dose-dependent manner in the LPS-stimulated RAW 264.7 cells. Moreover, CLME treatment abolished the nuclear translocation of nuclear factor-κB (NF-κB), enhanced the activation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), and reduced the expression of extracellular signal-related kinase (ERK) and ERK kinase (MEK) phosphorylation in LPS-stimulated RAW 264.7 cells. These outcomes implied that CLME could be a potential antioxidant and anti-inflammatory agent.
Collapse
|
24
|
Wu Y, Wang Z, Lin Z, Fu X, Zhan J, Yu K. Salvianolic Acid A Has Anti-Osteoarthritis Effect In Vitro and In Vivo. Front Pharmacol 2020; 11:682. [PMID: 32581777 PMCID: PMC7283387 DOI: 10.3389/fphar.2020.00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease found in middle-aged and elderly people, which seriously affects their quality of life. The anti-inflammatory and anti-apoptosis pharmacological effects of salvianolic acid A (SAA) have been shown in many studies. In this study, we intended to explore the anti-inflammatory and anti-apoptotic effects of SAA in OA. We evaluated the expression of pro-inflammatory mediators and cartilage matrix catabolic enzymes in chondrocytes by ELISA, Griess reaction, immunofluorescence, and Western blot, which includes nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), MMPs (MMP-3, MMP-13), and ADAMTS-5. Bax, Bcl-2, and cleaved caspase-3 were also measured by Western blot methods. The results of this experiment in vitro showed that SAA not only inhibited the production of inflammatory mediators induced by IL-1β and the loss of cartilage matrix but also reduced the apoptosis of mouse chondrocytes induced by IL-1β. According to the results of immunofluorescence and Western blot, SAA inhibited the activation of the NF-κB pathway and MAPK pathway. The results of these in vitro experiments revealed for the first time that SAA down-regulated the production of inflammatory mediators and inhibited the apoptosis of mouse chondrocytes and the degradation of extracellular matrix (ECM), which may be attributed to the inhibition of the activation of NF-κB and MAPK signaling pathways. In the in vivo experiments, 45 mice were randomly divided among three groups (the sham group, OA group, and OA + SAA group). The results of animal experiments showed that SAA treatment for eight consecutive weeks inhibited further deterioration of OA. These results demonstrate that SAA plays an active therapeutic role in the development of OA.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhanghong Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Chien SY, Tsai CH, Liu SC, Huang CC, Lin TH, Yang YZ, Tang CH. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis. Cells 2020; 9:cells9040927. [PMID: 32290085 PMCID: PMC7226847 DOI: 10.3390/cells9040927] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory and progressive joint disease that results in cartilage degradation and subchondral bone remodeling. The proinflammatory cytokine interleukin 1 beta (IL-1β) is abundantly expressed in OA and plays a crucial role in cartilage remodeling, although its role in the activity of chondrocytes in cartilage and subchondral remodeling remains unclear. In this study, stimulating chondrogenic ATDC5 cells with IL-1β increased the levels of bone morphogenetic protein 2 (BMP-2), promoted articular cartilage degradation, and enhanced structural remodeling. Immunohistochemistry staining and microcomputed tomography imaging of the subchondral trabecular bone region in the experimental OA rat model revealed that the OA disease promotes levels of IL-1β, BMP-2, and matrix metalloproteinase 13 (MMP-13) expression in the articular cartilage and enhances subchondral bone remodeling. The intra-articular injection of Noggin protein (a BMP-2 inhibitor) attenuated subchondral bone remodeling and disease progression in OA rats. We also found that IL-1β increased BMP-2 expression by activating the mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and specificity protein 1 (Sp1) signaling pathways. We conclude that IL-1β promotes BMP-2 expression in chondrocytes via the MEK/ERK/Sp1 signaling pathways. The administration of Noggin protein reduces the expression of IL-1β and BMP-2, which prevents cartilage degeneration and OA development.
Collapse
Affiliation(s)
- Szu-Yu Chien
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404393, Taiwan;
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404022, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404022, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404022, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Yu-Zhen Yang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404022, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404022, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121 (ext. 7726)
| |
Collapse
|
26
|
Wu Z, Luan Z, Zhang X, Zou K, Ma S, Yang Z, Feng W, He M, Jiang L, Li J, Yao J. Chondro-protective effects of polydatin in osteoarthritis through its effect on restoring dysregulated autophagy via modulating MAPK, and PI3K/Akt signaling pathways. Sci Rep 2019; 9:13906. [PMID: 31554953 PMCID: PMC6761091 DOI: 10.1038/s41598-019-50471-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the cartilage that is prevalent in the middle-aged and elderly demography. Polydatin (PD), a natural resveratrol glucoside, has shown significant anti-inflammatory and anti-arthritic potential in previous studies. This study was designed to evaluate the therapeutic properties of PD in vitro and in vivo, and elucidate their underlying mechanisms. The expression levels of all relevant factors were evaluated by qRT-PCR, western blotting, and immunohistochemistry (IHC) where suitable. Reactive oxygen species (ROS) and apoptosis were analyzed using the suitable probes and flow cytometry. The histological evidence of cartilage was assessed in rat models, moreover, the several serum cytokines levels and autophagy levels were evaluated. The result showed PD displayed significant chondro-protective effects, inferred in terms of reduced inflammation and cartilage degradation, apoptosis inhibition, and lower ROS production. The protective effects were attenuated by the autophagy inhibitor 3-MA, indicating a mediating role of autophagy in PD action. Mechanistically, PD exerted its effects by inhibiting the MAPK and PI3K/Akt signaling pathways which led to the down-regulation of mTOR. In conclusion, PD protects against cartilage degeneration by activating the autophagy flux in the chondrocytes via the MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Zhengyuan Wu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhiwei Luan
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Xiaohan Zhang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kai Zou
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shiting Ma
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhenyi Yang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Wenyu Feng
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Mingwei He
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Linhua Jiang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jia Li
- Departments of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Jun Yao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
27
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
YAO W, DAI H, GUI J. [Mechanical stress promotes cartilage repair in inflammatory environment]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:517-525. [PMID: 31901026 PMCID: PMC8800764 DOI: 10.3785/j.issn.1008-9292.2019.10.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect and mechanism of mechanical stress on cartilage repair in inflammatory environment. METHODS The chondrogenic progenitor cells (CPCs) were isolated from the knee joint cartilage of patients with osteoarthritis (OA) undergoing total knee arthroplasty. The CPCs were cultured and expanded in a 3-D scaffold constructed with alginate. Intermittent hydrostatic pressure (IHP) was applied in a inflammatory environment induced by IL-1β, and Western blot was used to detect the expression of MAPK signaling pathway proteins. Cell proliferation was detected by CCK-8 method, and the expression of related genes like matrix metallo-proteinases 13 (MMP-13) and a disintegrins and metalloproteinase with thrombospondin motif 5 (ADAMTS-5) was detected by real-time RT-PCR. The anterior cruciate ligament of the rats was cut to construct the knee joint OA model, and the appropriate mechanical stress was constructed with external fixation to distract the knee joint in order to observe the repair of the cartilage and to explore its mechanism. RESULTS Adding 0.01 ng/ml IL-1β in cell culture inhibited the proliferation of CPCs. After IHP application, the expression of MAPK pathway protein was decreased, the mRNA expression of MMP-13 and ADAMTS-5 was reduced. The inhibition of IL-1β on CPCs was counteracted by IHP. Four weeks after the anterior cruciate ligament resected, the articular cartilage degeneration was observed in rats. The Mankin score in the OA treatment (joint distraction) group was lower, and the cartilage repair was better than that of the control group (P<0.01). Animal experiments found that the suitable mechanical stress reduced the expression of P-p38, MMP-13 and COLL-X, inhibited cartilage cells apoptosis and promoted the repair of OA cartilage. CONCLUSIONS Mechanical stress can promote the proliferation of CPCs, reduce the expression of matrix degrading enzymes, and promote the repair of OA cartilage by inhibiting MAPK signaling pathway.
Collapse
Affiliation(s)
| | | | - Jianchao GUI
- 桂鉴超(1972—), 男, 博士, 教授, 博士生导师, 主要从事骨关节炎及软骨修复的机制研究; E-mail:
;
https://orcid.org/0000-0002-0876-5265
| |
Collapse
|
29
|
Soul J, Hardingham TE, Boot-Handford RP, Schwartz JM. SkeletalVis: an exploration and meta-analysis data portal of cross-species skeletal transcriptomics data. Bioinformatics 2019; 35:2283-2290. [PMID: 30481257 PMCID: PMC6596879 DOI: 10.1093/bioinformatics/bty947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023] Open
Abstract
MOTIVATION Skeletal diseases are prevalent in society, but improved molecular understanding is required to formulate new therapeutic strategies. Large and increasing quantities of available skeletal transcriptomics experiments give the potential for mechanistic insight of both fundamental skeletal biology and skeletal disease. However, no current repository provides access to processed, readily interpretable analysis of this data. To address this, we have developed SkeletalVis, an exploration portal for skeletal gene expression experiments. RESULTS The SkeletalVis data portal provides an exploration and comparison platform for analysed skeletal transcriptomics data. It currently hosts 287 analysed experiments with 739 perturbation responses with comprehensive downstream analysis. We demonstrate its utility in identifying both known and novel relationships between skeletal expression signatures. SkeletalVis provides users with a platform to explore the wealth of available expression data, develop consensus signatures and the ability to compare gene signatures from new experiments to the analysed data to facilitate meta-analysis. AVAILABILITY AND IMPLEMENTATION The SkeletalVis data portal is freely accessible at http://phenome.manchester.ac.uk. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jamie Soul
- Division of Evolution & Genomic Sciences, University of Manchester, Manchester, MUK
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, MUK
| | - Tim E Hardingham
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, MUK
| | - Ray P Boot-Handford
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester, MUK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, University of Manchester, Manchester, MUK
| |
Collapse
|
30
|
Herrero-Beaumont G, Pérez-Baos S, Sánchez-Pernaute O, Roman-Blas JA, Lamuedra A, Largo R. Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol 2019; 165:24-32. [PMID: 30825432 DOI: 10.1016/j.bcp.2019.02.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degradation, osteophyte formation, subchondral bone sclerosis, and synovitis. Systemic factors such as obesity and the components of the metabolic syndrome seem to contribute to its progression. Breakdown of cartilage ensues from an altered balance between mechanical overload and its absorption by this tissue. There is in this context a status of persistent local inflammation by means of the chronic activation of innate immunity. A broad variety of danger-associated molecular patterns inside OA joint are able to activate pattern recognition receptors, mainly TLR (toll-like receptor) 2 and 4, which are overexpressed in the OA cartilage. Chronic activation of innate immune responses in chondrocytes results in a robust production of pro-inflammatory cytokines and chemokines, as well as of tissue-destructive enzymes, downstream of NF-κB and MAPK (mitogen activated protein kinase) dependent pathways. Besides, the toxic effects of an excess of glucose and/or fatty acids, which share the same pro-inflammatory intracellular signalling pathways, may add fuel to the fire. Not only high concentrations of glucose can render cells prone to inflammation, but also AGEs (advanced glycation end products) are integrated into the TLR signalling network through their own innate immune receptors. Considering these mechanisms, we argue for the control of both primary inflammation and proteolytic catabolism as a preventive strategy in OA, instead of focusing treatment on the enhancement of anabolic responses. Even though this approach would not return to normal already degraded cartilage, it nonetheless might avoid damage extension to the surrounding tissue.
Collapse
Affiliation(s)
| | - Sandra Pérez-Baos
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Jorge A Roman-Blas
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Raquel Largo
- Joint and Bone Research Unit, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
| |
Collapse
|
31
|
Pearson MJ, Jones SW. Review: Long Noncoding RNAs in the Regulation of Inflammatory Pathways in Rheumatoid Arthritis and Osteoarthritis. Arthritis Rheumatol 2018; 68:2575-2583. [PMID: 27214788 PMCID: PMC5347907 DOI: 10.1002/art.39759] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Mark J Pearson
- Institute of Inflammation and Ageing, MRC-ARK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
32
|
Choi YK, Ye BR, Kim EA, Kim J, Kim MS, Lee WW, Ahn GN, Kang N, Jung WK, Heo SJ. Bis (3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomed Pharmacother 2018; 103:1170-1177. [PMID: 29864895 DOI: 10.1016/j.biopha.2018.04.121] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a pathophysiological defense response against various factors for maintaining homeostasis in the body. However, when continued excessive inflammation becomes chronic, various chronic diseases can develop. Therefore, effective treatment before chronic inflammation development is essential. Bis (3-bromo-4,5-dihydroxybenzyl) ether (BBDE, C14H12Br2O5) is a novel bromophenol isolated from the red alga Polysiphonia morrowii. The beneficial physiological functions of various bromophenols are known, but whether BBDE has beneficial physiological functions is unknown. Therefore, we first investigated whether BBDE exerts any anti-inflammatory effect. We demonstrated that BBDE inhibits inflammation by reducing inflammatory mediators, such as nitric oxide, prostaglandin E2, iNOS, COX2, and pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), in LPS-induced macrophage cells. To examine the mechanism of action by which BBDE inhibits inflammation, we confirmed its effect on signal transduction and ROS generation. BBDE selectively inhibited ERK phosphorylation in the mitogen-activated protein kinase pathways. Moreover BBDE suppressed LPS-induced ROS generation in RAW 264.7 macrophage cells. Inhibition of LPS-induced ROS generation by BBDE also caused ERK inactivation and an inflammatory reaction. Therefore, BBDE inhibits LPS-induced inflammation by inhibiting the ROS-mediated ERK signaling pathway in RAW 264.7 macrophage cells and thus can be useful for treating inflammatory diseases.
Collapse
Affiliation(s)
- Youn Kyung Choi
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea; Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea
| | - Bo-Ram Ye
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
| | - Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
| | - Junseong Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
| | - Min-Sun Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea
| | - Won Woo Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Gin-Nae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University 59626, Republic of Korea
| | - Nalae Kang
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University 59626, Republic of Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea; Department of Marine Biology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
33
|
Philp AM, Davis ET, Jones SW. Developing anti-inflammatory therapeutics for patients with osteoarthritis. Rheumatology (Oxford) 2017; 56:869-881. [PMID: 27498352 DOI: 10.1093/rheumatology/kew278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/30/2022] Open
Abstract
OA is the most common joint disorder in the world, but there are no approved therapeutics to prevent disease progression. Historically, OA has been considered a wear-and-tear joint disease, and efforts to identify and develop disease-modifying therapeutics have predominantly focused on direct inhibition of cartilage degeneration. However, there is now increasing evidence that inflammation is a key mediator of OA joint pathology, and also that the link between obesity and OA is not solely due to excessive load-bearing, suggesting therefore that targeting inflammation in OA could be a rewarding therapeutic strategy. In this review we therefore re-evaluate historical clinical trial data on anti-inflammatory therapeutics in OA patients, highlight some of the more promising emerging therapeutic targets and discuss the implications for future clinical trial design.
Collapse
Affiliation(s)
- Ashleigh M Philp
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham
| | - Edward T Davis
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham
| |
Collapse
|
34
|
Xu W, Xie Y, Wang Q, Wang X, Luo F, Zhou S, Wang Z, Huang J, Tan Q, Jin M, Qi H, Tang J, Chen L, Du X, Zhao C, Liang G, Chen L. A novel fibroblast growth factor receptor 1 inhibitor protects against cartilage degradation in a murine model of osteoarthritis. Sci Rep 2016; 6:24042. [PMID: 27041213 PMCID: PMC4819196 DOI: 10.1038/srep24042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
The attenuated degradation of articular cartilage by cartilage-specific deletion of fibroblast growth factor receptor 1 (FGFR1) in adult mice suggests that FGFR1 is a potential target for treating osteoarthritis (OA). The goal of the current study was to investigate the effect of a novel non-ATP-competitive FGFR1 inhibitor, G141, on the catabolic events in human articular chondrocytes and cartilage explants and on the progression of cartilage degradation in a murine model of OA. G141 was screened and identified via cell-free kinase-inhibition assay. In the in vitro study, G141 decreased the mRNA levels of catabolic markers ADAMTS-5 and MMP-13, the phosphorylation of Erk1/2, JNK and p38 MAPK, and the protein level of MMP-13 in human articular chondrocytes. In the ex vivo study, proteoglycan loss was markedly reduced in G141 treated human cartilage explants. For the in vivo study, intra-articular injection of G141 attenuated the surgical destabilization of the medial meniscus (DMM) induced cartilage destruction and chondrocyte hypertrophy and apoptosis in mice. Our data suggest that pharmacologically antagonize FGFR1 using G141 protects articular cartilage from osteoarthritic changes, and intra-articular injection of G141 is potentially an effective therapy to alleviate OA progression.
Collapse
Affiliation(s)
- Wei Xu
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Quan Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaofeng Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fengtao Luo
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zuqiang Wang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiaoyan Tan
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Min Jin
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Huabing Qi
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junzhou Tang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Liang Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chengguang Zhao
- Institute of Biological and Natural Medicine, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Guang Liang
- Institute of Biological and Natural Medicine, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
35
|
Xing R, Yang L, Jin Y, Sun L, Li C, Li Z, Zhao J, Liu X. Interleukin-21 Induces Proliferation and Proinflammatory Cytokine Profile of Fibroblast-like Synoviocytes of Patients with Rheumatoid Arthritis. Scand J Immunol 2015; 83:64-71. [PMID: 26482544 DOI: 10.1111/sji.12396] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/06/2015] [Indexed: 01/23/2023]
Affiliation(s)
- R. Xing
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - L. Yang
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - Y. Jin
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - L. Sun
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - C. Li
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - Z. Li
- Department of Anesthesiology; Peking University Third Hospital; Beijing 100191 China
| | - J. Zhao
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| | - X. Liu
- Department of Rheumatology and Immunology; Peking University Third Hospital; Beijing 100191 China
| |
Collapse
|
36
|
Pest MA, Pest CA, Bellini MR, Feng Q, Beier F. Deletion of Dual Specificity Phosphatase 1 Does Not Predispose Mice to Increased Spontaneous Osteoarthritis. PLoS One 2015; 10:e0142822. [PMID: 26562438 PMCID: PMC4643037 DOI: 10.1371/journal.pone.0142822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with poorly understood etiology and pathobiology. Mitogen activated protein kinases (MAPKs) including ERK and p38 play important roles in the mediation of downstream pathways involved in cartilage degenerative processes. Dual specificity phosphatase 1 (DUSP1) dephosphorylates the threonine/serine and tyrosine sites on ERK and p38, causing deactivation of downstream signalling. In this study we examined the role of DUSP1 in spontaneous OA development at 21 months of age using a genetically modified mouse model deficient in Dusp1 (DUSP1 knockout mouse). RESULTS Utilizing histochemical stains of paraffin embedded knee joint sections in DUSP1 knockout and wild type female and male mice, we showed similar structural progression of cartilage degeneration associated with OA at 21 months of age. A semi-quantitative cartilage degeneration scoring system also demonstrated similar scores in the various aspects of the knee joint articular cartilage in DUSP1 knockout and control mice. Examination of overall articular cartilage thickness in the knee joint demonstrated similar results between DUSP1 knockout and wild type mice. Immunostaining for cartilage neoepitopes DIPEN, TEGE and C1,2C was similar in the cartilage lesion sites and chondrocyte pericellular matrix of both experimental groups. Likewise, immunostaining for phosphoERK and MMP13 showed similar intensity and localization between groups. SOX9 immunostaining demonstrated a decreased number of positive cells in DUSP1 knockout mice, with correspondingly decreased staining intensity. Analysis of animal walking patterns (gait) did not show a discernable difference between groups. CONCLUSION Loss of DUSP1 does not cause changes in cartilage degeneration and gait in a mouse model of spontaneous OA at 21 months of age. Altered staining was observed in SOX9 immunostaining which may prove promising for future studies examining the role of DUSPs in cartilage and OA, as well as models of post-traumatic OA.
Collapse
Affiliation(s)
- Michael Andrew Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Courtney Alice Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | | | - Qingping Feng
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| |
Collapse
|
37
|
Liu Z, Cai H, Zheng X, Zhang B, Xia C. The Involvement of Mutual Inhibition of ERK and mTOR in PLCγ1-Mediated MMP-13 Expression in Human Osteoarthritis Chondrocytes. Int J Mol Sci 2015; 16:17857-69. [PMID: 26247939 PMCID: PMC4576213 DOI: 10.3390/ijms160817857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023] Open
Abstract
The issue of whether ERK activation determines matrix synthesis or degradation in osteoarthritis (OA) pathogenesis currently remains controversial. Our previous study shows that PLCγ1 and mTOR are involved in the matrix metabolism of OA cartilage. Investigating the interplays of PLCγ1, mTOR and ERK in matrix degradation of OA will facilitate future attempts to manipulate ERK in OA prevention and therapy. Here, cultured human normal chondrocytes and OA chondrocytes were treated with different inhibitors or transfected with expression vectors, respectively. The levels of ERK, p-ERK, PLCγ1, p-PLCγ1, mTOR, p-mTOR and MMP-13 were then evaluated by Western blotting analysis. The results manifested that the expression level of ERK in human OA chondrocytes was lower than that in human normal articular chondrocytes, and the up-regulation of ERK could promote matrix synthesis, including the decrease in MMP-13 level and the increase in Aggrecan level in human OA chondrocytes. Furthermore, the PLCγ1/ERK axis and a mutual inhibition of mTOR and ERK were observed in human OA chondrocytes. Interestingly, activated ERK had no inhibitory effect on MMP-13 expression in PLCγ1-transformed OA chondrocytes. Combined with our previous study, the non-effective state of ERK activation by PLCγ1 on MMP-13 may be partly attributed to the inhibition of the PLCγ1/mTOR axis on the PLCγ1/ERK axis. Therefore, the study indicates that the mutual inhibition of ERK and mTOR is involved in PLCγ1-mediated MMP-13 expression in human OA chondrocytes, with important implication for the understanding of OA pathogenesis as well as for its prevention and therapy.
Collapse
Affiliation(s)
- Zejun Liu
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
- The People\\\'s Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Heguo Cai
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| | - Xinpeng Zheng
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| | - Bing Zhang
- Medical School, Xiamen University, Xiamen 361102, China.
| | - Chun Xia
- Department of Sports Medicine & Joint Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| |
Collapse
|
38
|
Cheng L, Zeng G, Liu Z, Zhang B, Cui X, Zhao H, Zheng X, Song G, Kang J, Xia C. Protein kinase B and extracellular signal-regulated kinase contribute to the chondroprotective effect of morroniside on osteoarthritis chondrocytes. J Cell Mol Med 2015; 19:1877-86. [PMID: 25754021 PMCID: PMC4549038 DOI: 10.1111/jcmm.12559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/14/2015] [Indexed: 11/29/2022] Open
Abstract
Despite extensive studies on the multifaceted roles of morroniside, the main active constituent of iridoid glycoside from Corni Fructus, the effect of morroniside on osteoarthritis (OA) chondrocytes remains poorly understood. Here, we investigated the influence of morroniside on cultured human OA chondrocytes and a rat experimental model of OA. The results showed that morroniside enhanced the cell viability and the levels of proliferating cell nuclear antigen expression (PCNA), type II collagen and aggrecan in human OA chondrocytes, indicating that morroniside promoted chondrocyte survival and matrix synthesis. Furthermore, different doses of morroniside activated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) in human OA chondrocytes, and in turn, triggered AKT/S6 and ERK/P70S6K/S6 pathway, respectively. The PI3K/AKT inhibitor LY294002 or the MEK/ERK inhibitor U0126 attenuated the effect of morroniside on human OA chondrocytes, indicating that the activation of AKT and ERK contributed to the regulation of morroniside in human OA chondrocytes. In addition, the intra-articular injection of morroniside elevated the level of proteoglycans in cartilage matrix and the thickness of articular cartilage in a rat experimental model of OA, with the increase of AKT and ERK activation. As a consequence, morroniside has chondroprotective effect on OA chondrocytes, and may have the therapeutic potential for OA treatment.
Collapse
Affiliation(s)
- Liang Cheng
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China.,Taiping People's Hospital of Dongguan, University of Jinan, Dongguan, Guangdong, China
| | - Guoqing Zeng
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | - Zejun Liu
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | - Bing Zhang
- School of Medicine, University of Xiamen, Xiamen, Fujian, China
| | - Xu Cui
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | - Honghai Zhao
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | - Xinpeng Zheng
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | - Gang Song
- School of Medicine, University of Xiamen, Xiamen, Fujian, China
| | - Jian Kang
- Taiping People's Hospital of Dongguan, University of Jinan, Dongguan, Guangdong, China
| | - Chun Xia
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| |
Collapse
|
39
|
Bayyurt S, Küçükalp A, Bilgen MS, Bilgen ÖF, Çavuşoğlu İ, Yalçınkaya U. The chondroprotective effects of intraarticular application of statin in osteoarthritis: An experimental study. Indian J Orthop 2015; 49:665-71. [PMID: 26806976 PMCID: PMC4705735 DOI: 10.4103/0019-5413.168751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most frequent chronic joint disease causing pain and disability. Recent reports have shown that statin may have the potential to inhibit osteoarthritis. This study of early stage OA developed in an experimental rabbit model, aimed to evaluate the chondroprotective effects of intraarticularly applied atorvastatin on cartilage tissue macroscopically and histopathologically by examining intracellular and extracellular changes by light and electron microscope. MATERIALS AND METHODS The experimental knee OA model was created by cutting the anterior cruciate ligament of the 20 mature New Zealand rabbits. The rabbits were randomly allocated into two groups of 10. STUDY GROUP The group that received intraarticular statin therapy; CONTROL GROUP The group that did not receive any intraarticular statin therapy. The control group received an intraarticular administration of saline and the study group atorvastatin from the 1(st) week postoperatively, once a week for 3 weeks. The knee joints were removed including the femoral and tibial joint surfaces for light and electron microscopic studies of articular cartilages. RESULTS The mean total points obtained from the evaluation of the lesions that developed in the medial femoral condyle were 11.33 ± 0.667 for the control group and 1.5 ± 0.687 for the study group. The mean total points obtained from the evaluation of the lesions that developed in medial tibial plateau cartilage tissue were 11.56 ± 0.709 for the control group and 1.40 ± 0.618 for the study group. Electron microscopic evaluation revealed healthy cartilage tissue with appropriate chondrocyte and matrix structure in study group and impaired cartilage tissue in control group. CONCLUSION Chondroprotective effect of statin on cartilage tissue was determined in this experimental OA model evaluated macroscopically and by light and electron microscope. There are some evidences to believe that the chondroprotective effect of the statin is that, by protecting the structure of the endoplasmic reticulum and the Golgi complex.
Collapse
Affiliation(s)
- Sarp Bayyurt
- Department of Orthopaedics and Traumatology, Dr. Ersin Arslan State Hospital, Gaziantep, Turkey,Address for correspondence: Dr. Sarp Bayyurt, Department of Orthopaedics and Traumatology, Dr. Ersin Arslan State Hospital, Gaziantep, Turkey. E-mail:
| | - Abdullah Küçükalp
- Department of Orthopaedics and Traumatology, Gemlik Muammer Agim State Hospital, Gemlik, Bursa, Turkey
| | | | - Ömer Faruk Bilgen
- Department of Orthopaedics and Traumatology, Uludag University, Bursa, Turkey
| | | | | |
Collapse
|
40
|
Alaseem AM, Madiraju P, Aldebeyan SA, Noorwali H, Antoniou J, Mwale F. Naproxen induces type X collagen expression in human bone-marrow-derived mesenchymal stem cells through the upregulation of 5-lipoxygenase. Tissue Eng Part A 2014; 21:234-45. [PMID: 25091567 DOI: 10.1089/ten.tea.2014.0148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several studies have shown that type X collagen (COL X), a marker of late-stage chondrocyte hypertrophy, is expressed in mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients. We recently found that Naproxen, but not other nonsteroidal anti-inflammatory drugs (NSAIDs) (Ibuprofen, Celebrex, Diclofenac), can induce type X collagen gene (COL10A1) expression in bone-marrow-derived MSCs from healthy and OA donors. In this study we determined the effect of Naproxen on COL X protein expression and investigated the intracellular signaling pathways that mediate Naproxen-induced COL10A1 expression in normal and OA hMSCs. MSCs of OA patients were isolated from aspirates from the intramedullary canal of donors (50-80 years of age) undergoing hip replacement surgery for OA and were treated with or without Naproxen (100 μg/mL). Protein expression and phosphorylation were determined by immunoblotting using specific antibodies (COL X, p38 mitogen-activated protein kinase [p38], phosphorylated-p38, c-Jun N-terminal kinase [JNK], phosphorylated-JNK, extracellular signal-regulated kinase [ERK], and phosphorylated-ERK). Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of COL10A1 and Runt-related transcription factor 2 gene (Runx2). Our results show that Naproxen significantly stimulated COL X protein expression after 72 h of exposure both in normal and OA hMSCs. The basal phosphorylation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) in OA hMSCs was significantly higher than in normal. Naproxen significantly increased the MAPK phosphorylation in normal and OA hMSCs. NSAID cellular effects include cyclooxygenase, 5-lipoxygenase, and p38 MAPK signaling pathways. To investigate the involvement of these pathways in the Naproxen-induced COL10A1 expression, we incubated normal and OA hMSCs with Naproxen with and without inhibitors of ERK (U0126), JNK (BI-78D3), p38 (SB203580), and 5-lipoxygenase (MK-886). Our results showed that increased basal COL10A1 expression in OA hMSCs was significantly suppressed in the presence of JNK and p38 inhibitors, whereas Naproxen-induced COL10A1 expression was suppressed by 5-lipoxygenase inhibitor. This study shows that Naproxen induces COL X both at transcriptional and translational levels in normal and OA hMSCs. Elevated basal COL10A1 expression in OA hMSCs is probably through the activation of MAPK pathway and Naproxen-induced COL10A1 expression is through the increased 5-lipoxygenase signaling.
Collapse
|
41
|
A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res 2014; 358:633-49. [PMID: 25312291 DOI: 10.1007/s00441-014-2010-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/11/2014] [Indexed: 12/25/2022]
Abstract
Chondrogenesis is a developmental process that is controlled and coordinated by many growth and differentiation factors, in addition to environmental factors that initiate or suppress cellular signaling pathways and the transcription of specific genes in a temporal-spatial manner. As key signaling molecules in regulating cell proliferation, homeostasis and development, both mitogen-activated protein kinases (MAPK) and the Wnt family participate in morphogenesis and tissue patterning, playing important roles in skeletal development, especially chondrogenesis. Recent findings suggest that both signals are also actively involved in arthritis and related diseases. Despite the implication that crosstalk between MAPK and Wnt signaling has a significant function in cancer, few studies have summarized this interaction and its regulation of chondrogenesis. In this review, we focus on MAPK and Wnt signaling, referencing their relationships in various types of cells and particularly to their influence on chondrogenesis and cartilage development. We also discuss the interactions between MAPK and Wnt signaling with respect to cartilage-related diseases such as osteoarthritis and explore potential therapeutic targets for disease treatments.
Collapse
|
42
|
Ma C, Wu G, Wang Z, Wang P, Wu L, Zhu G, Zhao H. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats. PLoS One 2014; 9:e107544. [PMID: 25226519 PMCID: PMC4167193 DOI: 10.1371/journal.pone.0107544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/11/2014] [Indexed: 12/17/2022] Open
Abstract
Objectives To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK) pathway in the temporomandibular joint (TMJ) of rats subjected to chronic sleep deprivation (CSD). Methods Rats were subjected to CSD using the modified multiple platform method (MMPM). The serum levels of corticosterone (CORT) and adrenocorticotropic hormone (ACTH) were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK) expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR) and Western blotting. Results The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group. Conclusion These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.
Collapse
Affiliation(s)
- Chuan Ma
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
- College of Stomatology, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan City, Shandong Province, China
| | - Gaoyi Wu
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Zhaoling Wang
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Peihuan Wang
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Longmei Wu
- cardiovascular medicine, He Bei medical University, Shijiazhuang City, Hebei Province, China
| | - Guoxiong Zhu
- Department of Stomatology, Jinan Military General Hospital, Jinan City, Shandong Province, China
| | - Huaqiang Zhao
- College of Stomatology, Shandong University, Jinan City, Shandong Province, China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan City, Shandong Province, China
- * E-mail:
| |
Collapse
|
43
|
Franklin JM, Carrasco GA. G-protein receptor kinase 5 regulates the cannabinoid receptor 2-induced up-regulation of serotonin 2A receptors. J Biol Chem 2013; 288:15712-24. [PMID: 23592773 DOI: 10.1074/jbc.m113.454843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
44
|
|
45
|
Franklin JM, Carrasco GA. Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT(2A) and dopamine D₂ receptors in rat prefrontal cortex. J Psychopharmacol 2012; 26:1333-47. [PMID: 22791651 PMCID: PMC3746962 DOI: 10.1177/0269881112450786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that non-selective cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in brain. The molecular mechanisms of this regulation are unknown, but could involve cannabinoid-induced enhanced interaction between 5-HT(2A) and dopamine D2 (D₂) receptors. Here, we present experimental evidence that Sprague-Dawley rats treated with a non-selective cannabinoid receptor agonist (CP55,940, 50 µg/kg, 7 days, i.p.) showed enhanced co-immunoprecipitation of 5-HT(2A) and D₂ receptors and enhanced membrane-associated expression of D₂ and 5-HT(2A) receptors in prefrontal cortex (PFCx). Furthermore, 5-HT(2A) receptor mRNA levels were increased in PFCx, suggesting a cannabinoid-induced upregulation of 5-HT(2A) receptors. To date, two cannabinoids receptors have been found in brain, CB1 and CB2 receptors. We used selective cannabinoid agonists in a neuronal cell line to study mechanisms that could mediate this 5-HT(2A) receptor upregulation. We found that selective CB2 receptor agonists upregulate 5-HT(2A) receptors by a mechanism that seems to involve activation of Gα(i) G-proteins, ERK1/2, and AP-1 transcription factor. We hypothesize that the enhanced cannabinoid-induced interaction between 5-HT(2A) and D₂ receptors and in 5-HT(2A) and D₂ receptors protein levels in the PFCx might provide a molecular mechanism by which activation of cannabinoid receptors might be contribute to the pathophysiology of some cognitive and mood disorders.
Collapse
Affiliation(s)
| | - Gonzalo A. Carrasco
- Correspondence: Gonzalo A. Carrasco, PhD, Department of Pharmacology and Toxicology, University of Kansas, School of Pharmacy, 1251 Wescoe Hall Drive, 3048B Malott Hall, Lawrence, KS 66045, Phone: 785-864-1974, Fax: 785-864-5219,
| |
Collapse
|
46
|
Prasadam I, Mao X, Shi W, Crawford R, Xiao Y. Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med (Berl) 2012; 91:369-80. [DOI: 10.1007/s00109-012-0953-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/06/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
|
47
|
Yan D, Chen D, Im HJ. Fibroblast growth factor-2 promotes catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 axis that coordinates with the PKCδ pathway in human articular chondrocytes. J Cell Biochem 2012; 113:2856-65. [PMID: 22488450 PMCID: PMC3684697 DOI: 10.1002/jcb.24160] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) has been found to play an anti-anabolic and/or a catabolic role in adult human articular cartilage via regulation of multiple signaling pathways. Upon FGF-2 stimulation, a molecular crosstalk between the mitogen activated protein kinase (MAPK) and protein kinase C δ (PKCδ) pathways are initiated, where PKCδ positively regulates downstream MAPK signaling. In this study, we explored the relationship between fibroblast growth factor receptor 1 (FGFR1), Ras, and PKCδ in FGF-2 signaling in human articular chondrocytes. Pathway-specific inhibition using both chemical inhibitors and siRNA targeting FGFR1 demonstrated that, upon FGF-2 stimulation, FGFR1 controlled both Ras and PKCδ activation, which converged on the Raf-MEK1/2-ERK1/2 axis. No crosstalk was observed between Ras and PKCδ. Quantitative PCR analyses revealed that both Ras and PKCδ contributed to FGF-2-mediated upregulation of MMP-13, ADAMTS5, and repression of aggrecan gene. Correspondingly, FGF-2-mediated proteoglycan loss was effectively reversed by individual pathway-specific inhibitor of Ras, PKCδ, and ERK1/2 in both 3-dimensional alginate bead culture and cartilage organ culture systems. Our findings suggest that FGFR1 interacts with FGF-2 and then activates Ras and PKCδ, which concertedly drive MAPK signaling to mediate biological effects of FGF-2. Such an integration of dual inputs constitutes a novel mechanism of FGF-2 signaling cascade in human articular chondrocytes.
Collapse
Affiliation(s)
- Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois 60612
- Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois 60612
- Department of Bioengineering, University of Illinois at Chicago, Illinois 60612
| |
Collapse
|
48
|
Martel-Pelletier J, Wildi LM, Pelletier JP. Future therapeutics for osteoarthritis. Bone 2012; 51:297-311. [PMID: 22037003 DOI: 10.1016/j.bone.2011.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/07/2011] [Indexed: 11/26/2022]
Abstract
Osteoarthritis (OA) is a disease of the joints that affects several million individuals worldwide. This disease, which involves mainly the diarthrodial joints, is chronic and develops slowly over decades, making it very difficult to precisely identify the different etiological and risk factors that influence its onset. At present, most therapies for OA are symptomatic. This review will focus on new OA therapeutics in development that are directed toward pain relief as well as others with the potential to reduce or stop the progression of the disease (DMOADs). This article is part of a Special Issue entitled "Osteoarthritis".
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | | | | |
Collapse
|
49
|
Dinc M, Bilgen MS, Kucukalp A, Bilgen OF. An assessment of the chondroprotective effects of intra-articular application of statin and tetracycline on early-stage experimental osteoarthritis. ISRN ORTHOPEDICS 2012; 2012:182097. [PMID: 24977073 PMCID: PMC4063183 DOI: 10.5402/2012/182097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/28/2012] [Indexed: 11/23/2022]
Abstract
Objectives. To compare the effects of intra-articular application of statin and tetracyclines on cartilage and synovial tissue on experimental osteoarthritis.
Methods. Osteoarthritis was created in 30 rabbits of 3 groups. The control group received saline intra-articularly, statin group, atorvastatin and the tetracycline group, doxycycline once a week for 3 weeks. Chondral and synovial tissues were evaluated macroscopically and histopathologically.
Results. Macroscopic evaluation determined mean values of control group 3.0, statin group 0.56, and tetracycline group 2.5. Histopathological evaluations determined mean values; femoral medial condyle cartilage tissue, control group, 14.60 ± 1.00, statin group 2.20 ± 1.30, tetracycline group 12.7 ± 5.39: tibia medial plateau, control group, 14.33 ± 8.68, statin group 2.89 ± 1.96, tetracycline group, 15.90 ± 7.03: synovial tissue, control group 12.22 ± 3.63, statin group 4.33 ± 2.69, tetracycline group 10.70 ± 2.62. Average values of synovial tissue cell layer thickness were control group 14.46 ± 2.35 μm, statin group 10.56 ± 1.01 μm, tetracycline group 12.80 ± 0.79 μm. All measurements showed statistically significant differences between statin and control groups (P < 0.05) but not between tetracycline and control groups (P > 0.05).
Conclusions. Tetracycline has little effect due to chemical modification requirement, and the effect is dose dependent. Statins have chondroprotective effects, so may become a novel therapeutic agent in osteoarthritis management after chemical processing.
Collapse
Affiliation(s)
- Mustafa Dinc
- Department of Orthopaedics and Traumatology, Nizip State Hospital, Gaziantep, Turkey
| | - Muhammed Sadik Bilgen
- Ortopedi ve Travmatoloji Bölümü, Tıp Fakültesi, Uludağ Üniversitesi, 16059, Görükle Kampüsü, Bursa, Turkey
| | - Abdullah Kucukalp
- Ortopedi ve Travmatoloji Bölümü, Tıp Fakültesi, Uludağ Üniversitesi, 16059, Görükle Kampüsü, Bursa, Turkey
| | - Omer Faruk Bilgen
- Ortopedi ve Travmatoloji Bölümü, Tıp Fakültesi, Uludağ Üniversitesi, 16059, Görükle Kampüsü, Bursa, Turkey
| |
Collapse
|
50
|
Weimer A, Madry H, Venkatesan JK, Schmitt G, Frisch J, Wezel A, Jung J, Kohn D, Terwilliger EF, Trippel SB, Cucchiarini M. Benefits of recombinant adeno-associated virus (rAAV)-mediated insulinlike growth factor I (IGF-I) overexpression for the long-term reconstruction of human osteoarthritic cartilage by modulation of the IGF-I axis. Mol Med 2012; 18:346-58. [PMID: 22160392 DOI: 10.2119/molmed.2011.00371] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/08/2011] [Indexed: 01/21/2023] Open
Abstract
Administration of therapeutic genes to human osteoarthritic (OA) cartilage is a potential approach to generate effective, durable treatments against this slow, progressive disorder. Here, we tested the ability of recombinant adeno-associated virus (rAAV)-mediated overexpression of human insulinlike growth factor (hIGF)-I to reproduce an original surface in human OA cartilage in light of the pleiotropic activities of the factor. We examined the proliferative, survival and anabolic effects of the rAAV-hIGF-I treatment in primary human normal and OA chondrocytes in vitro and in explant cultures in situ compared with control (reporter) vector delivery. Efficient, prolonged IGF-I secretion via rAAV stimulated the biological activities of OA chondrocytes in all the systems evaluated over extended periods of time, especially in situ, where it allowed for the long-term reconstruction of OA cartilage (at least for 90 d). Remarkably, production of high, stable amounts of IGF-I in OA cartilage using rAAV advantageously modulated the expression of central effectors of the IGF-I axis by downregulating IGF-I inhibitors (IGF binding protein [IGFBP]-3 and IGFBP4) while up-regulating key potentiators (IGFBP5, the IGF-I receptor and downstream mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 [MAPK/ERK-1/2] and phosphatidylinisitol-3/Akt [PI3K/Akt] signal transduction pathways), probably explaining the enhanced responsiveness of OA cartilage to IGF-I treatment. These findings show the benefits of directly providing an IGF-I sequence to articular cartilage via rAAV for the future treatment of human osteoarthritis.
Collapse
Affiliation(s)
- Anja Weimer
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|