1
|
Shirokova L, Noskov S, Gorokhova V, Reinecke J, Shirokova K. Intra-Articular Injections of a Whole Blood Clot Secretome, Autologous Conditioned Serum, Have Superior Clinical and Biochemical Efficacy Over Platelet-Rich Plasma and Induce Rejuvenation-Associated Changes of Joint Metabolism: A Prospective, Controlled Open-Label Clinical Study in Chronic Knee Osteoarthritis. Rejuvenation Res 2020; 23:401-410. [PMID: 31847701 DOI: 10.1089/rej.2019.2263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis is a frequent, age-associated disease affecting >10% of world's population over 60 years of age. This study intended to compare intra-articular whole blood clot secretome (autologous conditioned serum [ACS], recently re-named blood clot secretome [BCS]) to platelet-rich plasma (PRP) in knee osteoarthritis (OA). A clinical, nonrandomized open-label comparison of ACS versus PRP in knee OA with subclinical or moderate synovitis symptomology was performed. One hundred and twenty-three patients with knee OA, Kellgren and Lawrence grade II-III, were each treated with six i.a. injections of ACS or PRP. The clinical efficacy was measured by visual analog scale and Western Ontario and McMaster Universities Arthritis Index (WOMAC) score. The biochemical effects measured include synovial fluid (SF) viscosity, cytokines interleukin (IL)-1Ra and IL-1b, radical footprint NO3, and conjugated dienes (CDs). At the 3-month follow-up, clinical efficacy of ACS was significant in all groups, versus PRP. PRP had significant versus baseline efficacy in subclinical, but not in moderate, synovitis cases. ACS was more effective than PRP regarding all analytical parameters. It induced endogenous IL-1Ra expression, downregulated IL-1b, and improved SF viscosity. ACS reduced-significantly stronger than PRP-the concentration of CDs-interpreted as reactive oxygen species footprints-and NO3-interpreted as nitric oxide footprint-in SF. ACS displayed significant efficacy in all groups, which was clinically and biochemically superior to PRP. ACS appears to improve i.a. homeostasis. Strength of this open clinical study is the combination of clinical and biochemical data.
Collapse
Affiliation(s)
- Larisa Shirokova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | - Sergey Noskov
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | - Victoria Gorokhova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| | | | - Ksenia Shirokova
- Department of Hospital Therapy, Yaroslavl State Medical University of MoH of RF, Yaroslavl, Russia
| |
Collapse
|
2
|
Carr HL, Turner JD, Major T, Scheel-Toellner D, Filer A. New Developments in Transcriptomic Analysis of Synovial Tissue. Front Med (Lausanne) 2020; 7:21. [PMID: 32083090 PMCID: PMC7005068 DOI: 10.3389/fmed.2020.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Transcriptomic technologies are constantly changing and improving, resulting in an ever increasing understanding of gene expression in health and disease. These technologies have been used to investigate the pathological changes occurring in the joints of rheumatoid arthritis patients, leading to discoveries of disease mechanisms, and novel potential therapeutic targets. Microarrays were initially used on both whole tissue and cell subsets to investigate research questions, with bulk RNA sequencing allowing for further elaboration of these findings. A key example is the classification of pathotypes in rheumatoid arthritis using RNA sequencing that had previously been discovered using microarray and histology. Single-cell sequencing has now delivered a step change in understanding of the diversity and function of subpopulations of cells, in particular synovial fibroblasts. Future technologies, such as high resolution spatial transcriptomics, will enable step changes integrating single cell transcriptomic and geographic data to provide an integrated understanding of synovial pathology.
Collapse
Affiliation(s)
- Hayley L Carr
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jason D Turner
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Triin Major
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Filer
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
3
|
Ongchai S, Somnoo O, Kongdang P, Peansukmanee S, Tangyuenyong S. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes. J Vet Sci 2019; 19:735-743. [PMID: 30041292 PMCID: PMC6265591 DOI: 10.4142/jvs.2018.19.6.735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of transforming growth factor beta 1 (TGF-β1) on equine hyaluronan synthase 2 (HAS2) gene expression and hyaluronan (HA) synthesis in culture models of articular chondrocytes. Equine chondrocytes were treated with TGF-β1 at different concentrations and times in monolayer cultures. In three-dimensional cultures, chondrocyte-seeded gelatin scaffolds were cultured in chondrogenic media containing 10 ng/mL of TGF-β1. The amounts of HA in conditioned media and in scaffolds were determined by enzyme-linked immunosorbent assays. HAS2 mRNA expression was analyzed by semi-quantitative reverse transcription polymerase chain reaction. The uronic acid content and DNA content of the scaffolds were measured by using colorimetric and Hoechst 33258 assays, respectively. Cell proliferation was evaluated by using the alamarBlue assay. Scanning electron microscopy (SEM), histology, and immunohistochemistry were used for microscopic analysis of the samples. The upregulation of HAS2 mRNA levels by TGF-β1 stimulation was dose and time dependent. TGF-β1 was shown to enhance HA and uronic acid content in the scaffolds. Cell proliferation and DNA content were significantly lower in TGF-β1 treatments. SEM and histological results revealed the formation of a cartilaginous-like extracellular matrix in the TGF-β1-treated scaffolds. Together, our results suggest that TGF-β1 has a stimulatory effect on equine chondrocytes, enhancing HA synthesis and promoting cartilage matrix generation.
Collapse
Affiliation(s)
- Siriwan Ongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Oraphan Somnoo
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patiwat Kongdang
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Peansukmanee
- Equine Clinic, Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Siriwan Tangyuenyong
- Equine Clinic, Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
4
|
Growth factors regulate phospholipid biosynthesis in human fibroblast-like synoviocytes obtained from osteoarthritic knees. Sci Rep 2017; 7:13469. [PMID: 29044208 PMCID: PMC5647370 DOI: 10.1038/s41598-017-14004-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Elevated levels of growth factors and phospholipids (PLs) have been found in osteoarthritic synovial fluid (SF), although the metabolic regulation of PLs is currently unknown. This study aimed to determine the effects of growth factors on the biosynthesis of PLs by fibroblast-like synoviocytes (FLS) obtained from human osteoarthritic knee joints. Electrospray ionization tandem mass spectrometry was applied to analyse the newly synthesized PLs. In the presence of stable isotope-labelled PL precursors, cultured FLS were treated with either transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP)-2, BMP-4, BMP-7 or insulin-like growth factor-1 (IGF-1) alone or in combination with specific inhibitors of cell signalling pathways. TGF-β1 and IGF-1 markedly stimulated the biosynthesis of phosphatidylcholine (PC) before sphingomyelin (SM) and lysophosphatidylcholine (LPC) species were stimulated. BMPs elaborated less pronounced effects. The BMPs tested have different potentials to induce the biosynthesis of phosphatidylethanolamine (PE) and PE-based plasmalogens. Our study shows for the first time that TGF-β1 and IGF-1 substantially regulate the biosynthesis of PC, SM and LPC in human FLS. The functional consequences of elevated levels of PLs require additional study. The BMPs tested may be joint protective in that they upregulate PE-based plasmalogens that function as endogenous antioxidants against reactive oxygen species.
Collapse
|
5
|
Brockhausen I, Anastassiades TP. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev Clin Immunol 2014; 4:173-91. [DOI: 10.1586/1744666x.4.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Tamer TM. Hyaluronan and synovial joint: function, distribution and healing. Interdiscip Toxicol 2013; 6:111-25. [PMID: 24678248 PMCID: PMC3967437 DOI: 10.2478/intox-2013-0019] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/25/2013] [Accepted: 09/10/2013] [Indexed: 11/20/2022] Open
Abstract
Synovial fluid is a viscous solution found in the cavities of synovial joints. The principal role of synovial fluid is to reduce friction between the articular cartilages of synovial joints during movement. The presence of high molar mass hyaluronan (HA) in this fluid gives it the required viscosity for its function as lubricant solution. Inflammation oxidation stress enhances normal degradation of hyaluronan causing several diseases related to joints. This review describes hyaluronan properties and distribution, applications and its function in synovial joints, with short review for using thiol compounds as antioxidants preventing HA degradations under inflammation conditions.
Collapse
Affiliation(s)
- Tamer Mahmoud Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
- Laboratory of Bioorganic Chemistry of Drugs, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 4:15-37. [PMID: 21826801 DOI: 10.1002/wsbm.157] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The synovial joint contains synovial fluid (SF) within a cavity bounded by articular cartilage and synovium. SF is a viscous fluid that has lubrication, metabolic, and regulatory functions within synovial joints. SF contains lubricant molecules, including proteoglycan-4 and hyaluronan. SF is an ultrafiltrate of plasma with secreted contributions from cell populations lining and within the synovial joint space, including chondrocytes and synoviocytes. Maintenance of normal SF lubricant composition and function are important for joint homeostasis. In osteoarthritis, rheumatoid arthritis, and joint injury, changes in lubricant composition and function accompany alterations in the cytokine and growth factor environment and increased fluid and molecular transport through joint tissues. Thus, understanding the synovial joint lubrication system requires a multifaceted study of the various parts of the synovial joint and their interactions. Systems biology approaches at multiple scales are being used to describe the molecular, cellular, and tissue components and their interactions that comprise the functioning synovial joint. Analyses of the transcriptome and proteome of SF, cartilage, and synovium suggest that particular molecules and pathways play important roles in joint homeostasis and disease. Such information may be integrated with physicochemical tissue descriptions to construct integrative models of the synovial joint that ultimately may explain maintenance of health, recovery from injury, or development and progression of arthritis.
Collapse
Affiliation(s)
- Alexander Y Hui
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
8
|
Ikeda J, Sun YL, An KN, Amadio PC, Zhao C. Application of carbodiimide derivatized synovial fluid to enhance extrasynovial tendon gliding ability. J Hand Surg Am 2011; 36:456-63. [PMID: 21371626 PMCID: PMC3625936 DOI: 10.1016/j.jhsa.2010.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the effects of surface modification of extrasynovial tendon with a carbodiimide derivatized synovial fluid (SF) on the gliding ability of extrasynovial tendon for a possible tendon graft application. METHODS We used 63 peroneus longus tendons from canine hind legs. We immediately assessed 3 tendons morphologically using a scanning electron microscope (SEM); these served as the normal tendon group. The other 60 tendons were randomly assigned to each of 6 experimental groups treated with (1) control (saline); (2) 1% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) plus 1% N-hydroxysuccinimide (NHS) (cd only); (3) 1% EDC/NHS plus 10% gelatin (cd-G); (4) SF plus 1% EDC/NHS plus 10% gelatin (cd-SF-G); (5) SF only; or (6) SF plus 1% EDC/NHS (cd-SF). We measured the gliding resistance for 1,000 cycles of simulated flexion-extension motion. We also observed the tendon surface smoothness by SEM. RESULTS Compared with the first cycle in each group, the gliding resistance after 1,000 cycles of tendon motion was significantly increased in the control, cd only, cd-gelatin, SF only, and cd-SF groups (p<.05). In contrast, we found no significant difference in gliding resistance between the first cycle and 1,000 cycles for the cd-SF-G-treated group. In addition, the gliding resistance in the cd-SF, cd-G, and cd-SF-G groups was significantly lower than the control group after 1,000 cycles of tendon motion (p<.05) and the gliding resistance of the cd-SF-G group was significantly lower than both the cd-G and cd-SF groups (p<.05). On SEM, the surface treated with cd-SF-G was smooth after 1,000 cycles, whereas the other surfaces were rough. CONCLUSIONS Surface modification of extrasynovial tendon with cd-SF-G improves tendon gliding ability. This treatment may be useful clinically in improving the outcomes of tendon autografts.
Collapse
Affiliation(s)
- Jun Ikeda
- Orthopedic Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
9
|
Blewis ME, Lao BJ, Schumacher BL, Bugbee WD, Sah RL, Firestein GS. Interactive cytokine regulation of synoviocyte lubricant secretion. Tissue Eng Part A 2010; 16:1329-37. [PMID: 19908966 DOI: 10.1089/ten.tea.2009.0210] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokine regulation of synovial fluid (SF) lubricants, hyaluronan (HA), and proteoglycan 4 (PRG4) is important in health, injury, and disease of synovial joints, and may also provide powerful regulation of lubricant secretion in bioreactors for articulating tissues. This study assessed lubricant secretion rates by human synoviocytes and the molecular weight (MW) of secreted lubricants in response to interleukin (IL)-1beta, IL-17, IL-32, transforming growth factor-beta 1 (TGF-beta1), and tumor necrosis factor-alpha (TNF-alpha), applied individually and in all combinations. Lubricant secretion rates were assessed using ELISA and binding assays, and lubricant MW was assessed using gel electrophoresis and Western blotting. HA secretion rates were increased approximately 40-fold by IL-1beta, and increased synergistically to approximately 80-fold by the combination of IL-1beta + TGF-beta1 or TNF-alpha + IL-17. PRG4 secretion rates were increased approximately 80-fold by TGF-beta1, and this effect was counterbalanced by IL-1beta and TNF-alpha. HA MW was predominantly <1 MDa for controls and individual cytokine stimulation, but was concentrated at >3 MDa after stimulation by IL-1beta + TGF-beta1 + TNF-alpha to resemble the distribution in human SF. PRG4 MW was unaffected by cytokines and similar to that in human SF. These results contribute to an understanding of the relationship between SF cytokine and lubricant content in health, injury, and disease, and provide approaches for using cytokines to modulate lubricant secretion rates and MW to help achieve desired lubricant composition of fluid in bioreactors.
Collapse
Affiliation(s)
- Megan E Blewis
- Department of Bioengineering, University of California-San Diego , La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lee YT, Shao HJ, Wang JH, Liu HC, Hou SM, Young TH. Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro. J Orthop Res 2010; 28:492-6. [PMID: 19890996 DOI: 10.1002/jor.21029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intraarticular injection of hyaluronan (hyaluronic acid; HA) is the common way to treat osteoarthritis (OA) of knees. This treatment cannot only maintain the viscoelastic properties of knee but also release the OA pain. However, the exact molecular mechanism is unknown. In this study, after human synovial cells were stimulated with HA and Hylan (Synvisc) for 24 h, real-time polymerase chain reaction (real-time PCR) was used to detect the alteration of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) gene expression, which were specific genes related to pathogenesis of OA knees. Our results illustrated that both HA and Hylan might not cause cytotoxicity or apoptosis of synovial cells in serum deprivation environment. The gene expressions of TGF-beta1 and VEGF were significantly increased at the concentration of 0.1 mg/mL HA and 0.1 mg/mL Hylan, respectively (alpha < 0.05). The synovial cells with treatment of 0.1 mg/mL Hylan decreased the CTGF gene expression (0.66-fold) and VEGF (0.78-fold) compared to 0.1 mg/mL HA (alpha < 0.05). We suggested that the profile of CTGF, TGF-beta1, and VEGF gene expressions in our study might provide the rational mechanism for the therapeutic effect of hyaluronan on OA knees.
Collapse
Affiliation(s)
- Yu-Tsang Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Jen Ai Road, Sec 1, Taipei, 100, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Ingram KR, Wann AKT, Angel CK, Coleman PJ, Levick JR. Cyclic movement stimulates hyaluronan secretion into the synovial cavity of rabbit joints. J Physiol 2008; 586:1715-29. [PMID: 18202097 DOI: 10.1113/jphysiol.2007.146753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The novel hypothesis that the secretion of the joint lubricant hyaluronan (HA) is coupled to movement has implications for normal function and osteoarthritis, and was tested in the knee joints of anaesthetized rabbits. After washing out the endogenous synovial fluid HA (miscibility coefficient 0.4), secretion into the joint cavity was measured over 5 h in static joints and in passively cycled joints. The net static secretion rate (11.2 +/- 0.7 microg h(-1), mean +/- s.e.m., n = 90) correlated with the variable endogenous HA mass (mean 367 +/- 8 microg), with a normalized value of 3.4 +/- 0.2 microg h(-1) (100 microg)(-1) . Cyclic joint movement approximately doubled the net HA secretion rate to 22.6 +/- 1.2 microg h(-1) (n = 77) and raised the normalized percentage to 5.9 +/- 0.3 microg h(-1) (100 microg)(-1). Secretion was inhibited by 2-deoxyglucose and iodoacetate, confirming active secretion. The net accumulation rate underestimated true secretion rate due to some trans-synovial loss. HA turnover time (endogenous mass/secretion rate) was 17-30 h (static) to 8-15 h (moved) The results demonstrate for the first time that the active secretion of HA is coupled to joint usage. Movement-secretion coupling may protect joints against the damaging effects of repetitive joint use, replace HA lost during periods of immobility (overnight), and contribute to the clinical benefit of exercise therapy in moderate osteoarthritis.
Collapse
Affiliation(s)
- K R Ingram
- Physiology, Basic Medical Sciences, St George's Hospital Medical School, University of London, London SW17 0RE, UK.
| | | | | | | | | |
Collapse
|
12
|
Brown MP, Trumble TN, Plaas AHK, Sandy JD, Romano M, Hernandez J, Merritt KA. Exercise and injury increase chondroitin sulfate chain length and decrease hyaluronan chain length in synovial fluid. Osteoarthritis Cartilage 2007; 15:1318-25. [PMID: 17543547 DOI: 10.1016/j.joca.2007.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 04/15/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVES (1) To investigate the effects of exercise and osteochondral (OC) injury on synovial fluid (SF) chondroitin sulfate (CS) and hyaluronan (HA) concentration and chain length, (2) to compare SF and cartilage CS data from joints with OC fragmentation, and (3) to compare SF CS and HA profiles with those seen in serum from the same horses. METHODS Serum and SF were obtained from (1) normal horses after 8 weeks rest, (2) the same horses after 9 months treadmill training, and (3) horses with OC injury from racing. Articular cartilage was also collected from group 3 horses. Concentrations and chain lengths of CS and HA were determined by gel chromatography and fluorophore-assisted carbohydrate electrophoresis. RESULTS SF CS peak chain length in the OC injury group increased significantly (18.7kDa) when compared to rested horses (11.6kDa), with exercise producing an intermediate chain length (15.6kDa). Cartilage and serum from the OC injury group had the abnormally long CS chains seen in SF from these horses. Total SF HA was significantly lower in the OC injury group compared to the rested group. Both the OC injury group and the exercised group had significant decreases in SF HA chain length compared to the rested group. CONCLUSIONS Chain length of SF CS was increased by exercise and OC injury. Exercise resulted in a modest increase, whereas OC injury caused a marked increase. In contrast to CS, SF HA chain length was decreased by OC injury, and to a lesser extent by exercise. Chain length analysis of SF CS and HA may provide a useful tool for evaluation of joint health.
Collapse
Affiliation(s)
- M P Brown
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-1432, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Long X, Ke J, Meng QG, Lee WCC, Doocey JM, Zhu F. Regulation of HAS expression in human synovial lining cells of TMJ by IL-1beta. Arch Oral Biol 2007; 53:60-5. [PMID: 17868639 DOI: 10.1016/j.archoralbio.2007.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 11/24/2022]
Abstract
Hyaluronan (HA), a major glycosaminoglycan of synovial fluid, is synthesised by a class of membrane-bound HA synthase (HAS) proteins. In the present study, we investigated the regulatory roles of IL-1beta on HAS gene expression and HA production by the fibroblastic synovial lining cells. The synovial lining cells from synovial membrane in human temporomandibular joint (TMJ) were cultured and characterised using immunocytochemistry with CD14, CD44, and vimentin monoclonal antibodies. With or without treatment with IL-1beta, the production of HA was detected with radiometric assay and the expression of HAS mRNAs were analysed with a semi-quantitative reverse transcribed polymerase chain reaction (RT-PCR). HA synthesis was significantly augmented with 1ng/ml of IL-1beta for both 24 and 48h stimulation, however the production of HA declined if stimulated with 10ng/ml of IL-1beta. The expression of HAS2 and 3 mRNA were enhanced about 4.2- and 7.2-fold after 4h stimulation with 1ng/ml of IL-1beta, respectively. From these results, it is concluded that IL-1beta functions on regulating HAS expression and consequently promoting the secretion of HA in synovial lining cells from TMJ.
Collapse
Affiliation(s)
- Jian Li
- Department of Oral and Maxillofacial Surgery, Wuhan University, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Guo N, Kanter D, Funderburgh ML, Mann MM, Du Y, Funderburgh JL. A rapid transient increase in hyaluronan synthase-2 mRNA initiates secretion of hyaluronan by corneal keratocytes in response to transforming growth factor beta. J Biol Chem 2007; 282:12475-83. [PMID: 17327235 PMCID: PMC2912154 DOI: 10.1074/jbc.m609280200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratocytes of the corneal stroma produce transparent extracellular matrix devoid of hyaluronan (HA); however, in corneal pathologies and wounds, HA is abundant. We previously showed primary keratocytes cultured under serum-free conditions to secrete matrix similar to that of normal stroma, but serum and transforming growth factor beta (TGFbeta) induced secretion of fibrotic matrix components, including HA. This study found HA secretion by primary bovine keratocytes to increase rapidly in response to TGFbeta, reaching a maximum in 12 h and then decreasing to <5% of the maximum by 48 h. Cell-free biosynthesis of HA by cell extracts also exhibited a transient peak at 12 h after TGFbeta treatment. mRNA for hyaluronan synthase enzymes HAS1 and HAS2 increased >10- and >50-fold, respectively, in 4-6 h, decreasing to near original levels after 24-48 h. Small interfering RNA against HAS2 inhibited the transient increase of HAS2 mRNA and completely blocked HA induction, but small interfering RNA to HAS1 had no effect on HA secretion. HAS2 mRNA was induced by a variety of mitogens, and TGFbeta acted synergistically to induce HAS2 by as much as 150-fold. In addition to HA synthesis, treatment with TGFbeta induced degradation of fluorescein-HA added to culture medium. These results show HA secretion by keratocytes to be initiated by a rapid transient increase in the HAS2 mRNA pool. The very rapid induction of HA expression in keratocytes suggests a functional role of this molecule in the fibrotic response of keratocytes to wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - James L. Funderburgh
- Jules and Doris Stein Research to Prevent Blindness Professor. To whom correspondence should be addressed: Dept. of Ophthalmology, University of Pittsburgh, 1009 Eye and Ear Institute, 203 Lothrop St., Pittsburgh, PA 15213-2588. Tel.: 412-647-3853; Fax: 412-647-5880;
| |
Collapse
|
15
|
Abstract
Hyaluronan (HA) is a versatile molecular tool with considerable potential for tissue engineering applications. The inclusion of HA has created biocompatible biomaterials and engineered tissues that can be crosslinked or degraded controllably and can facilitate angiogenesis, osteointegration, and cell phenotype preservation. The utility of HA in tissue engineering has been broadened further by the recently identified HA synthases, which can be manipulated to stimulate the endogenous production of HA by cells seeded within biomaterial scaffolds. Overall, HA shows great promise in the development of engineered tissues and biomaterials for a variety of biomedical needs including orthopedic, cardiovascular, pharmacologic, and oncologic applications.
Collapse
Affiliation(s)
- David D Allison
- Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA
| | | |
Collapse
|
16
|
Gao F, Okunieff P, Han Z, Ding I, Wang L, Liu W, Zhang J, Yang S, Chen J, Underhill CB, Kim S, Zhang L. Hypoxia-induced alterations in hyaluronan and hyaluronidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 566:249-56. [PMID: 16594159 DOI: 10.1007/0-387-26206-7_33] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hyaluronan (HA), a large negatively-charged polysaccharide, is a major component of vessel basal membrane. HA is expressed by a variety of cells, including tumor and endothelial cells. We hypothesized that HA could be up-regulated by hypoxia to enhance vessel formation. To determine the effect of hypoxia on the production of HA, tumor cells were treated with either media alone (control) or a hypoxia inducer (CoCl or NaN3) for 24 h. The level of HA in the media was then measured by ELISA. The results showed that both CoCl and NaN3 induced the production of HA. Since the low molecular weight form of HA (SMW) possesses pro-angiogenic properties, we investigated whether hypoxia-induced HA can be processed into SMW. Under hypoxic conditions, the activity of hyaluronidase, the enzyme responsible for degrading HA, was measured by an ELISA-like assay. The activity of hyaluronidase was shown to be up-regulated by hypoxia and, further, could carry out the function of processing HA into SMW. In addition, the hypoxic areas of tumor tissues were stained strongly with biotinylated HA-binding proteins, indicating that the level of HA was high compared to the oxic areas. This study demonstrates that hypoxia can stimulate the production of HA and the activity of hyaluronidase, which may promote angiogenesis as a compensation mechanism for hypoxia.
Collapse
|
17
|
Sabaratnam S, Mason RM, Levick JR. Hyaluronan molecular reflection by synovial lining is concentration dependent and reduced in dilute effusions in a rabbit model. ACTA ACUST UNITED AC 2006; 54:1673-81. [PMID: 16646039 DOI: 10.1002/art.21803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Hyaluronan (HA) has a major role in regulating synovial fluid volume. This role depends on the synovium functioning as an ultrafilter that reflects HA during trans-synovial fluid drainage. Reflection boosts the HA concentration on the membrane surface, leading to osmotic retention of synovial fluid ("buffering"). In arthritic effusions, however, HA concentration and osmotic buffering are greatly reduced. We tested the hypothesis that reflection is reduced (escape increased) when the HA concentration falls below the molecular entanglement concentration (C*). METHODS HA at 0.2 mg/ml (<C*) or 1.5 mg/ml (>C*) was infused continuously into rabbit knee joints to set up a steady trans-synovial filtration. Joint-derived lymph was sampled over 3 hours, and subsynovial fluid was sampled at the end of the 3-hour period. HA was quantified by high-performance liquid chromatography to evaluate the reflected fraction. C* was determined by viscometry. RESULTS Viscometry showed that 0.2 mg/ml HA was below C* and 1.5 mg/ml was above it. At 0.2 mg/ml, the mean +/- SEM HA reflected fraction was 0.66 +/- 0.04 (n = 7). At 1.5 mg/ml the reflection increased to 0.88 +/- 0.04 (n = 5) (P < 0.005). HA permeation increased almost 3-fold, from 12% to 34%, at the lower concentration. CONCLUSION Chain-chain interaction at >C* increases effective molecular domain size and hence HA reflection, promoting effective conservation of synovial fluid in normal joints. HA can fall below C* (approximately 1 mg/ml) in arthritic effusions, promoting loss of HA. The attendant failure of outflow buffering facilitates fluid escape and periarticular edema.
Collapse
Affiliation(s)
- S Sabaratnam
- St. George's Hospital Medical School, London, UK
| | | | | |
Collapse
|
18
|
Stuhlmeier KM, Pollaschek C. Adenovirus-mediated gene transfer of mutated IkappaB kinase and IkappaBalpha reveal NF-kappaB-dependent as well as NF-kappaB-independent pathways of HAS1 activation. J Biol Chem 2005; 280:42766-73. [PMID: 16258173 DOI: 10.1074/jbc.m503374200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has become increasingly clear that hyaluronan is more than the simple matrix molecule it was once thought to be but instead takes part in a multitude of biological functions. Three genes encode for hyaluronan synthases (HAS). We demonstrated earlier that HAS2 and HAS3 are constitutively activated in type-B synoviocytes (fibroblast-like synoviocytes) and, furthermore, that the only gene that readily responds to stimulation with a series of proinflammatory cytokines is HAS1. Here we probe the involvement of the transcription factor NF-kappaB in induced and noninduced HAS activation. Transforming growth factor (TGF) beta1 as well as interleukin (IL)-1beta are both strong inducers of HAS1 transcription. Stimulation of fibroblast-like synoviocytes with IL-1beta resulted in rapid degradation of IkappaBalpha, an event that was preceded by IkappaBalpha phosphorylation. Interestingly, TGFbeta1 neither affected IkappaBalpha levels, nor did it cause phosphorylation of IkappaBalpha. In addition, TGFbeta1 had no effect on IkappaBbeta and IkappaBepsilon levels. Electrophorectic mobility shift assays demonstrate that IL-1beta is a potent inducer of NF-kappaB translocation; however, TGFbeta1 treatment did not result in shifting bands. Two adenovirus constructs were used to further clarify differences in TGFbeta1- and IL-1beta-induced HAS1 activation. Overexpressing IkappaBalpha completely abolished the IL-1beta effect on HAS1 but did not interfere with TGFbeta1-induced HAS1 mRNA accumulation. Identical results were obtained when a dominant negative IKK was overexpressed. Interestingly, neither overexpression of IkappaBalpha nor of IKK had any effect on HAS2 and HAS3 mRNA levels. Taken together, HAS1 can be activated by distinct pathways; IL-1beta utilizes NF-kappaB, and TGFbeta1 does not. Furthermore, HAS2 and HAS3 are activated without the involvement of NF-kappaB.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, 1100 Vienna, Austria.
| | | |
Collapse
|
19
|
Momberger T, Levick J, Mason R. Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biol 2005; 24:510-9. [PMID: 16226884 PMCID: PMC1413575 DOI: 10.1016/j.matbio.2005.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/28/2022]
Abstract
Hyaluronan (HA) is an essential component of synovial interstitial matrix and synovial fluid, but the link between its production and joint use is unclear. HA secretion is enhanced by joint distension in vivo, but direct proof that synoviocytes exhibit mechanosensitive HA secretion is lacking. We tested this in vitro. Primary rabbit synoviocyte (PRS) cultures from microdissected synovial intima were subjected to 180 min of maintained 10% static stretch, or to 10 min of 10% static stretch followed by 170 min relaxation, in a Flexcell 2000 apparatus. Stretch stimulated HA secretion into the medium over 3 h by 57%. Notably, a short stretch (10 min) was as effective as sustained stretch. Actinomycin D and cycloheximide abolished stretch-stimulated HA secretion and also reduced basal HA secretion rate. RT-PCR showed that HAS2 was the major hyaluronan synthase expressed, but there was no increase in HAS2 mRNA (or other isoforms) in continuously stretched cells, and only a small increase (20%) at 180 min in cells stretched for the first 10-30 min. However HAS2 transcription increased 10-fold in response to TGF-beta1 and IL-1beta. Thus HA secretion by intimal synoviocytes is regulated by a mechanosensitive pathway which depends on transcription and de novo protein synthesis, possibly of HAS2, but also of other proteins involved in HA secretion.
Collapse
Affiliation(s)
- T.S. Momberger
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - J.R. Levick
- Physiology, Basic Medical Sciences, St. George’s Hospital Medical School, London SW17 0RE, United Kingdom
| | - R.M. Mason
- Renal Section, Division of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, United Kingdom
- Corresponding author. Tel.: +44 208 383 2718; fax: +44 208 383 2062. E-mail address: (R.M. Mason)
| |
Collapse
|
20
|
Ducale AE, Ward SI, Dechert T, Yager DR. Regulation of hyaluronan synthase-2 expression in human intestinal mesenchymal cells: mechanisms of interleukin-1beta-mediated induction. Am J Physiol Gastrointest Liver Physiol 2005; 289:G462-70. [PMID: 15677552 DOI: 10.1152/ajpgi.00494.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elevated levels of hyaluronan are associated with numerous inflammatory diseases including inflammatory bowel disease. The purpose of this study was to determine whether a cause and effect relationship might exist among proinflammatory cytokines, IL-1beta, TNF-alpha, IFN-gamma, or transforming growth factor-beta (TGF-beta) and hyaluronan expression in human JDMC and, if so, to identify possible mechanisms involved in the induction of hyaluronan expression. TGF-beta, TNF-alpha, and IFN-gamma had little or no effect on hyaluronan production by these cells. Treatment with IL-1beta induced an approximate 30-fold increase in the levels of hyaluronan in the medium of human jejunum-derived mesenchymal cells. Ribonuclease protection analysis revealed that steady-state transcript levels for hyaluronan synthase (HAS)2 were present at very low levels in untreated cells but increased as much as 18-fold in the presence of IL-1beta. HAS3 transcript levels were also increased slightly by exposure of these cells to IL-1beta. Expression of HAS1 transcripts was not detected under any condition in these cells. IL-1beta induction of hyaluronan expression was inhibited in cells transfected with short interfering RNA corresponding to HAS2 transcripts. Inhibitors of the p38 and ERK1/2 mitogen-activated pathways but not JNK/SAPK blocked the IL-1beta-mediated induction of hyaluronan expression and the increase in HAS2 transcript expression. These results suggest that IL-1beta induction of HAS2 expression involves multiple signaling pathways that act in concert, thus leading to an increase in expression of hyaluronan by jejunum-derived mesenchymal cells.
Collapse
Affiliation(s)
- Ashley E Ducale
- Dept. of Surgery, Virginia Commonwealth Univ., PO Box 980117, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
21
|
Sabaratnam S, Arunan V, Coleman PJ, Mason RM, Levick JR. Size selectivity of hyaluronan molecular sieving by extracellular matrix in rabbit synovial joints. J Physiol 2005; 567:569-81. [PMID: 15961430 PMCID: PMC1474196 DOI: 10.1113/jphysiol.2005.088906] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/13/2005] [Indexed: 12/27/2022] Open
Abstract
In joint fluid the polymer hyaluronan (HA) confers viscous lubrication and greatly attenuates trans-synovial fluid loss (outflow buffering). Outflow buffering arises from the molecular sieving (reflection) and concentration polarization of HA at the synovial membrane surface. Outflow buffering declines if HA chain length is reduced, as in arthritis, and this has been attributed to reduced HA reflection. This was tested directly in the present study. Infused solutions of HA of approximately 2200 kDa (HA2000, 0.2 mg ml(-1)) or approximately 500 kDa (HA500, 0.2 mg ml(-1)) or approximately 140 kDa (HA140, 0.2-4.0 mg ml(-1)) were filtered across the synovial lining of the knee joint cavity of anaesthetized rabbits at a constant rate, along with a freely permeating reference solute, 20 kDa fluorescein-dextran (FD20). After a priming period the femoral lymph was sampled over 3 h. Mixed intra-articular (i.a.) fluid and subsynovial fluid were sampled at the end. Fluids were analysed by gel exclusion chromatography. The trans-synovial concentration profile was found to depend on polymer size. The i.a. concentration of HA2000 increased substantially relative to infusate and the subsynovial and lymph concentrations fell substantially. For HA500 and HA140 the trans-synovial concentration gradients were less pronounced, and absent for FD. The reflected fractions for HA2000, HA500 and HA140 across the cavity-to-lymph barrier were 0.65 +/- 0.05 (n = 10), 0.43 +/- 0.09 (n = 3) and 0.19 +/- 0.05 (n = 7), respectively, at matched filtration rates (P < 0.0001, analysis of variance). Reflected fractions calculated from HA i.a. accumulation or subsynovial dilution showed the same trend. The results demonstrate size-selective molecular sieving by the synovial extracellular matrix, equivalent to steric exclusion from cylindrical pores of radius 33-59 nm. The findings underpin the concentration polarization-outflow buffering theory and indicate that reduced HA chain length in arthritis exacerbates lubricant loss from a joint.
Collapse
Affiliation(s)
- S Sabaratnam
- Physiology, Basic Medical Sciences, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|
22
|
Chenevier-Gobeaux C, Morin-Robinet S, Lemarechal H, Poiraudeau S, Ekindjian JCOG, Borderie D. Effects of pro- and anti-inflammatory cytokines and nitric oxide donors on hyaluronic acid synthesis by synovial cells from patients with rheumatoid arthritis. Clin Sci (Lond) 2004; 107:291-6. [PMID: 15149282 DOI: 10.1042/cs20040104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 05/11/2004] [Accepted: 05/18/2004] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the effects of (i) the pro-inflammatory cytokines IL (interleukin)-1β, TNF-α (tumour necrosis factor-α), IFN-γ (interferon-γ) and anti-inflammatory cytokines IL-4 and IL-13, and (ii) NO (nitric oxide) donors on HA (hyaluronic acid) production by synovial cells from patients with rheumatoid arthritis. Synovial cells obtained from five patients with rheumatoid arthritis were incubated for 24 h without or with IL-1β, TNF-α, IFN-γ, or with this mixture for 24 h plus IL-4 or IL-13 for the last 6 h. The same cells were also incubated for 3–24 h without or with SNP (sodium nitroprusside) or SNAP (S-nitroso-N-acetyl-DL-penicillamine). HA secretion was determined by an immunoenzymic assay based on HA-specific binding by proteoglycan isolated from bovine cartilage. IL-1β, TNF-α and IFN-γ alone or in combination stimulated HA synthesis, whereas IL-4 and IL-13 dose-dependently inhibited HA production induced by Th1 cytokines. HA production was significantly increased by the presence of 1 mM SNP after 6 and 12 h (maximal effect). HA production was significantly increased by the presence of 0.01 and 0.1 mM SNAP after 12 h of incubation, and cells treated with 1 mM SNAP showed a maximal HA production after 24 h of incubation. In conclusion, the present study provides data concerning the regulatory role of pro- and anti-inflammatory cytokines and NO donors on HA metabolism in rheumatoid synovial cells and may help in understanding the pathophysiology of rheumatoid arthritis.
Collapse
Affiliation(s)
- Camille Chenevier-Gobeaux
- Department of Biochemistry, Hôpital Cochin, Assistance Publique--Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75679 cedex 14, France.
| | | | | | | | | | | |
Collapse
|
23
|
Tanimoto K, Suzuki A, Ohno S, Honda K, Tanaka N, Doi T, Yoneno K, Ohno-Nakahara M, Nakatani Y, Ueki M, Tanne K. Effects of TGF-beta on hyaluronan anabolism in fibroblasts derived from the synovial membrane of the rabbit temporomandibular joint. J Dent Res 2004; 83:40-4. [PMID: 14691111 DOI: 10.1177/154405910408300108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyaluronan (HA) synthesis in the synovial membrane is affected by various chemical mediators. It is hypothesized that transforming growth factor-beta 1 (TGF-beta 1) would be a mediator to modulate HA synthesis in cultured synovial membrane fibroblasts of the temporomandibular joint (TMJ). Fibroblasts were extracted from the TMJ synovial membrane of four-week-old Japanese white rabbits. The amount of HA and expression levels of HA synthase (HAS) mRNAs induced by TGF-beta 1 treatment were analyzed by means of high-performance liquid chromatography and real-time polymerase chain-reaction, respectively. Both medium and large amounts of HA were enhanced by the stimulation of TGF-beta 1. HAS2 mRNA expression was enhanced 13-fold after six-hour stimulation with TGF-beta 1 (10 ng/mL), whereas HAS3 mRNA expression was not changed significantly. These results suggest that TGF-beta 1 enhances the expression of HAS2 mRNA in the TMJ synovial membrane fibroblasts and may contribute to the production of high-molecular-weight HA in the joint fluid.
Collapse
Affiliation(s)
- K Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oguchi T, Ishiguro N. Differential stimulation of three forms of hyaluronan synthase by TGF-beta, IL-1beta, and TNF-alpha. Connect Tissue Res 2004; 45:197-205. [PMID: 15763928 DOI: 10.1080/03008200490523031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study compares the regulation of three isoforms of hyaluronan synthase (HAS1, HAS2, and HAS3) transcripts and hyaluronan (HA) production by cytokines in human synovial fibroblastic cells derived from tissue from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Levels of HAS mRNA of the cells with or without stimulation were detected using a real-time fluorescence polymerase chain reaction detection system. Concentrations of HA in the culture supernatants of the cells were measured by a sandwich binding protein assay. Molecular weight of HA was evaluated by agarose gel electrophoresis. The relative proportions of the expression pattern of HAS isoforms was similar between RA and OA tissue-derived cells. HAS1 mRNA was upregulated by transforming growth factor-beta and HAS3 mRNA was upregulated by interleukin-1beta and somewhat by tumor necrosis factor-alpha in the RA cells. HAS2 remained unchanged. Differences in the expression pattern of HAS1, HAS2, and HAS3 mRNA by cytokines suggest that these three isoforms are independently and differentially regulated, and each isoform of HAS may have a different role in arthritic joint disease.
Collapse
Affiliation(s)
- Takeshi Oguchi
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya, Japan.
| | | |
Collapse
|
25
|
Stuhlmeier KM, Pollaschek C. Differential effect of transforming growth factor beta (TGF-beta) on the genes encoding hyaluronan synthases and utilization of the p38 MAPK pathway in TGF-beta-induced hyaluronan synthase 1 activation. J Biol Chem 2003; 279:8753-60. [PMID: 14676202 DOI: 10.1074/jbc.m303945200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unfettered hyaluronan (HA) production is a hallmark of rheumatoid arthritis. The discovery of three genes encoding hyaluronan synthases (HASs) allows for the investigation of the signaling pathways leading to the activation of these genes. Our objective is to further understanding of the regulation of these genes as well as to find ways to prevent undesired gene activation. Human fibroblast-like synoviocytes were used in these experiments. mRNA levels of HAS were monitored by reverse transcriptase-PCR. A series of specific kinase inhibitors were used to investigate intracellular pathways leading to the up-regulation of HAS1. Our experiments, testing a series of stimuli including tumor necrosis factor alpha (TNFalpha), demonstrate that TGF-beta is the most potent stimulus for HAS1 transcription. TGF-beta activates HAS1 in a dose-dependent manner with a maximum effect at a concentration of 0.5-1 ng/ml. TGF-beta-induced HAS1 mRNA can be detected within 60 min and reaches maximal levels at 6 h. Furthermore, TGF-beta treatment leads to an increase in synthase activity as determined by HA ELISA and by in vitro HA synthase assays. In contrast to the activatory effect on HAS1, TGF-beta dose-dependently suppresses HAS3 mRNA. As to the mode of action of TGF-beta-induced HAS1 mRNA activation, our experiments reveal that blocking p38 MAPK inhibited the TGF-beta effect by 90%, blocking the MEK pathway led to an inhibition by 40%, and blocking the JNK pathway had no effect. The presented data might contribute to a better understanding of the role of TGF-beta and of HA in the pathology of diseases.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Kurbadstrasse 10, POB 78, A-1107 Vienna, Austria.
| | | |
Collapse
|
26
|
Anggiansah CL, Scott D, Poli A, Coleman PJ, Badrick E, Mason RM, Levick JR. Regulation of hyaluronan secretion into rabbit synovial joints in vivo by protein kinase C. J Physiol 2003; 550:631-40. [PMID: 12766248 PMCID: PMC2343036 DOI: 10.1113/jphysiol.2003.038943] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hyaluronan (HA) is important for joint cavitation, lubrication, volume regulation and synovial fluid drainage but little is known about the regulation of joint HA synthesis/secretion in vivo. We investigated whether HA secretion into joints in vivo can be regulated by protein kinase C (PKC). Secretion into the knee joint cavity of anaesthetised rabbits was measured over 6 h by washout and chromatography. Joints received intra-articular injections of Ringer vehicle (control) or an activator of classical PKC isoforms, phorbol-12-myristate-13-acetate (PMA), at 20-2000 ng ml(-1). The effects of PKC inhibition by bisindolylmaleimide (BIM) and protein synthesis inhibition by cycloheximide (CX) on basal and stimulated HA secretion were also studied. The endogenous HA mass, 181+/-8 microg (n=26, mean +/- S.E.M.), and basal secretion rate, 4.4+/-0.4 microg h(-1), indicated a turnover time of 41 h. Secretion rate showed a dose-dependent response to PMA (n=30), rising 5-fold to 21.7+/-5.0 microg h(-1) (n=5) at 2000 ng ml(-1) PMA (P<0.0001, one-way ANOVA). PMA-induced stimulation was partially suppressed by CX (HA secretion: 5.8+/-1.7 microg h(-1), n=8, P<0.01) and totally blocked by BIM (HA secretion: 3.2+/-0.6 microg h(-1), n=9, P<0.001). Basal HA secretion was unaffected by CX over 6 h (4.2+/-0.7 microg h(-1), n=8) but was reduced by 29 % by BIM (3.1+/-0.6 microg h(-1), n=10, P=0.03). It is concluded that: (1) PKC can stimulate HA secretion into joints in vivo through mechanisms involving protein synthesis de novo as well as phosphorylation; (2) basal HA secretion is only partially PKC dependent; and (3) hyaluronan synthase turnover time is >6 h in vivo, which is slower than in vitro (<2-3 h).
Collapse
Affiliation(s)
- C L Anggiansah
- Department of Physiology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhu Z, Ma B, Zheng T, Homer RJ, Lee CG, Charo IF, Noble P, Elias JA. IL-13-induced chemokine responses in the lung: role of CCR2 in the pathogenesis of IL-13-induced inflammation and remodeling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2953-62. [PMID: 11884467 DOI: 10.4049/jimmunol.168.6.2953] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-13 stimulates inflammatory and remodeling responses and contributes to the pathogenesis of human airways disorders. To further understand the cellular and molecular events that mediate these responses, we characterized the effects of IL-13 on monocyte chemotactic proteins (MCPs) and compared the tissue effects of transgenic IL-13 in mice with wild-type (+/+) and null (-/-) CCR2 loci. Transgenic IL-13 was a potent stimulator of MCP-1, -2, -3, and -5. This stimulation was not specific for MCPs because macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, MIP-3alpha, thymus- and activation-regulated chemokine, thymus-expressed chemokine, eotaxin, eotaxin 2, macrophage-derived chemokines, and C10 were also induced. The ability of IL-13 to increase lung size, alveolar size, and lung compliance, to stimulate pulmonary inflammation, hyaluronic acid accumulation, and tissue fibrosis, and to cause respiratory failure and death were markedly decreased, whereas mucus metaplasia was not altered in CCR2(-/-) mice. CCR2 deficiency did not decrease the basal or IL-13-stimulated expression of target matrix metalloproteinases or cathepsins but did increase the levels of mRNA encoding alpha1-antitrypsin, tissue inhibitor of metalloproteinase-1, -2, and -4, and secretory leukocyte proteinase inhibitor. In addition, the levels of bioactive and total TGF-beta(1) were decreased in lavage fluids from IL-13 transgenic mice with -/- CCR2 loci. These studies demonstrate that IL-13 is a potent stimulator of MCPs and other CC chemokines and document the importance of MCP-CCR2 signaling in the pathogenesis of the IL-13-induced pulmonary phenotype.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Endopeptidases/biosynthesis
- Hyaluronic Acid/metabolism
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-13/adverse effects
- Interleukin-13/genetics
- Interleukin-13/metabolism
- Interleukin-13/physiology
- Lung/enzymology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung Compliance
- Metaplasia/immunology
- Metaplasia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mink
- Mucus/cytology
- Mucus/immunology
- Phenotype
- Protease Inhibitors/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Fibrosis/genetics
- Pulmonary Fibrosis/immunology
- Pulmonary Fibrosis/metabolism
- Pulmonary Fibrosis/pathology
- RNA, Messenger/biosynthesis
- Receptors, CCR2
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Respiratory Insufficiency/immunology
- Respiratory Insufficiency/pathology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Total Lung Capacity
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Zhou Zhu
- Section of Pulmonary and Critical Care Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gartaganis SP, Georgakopoulos CD, Exarchou AM, Mela EK, Lamari F, Karamanos NK. Increased aqueous humor basic fibroblast growth factor and hyaluronan levels in relation to the exfoliation syndrome and exfoliative glaucoma. ACTA OPHTHALMOLOGICA SCANDINAVICA 2001; 79:572-5. [PMID: 11782221 DOI: 10.1034/j.1600-0420.2001.790605.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE To quantify the concentrations of basic fibroblast growth factor (bFGF) and hyaluronan (HA) in the aqueous humor of patients with the exfoliation syndrome (XFS) or exfoliative glaucoma (XFG). METHODS Aqueous humor bFGF and HA levels were measured in 13 patients with XFS and in 7 patients with XFG. The results were compared with those obtained from 17 healthy controls. RESULTS Mean bFGF levels were significantly higher in the XFG patients than those in the XFS patients, which in turn were higher than the bFGF levels in the healthy individuals. Aqueous humor HA levels in both patients with the XFS and the XFG were significantly higher compared to the controls. CONCLUSION We suggest that bFGF plays an important role in the pathogenesis of XFS and XFG, as well as in the synthesis of secreted HA, which may result in connective tissue degradation that affects the ocular anterior segment.
Collapse
Affiliation(s)
- S P Gartaganis
- Department of Ophthalmology, University of Patras Medical School, 26500, Rion, Patras, Greece.
| | | | | | | | | | | |
Collapse
|
29
|
Pienimaki JP, Rilla K, Fulop C, Sironen RK, Karvinen S, Pasonen S, Lammi MJ, Tammi R, Hascall VC, Tammi MI. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J Biol Chem 2001; 276:20428-35. [PMID: 11262389 DOI: 10.1074/jbc.m007601200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan is an abundant and rapidly turned over matrix molecule between the vital cell layers of the epidermis. In this study, epidermal growth factor (EGF) induced a coat of hyaluronan and a 3-5-fold increase in its rate of synthesis in a rat epidermal keratinocyte cell line that has retained its ability for differentiation. EGF also increased hyaluronan in perinuclear vesicles, suggesting concurrent enhancement in its endocytosis. Cell-associated hyaluronan was most abundant in elongated cells that were stimulated to migrate by EGF, as determined in vitro in a wound healing assay. Large fluctuations in the pool size of UDP-N-acetylglucosamine, the metabolic precursor of hyaluronan, correlated with medium glucose concentrations but not with EGF. Reverse transcriptase-polymerase chain reaction (RT-PCR) showed no increase in hyaluronan synthases 1 and 3 (Has1 and Has3), whereas Has2 mRNA increased 2-3-fold in less than 2 h following the introduction of EGF, as estimated by quantitative RT-PCR with a truncated Has2 mRNA internal standard. The average level of Has2 mRNA increased from approximately 6 copies/cell in cultures before change of fresh medium, up to approximately 54 copies/cell after 6 h in EGF-containing medium. A control medium with 10% serum caused a maximum level of approximately 21 copies/cell at 6 h. The change in the Has2 mRNA levels and the stimulation of hyaluronan synthesis followed a similar temporal pattern, reaching a maximum level at 6 h and declining toward 24 h, a finding in line with a predominantly Has2-dependent hyaluronan synthesis and its transcriptional regulation.
Collapse
Affiliation(s)
- J P Pienimaki
- Department of Anatomy, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lisignoli G, Grassi F, Piacentini A, Cocchini B, Remiddi G, Bevilacqua C, Facchini A. Hyaluronan does not affect cytokine and chemokine expression in osteoarthritic chondrocytes and synoviocytes. Osteoarthritis Cartilage 2001; 9:161-8. [PMID: 11237663 DOI: 10.1053/joca.2000.0372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Many studies have evidenced the clinical efficacy of hyaluronan (HA) in the treatment of osteoarthritis (OA). However, human and animal studies have described proinflammatory effects of HA on cells not involved in OA. We therefore investigated whether different molecular weight HA preparations can affect proinflammatory cytokine (IL1beta and TNFalpha) or chemokine (IL8, MCP-1 and RANTES) expression in human chondrocytes and synoviocytes isolated from OA patients. DESIGN Human chondrocytes and synoviocytes were cultured in vitro in the presence or absence of three different purified HA pharmaceutical preparations (1x10(6) Kd, 5x10(5) Kd and 6.5x10(4) Kd) and assessed for the production of proinflammatory cytokines and chemokines and their mRNA expression. RESULTS basal conditions, both chondrocytes and synoviocytes produce only MCP-1 and IL8, along with low quantities of IL1beta and TNFalpha, but not RANTES. IL8 production was generally about 100 times higher in chondrocytes than in synoviocytes, while MCP-1 was roughly twice as high in synoviocytes than in chondrocytes. At the mRNA level, expression of IL1beta, TNFalpha, IL8, MCP-1 and RANTES did not change in the presence of the three HA preparations either in synoviocytes or in chondrocytes with respect to basal condition. None of the three different HA preparations significantly affected production of IL8 or MCP-1. CONCLUSIONS These data demonstrate that preparations of HA of the same origin but with different MWs do not induce proinflammatory cytokines and chemokines expressed by chondrocytes and synoviocytes that are either directly or indirectly involved in OA progression.
Collapse
Affiliation(s)
- G Lisignoli
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Coleman PJ, Scott D, Mason RM, Levick JR. Role of hyaluronan chain length in buffering interstitial flow across synovium in rabbits. J Physiol 2000; 526 Pt 2:425-34. [PMID: 10896731 PMCID: PMC2270008 DOI: 10.1111/j.1469-7793.2000.00425.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2000] [Accepted: 04/25/2000] [Indexed: 11/29/2022] Open
Abstract
1. Synovial fluid drains out of joints through an interstitial pathway. Hyaluronan, the major polysaccharide of synovial fluid, attenuates this fluid drainage; it creates a graded opposition to outflow that increases with pressure (outflow 'buffering'). This has been attributed to size-related molecular reflection at the interstitium-fluid interface. Chain length is reduced in inflammatory arthritis. We therefore investigated the dependence of outflow buffering on hyaluronan chain length. 2. Hyaluronan molecules of mean molecular mass approximately 2200, 530, 300 and 90 kDa and concentration 3.6 mg ml-1 were infused into the knees of anaesthetized rabbits, with Ringer solution as control in the contralateral joint. Trans-synovial drainage rate was recorded at known joint pressures. Pressure was raised in steps every 30-60 min (range 2-24 cmH2O). 3. With hyaluronan-90 and hyaluronan-300 the fluid drainage rate was reduced relative to Ringer solution (P < 0.001, ANOVA) but increased steeply with pressure. The opposition to outflow, defined as the pressure required to drive unit outflow, did not increase with pressure, i.e. there was no outflow buffering. 4. With hyaluronan-530 and hyaluronan-2000 the fluid drainage rate became relatively insensitive to pressure, causing a near plateau of flow. Opposition to outflow increased markedly with pressure, by up to 3.3 times over the explored pressures. 5. Hyaluronan concentration in the joint cavity increased over the drainage period, indicating partial reflection of hyaluronan by synovial interstitium. Reflected fractions were 0.12, 0.33, 0.25 and 0.79 for hyaluronan-90, -300, -530 and -2200, respectively. 6. Thus the flow-buffering effect of hyaluronan depended on chain length, and shortening the chains reduced the degree of molecular reflection. The latter should reduce the concentration polarization at the tissue interface, and hence the local osmotic pressure opposing fluid drainage. In rheumatoid arthritis the reduced chain length will facilitate the escape of hyaluronan and fluid.
Collapse
Affiliation(s)
- P J Coleman
- Department of Physiology, St George's Hospital Medical School, London SW17 0RE, UK
| | | | | | | |
Collapse
|
32
|
Regulation of Interleukin-8 Synthesis in Human Lower Uterine Segment Fibroblasts by Cytokines and Growth Factors. Obstet Gynecol 2000. [DOI: 10.1097/00006250-200004000-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Abstract
OBJECTIVE To investigate the mRNA expression profiles of three mammalian hyaluronan synthases (HAS1, HAS2 and HAS3) in chondrocytes from normal (undiseased) animal cartilage and osteoarthritic human cartilage maintained in experimental culture systems and exposed to catabolic or anabolic stimuli provided by cytokines, growth factors and retinoic acid. DESIGN Chondrocytes isolated from normal bovine, porcine or from osteoarthritic human cartilage were cultured as monolayers or embedded in agarose. Cultures were maintained for 3-5 days in the presence or absence of catabolic stimuli (IL-1, TNF-alpha or retinoic acid) or anabolic stimuli (TGF-beta or IGF-1) followed by extraction of RNA and analysis of HAS mRNA expression by RT-PCR. RESULTS Whereas mRNA for HAS1 was not detected in any sample, the mRNAs for HAS2 and HAS3 were expressed in human, bovine and porcine chondrocytes. HAS2 mRNA was present in chondrocytes from all cartilages and under all culture conditions, whereas HAS3 did not show such constitutive expression. In agarose cultures of bovine and porcine chondrocytes HAS2 mRNA was present in control, IL-1 and retinoic acid treated cultures, whereas HAS3 mRNA was only detected in IL-1 stimulated cultures. Mature bovine chondrocytes cultured in monolayers expressed mRNAs for both HAS2 and HAS3 in the presence of IL-1, TNF-alpha, TGF-beta and IGF-1, however immature bovine chondrocytes in monolayer cultures displayed virtually no HAS3 mRNA expression in the presence of these cytokines and growth factors. HAS2 and HAS3 mRNAs were also expressed by bovine chondrocytes isolated from either the superficial or deep zone of articular cartilage, and by human chondrocytes cultured either in the absence or presence of IL-1 and retinoic acid. CONCLUSIONS Our data indicate that HAS2 and HAS3 (but not HAS1) mRNAs are expressed in several mammalian cartilages. Chondrocyte HAS2 mRNA appears to be constitutively expressed while chondrocyte HAS3 mRNA expression can be differentially regulated in an age-dependent fashion, and may be affected by local and/or systemic catabolic or anabolic stimuli provided by cytokines or growth factors.
Collapse
Affiliation(s)
- D R Hiscock
- Connective Tissue Biology Laboratories, Cardiff School of Biosciences, Cardiff University, Wales, UK
| | | | | |
Collapse
|
34
|
Abstract
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-beta is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-beta is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-beta. In general, the release and activation of TGF-beta stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-beta contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-beta contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1-3]. In the following chapter, we will discuss the role of TGF-beta in tissue fibrosis, with particular emphasis on renal fibrosis.
Collapse
Affiliation(s)
- M H Branton
- Kidney Disease Section, Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1268, USA
| | | |
Collapse
|
35
|
Heparan Sulfate Proteoglycan Expression Is Induced During Early Erythroid Differentiation of Multipotent Hematopoietic Stem Cells. Blood 1999. [DOI: 10.1182/blood.v93.9.2884] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHeparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.
Collapse
|
36
|
Heparan Sulfate Proteoglycan Expression Is Induced During Early Erythroid Differentiation of Multipotent Hematopoietic Stem Cells. Blood 1999. [DOI: 10.1182/blood.v93.9.2884.409k38_2884_2897] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematopoietic progenitor cell line TF-1 also expressed an HS proteoglycan. Immunochemical, reverse transcriptase-polymerase chain reaction (RT-PCR), and Northern blot analysis of this HS proteoglycan showed that it was not related to the syndecan family of HS proteoglycans or to glypican. To answer the question of whether the expression of HS proteoglycans is associated with the differentiation state of hematopoietic progenitor cells, we have analyzed the proteoglycan synthesis of several murine and human hematopoietic progenitor cell lines. Proteoglycans were isolated from metabolically labeled cells and purified by several chromatographic steps. Isolation and characterization of proteoglycans from the cell lines HEL and ELM-D, which like TF-1 cells have an immature erythroid phenotype, showed that these cells synthesize the same HS proteoglycan, previously detected in TF-1 cells, as a major proteoglycan. In contrast, cell lines of the myeloid lineage, like the myeloblastic/promyelocytic cell lines B1 and B2, do not express HS proteoglycans. Taken together, our data strongly suggest that expression of this HS proteoglycan in hematopoietic progenitor cell lines is associated with the erythroid lineage. To prove this association we have analyzed the proteoglycan expression in the nonleukemic multipotent stem cell line FDCP-Mix-A4 after induction of erythroid or granulocytic differentiation. Our data show that HS proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. In contrast, during granulocytic differentiation, no expression of HS proteoglycans was observed.
Collapse
|
37
|
Abstract
Rheumatoid arthritis (RA) is occasionally associated with specific or non-specific cutaneous conditions. In this report, we describe unusual cutaneous nodules arising on the skin overlying the inflamed joints of two patients with RA. The nodules were histopathologically characterized by mucinous granulation tissue associated with neutrophilic infiltration and proliferation of starry-shaped mesenchymal cells. The affected joints of both cases showed synovitis with synovial tissue hyperplasia due to RA. Because hyaluronic mucin, which is the major component of synovial fluids, was deposited in the nodules, intradermal inoculation of synovial cells seemed to be responsible for the nodular development. The nodules of one patient spontaneously resolved in several months. We are unaware of any report describing similar cases. Such nodules should be included as a cutaneous complication of RA, distinct from neoplasias.
Collapse
Affiliation(s)
- Y Nihei
- Dermatology of Minami Clinic Hospital, Fukushima, Japan
| |
Collapse
|
38
|
Kawakami M, Suzuki K, Matsuki Y, Ishizuka T, Hidaka T, Konishi T, Matsumoto M, Kataharada K, Nakamura H. Hyaluronan production in human rheumatoid fibroblastic synovial lining cells is increased by interleukin 1 beta but inhibited by transforming growth factor beta 1. Ann Rheum Dis 1998; 57:602-5. [PMID: 9893571 PMCID: PMC1752477 DOI: 10.1136/ard.57.10.602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the regulatory roles of interleukin 1 beta (IL1 beta), tumour necrosis factor alpha (TNF alpha), interferon gamma (IFN gamma) or transforming growth factor beta 1 (TGF beta 1) on hyaluronan (HA) synthesis by human fibroblastic synovial lining cells. METHODS Concentrations of HA in culture supernatants of fibroblastic synovial lining cell line (RAMAK-1 cell line) with or without stimulation by IL1 beta, TNF alpha, IFN gamma or TGF beta 1 were measured by sandwich binding protein assay. Levels of HA synthase mRNA of the cells with or without stimulation were detected by reverse transcribed polymerase chain reaction. Molecular weights of HA in the culture supernatants of the cells with or without stimulation were measured using high performance gel permeation liquid chromatography. RESULTS HA synthesis by the cells was not significantly augmented by TNF alpha or by IFN gamma. It was significantly stimulated by IL1 beta but inhibited by TGF beta 1. Molecular weights of HA in the culture supernatants of the cells were unchanged by stimulation with TNF alpha. They were remarkably increased by stimulation with IL1 beta and IFN gamma, but reduced with TGF beta 1. CONCLUSION IL 1 beta is an up regulator of HA synthesis, while TGF beta 1 is a down regulator. HA production in the synovial lining cells of inflamed joints (for example, rheumatoid arthritis) might be regulated by the balance of these cytokines.
Collapse
Affiliation(s)
- M Kawakami
- National Defence Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Praest BM, Greiling H, Kock R. Assay of synovial fluid parameters: hyaluronan concentration as a potential marker for joint diseases. Clin Chim Acta 1997; 266:117-28. [PMID: 9437540 DOI: 10.1016/s0009-8981(97)00122-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synovial fluids from the knees of patients with degenerative joint disease (n = 29), osteoarthritis (n = 16), diabetic arthropathy (n = 12), gout (n = 7) and acute inflammatory joint disease (n = 7) were investigated by high-performance size-exclusion chromatography combined with multiangle laser light scattering detection and differential refractometry. These data were compared with the viscosities of the same samples measured by rotation viscometry with one low shear rate, as well as with C reactive protein. The median value of the weight-average molecular weight of hyaluronan in synovial fluids, which differed less than the viscosity of these groups, varied between 1.09 x 10(6) g/mol (range 0.849-1.63 x 10(6) g/mol) (acute-inflammatory joint disease) and 1.91 x 10(6) g/mol (range 1.06-3.48 x 10(6) g/mol) (degenerative joint disease). The correlation between viscosity and hyaluronan concentration was much better than between viscosity and weight-average molecular weight. Changes in C reactive protein concentration were correlated with the disease activity. The concentration of hyaluronan was significantly higher in the cases of degenerative joint disease and diabetic arthropathy. These results suggest that synovial fluid concentration of hyaluronan is appropriate as a prognostic value in the evaluation of different kinds of joint diseases.
Collapse
Affiliation(s)
- B M Praest
- Institute for Clinical Chemistry and Pathobiochemistry, Medical Faculty, University of Technology, Aachen, Germany
| | | | | |
Collapse
|
41
|
Kock R, Schneider H, Delvoux B, Greiling H. The determination of inorganic sulphate in serum and synovial fluid by high performance ion chromatography. EUROPEAN JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY : JOURNAL OF THE FORUM OF EUROPEAN CLINICAL CHEMISTRY SOCIETIES 1997; 35:679-85. [PMID: 9352230 DOI: 10.1515/cclm.1997.35.9.679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A method for the determination of inorganic sulphate based on high performance ion chromatography is presented. The separation was performed on an anion-exchange column with a 1.8 mmol/l sodium carbonate/ 1.7 mmol/l sodium hydrogen carbonate-buffer, pH 10.35. Conductivity of the eluate was monitored after suppression of the background conductivity caused by the eluent-buffer. Serum and synovial fluid samples were prepared by ultrafiltration through membranes with a molecular mass cutoff of M(r) 10,000. The viscosity of the synovial fluids was reduced by treatment with hyaluronate lyase before ultrafiltration. The method showed a linear response for sulphate concentrations between 0.5 and 1000 mumol/l. The limit of detection was 1 mumol/l for aqueous standards. For serum the coefficient of variation within-run was 2.3%-2.4%, the coefficient of variation between days 2.9%-3.1%. For synovial fluids the coefficient of variation within-run was 3.1%-3.4%, the coefficient of variation between days 4.6%-5.7%. Standard recovery experiments performed by spiking pools of human sera containing low sulphate concentrations with sulphate concentrations between 5 mumol/l and 40 mumol/l showed recoveries between 98.9% and 100.6%. The corresponding experiments with pools of synovial fluids showed recoveries of 98.3% to 100.9%. As determined from 127 serum samples the reference range for sulphate was 262 mumol/l-420 mumol/l, with a mean value of 314 mumol/l. No dependence on age or sex was observed. The sulphate concentration in 36 synovial fluids from knees affected by inflammatory processes showed a mean value of 424 mumol/l and a standard deviation of 70 mumol/l. In 41 synovial fluids from knees affected by chronic degeneration joint disease, the sulphate concentrations were statistically significantly lower, with a mean of 374 mumol/l and a standard deviation of 58 mumol/l. The concentrations of sulphate in the synovial fluids were statistically significantly higher than those in the serum samples used for determination of the reference range. Following the oral application of a subtoxic single dose of acetaminophen (32.5 mg/kg body weight-62.5 mg/kg body weight) to 4 healthy volunteers, there was a significant decrease in the concentration of sulphate in serum with a minimum at 4-5 h after application of the drug. The cumulative concentration decrease of sulphate in serum and the kinetic constant of the sulphate depletion were not correlated with the applied acetaminophen dose normalized for body weight.
Collapse
Affiliation(s)
- R Kock
- Institut für Klinische Chemie und Pathobiochemie, Medizinische Fakultät, RWTH Aachen, Germany
| | | | | | | |
Collapse
|
42
|
Abstract
Treatment of high-molecular-weight hyaluronan (HA) with peroxynitrite at neutral pH (ONOO-/ONOOH) results in altered mobility on agarose gel electrophoresis, as well as reduced limiting viscosity number. Both effects are consistent with a reduction in HA molecular weight. HA is protected from peroxynitrite attack to varying extents by addition of alternate target molecules. Thiourea is extremely effective as a protective agent, dimethyl sulfoxide is moderately effective, while sodium benzoate and mannitol are slightly effective. A similar pattern of protection is observed when HA is degraded by hydroxyl radical generated by a metal ion/hydrogen peroxide system. On the basis of these observations, peroxynitrite is proposed to have hydroxyl radical-like activity in degrading HA.
Collapse
Affiliation(s)
- M Li
- Department of Chemical Engineering, Chemistry, and Materials Science, Herman F. Mark Polymer Research Institute, Polytechnic University, Brooklyn, New York 11201, USA
| | | | | | | |
Collapse
|
43
|
Koide J, Takada K, Sugiura M, Sekine H, Ito T, Saito K, Mori S, Takeuchi T, Uchida S, Abe T. Spontaneous establishment of an Epstein-Barr virus-infected fibroblast line from the synovial tissue of a rheumatoid arthritis patient. J Virol 1997; 71:2478-81. [PMID: 9032386 PMCID: PMC191359 DOI: 10.1128/jvi.71.3.2478-2481.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA.
Collapse
Affiliation(s)
- J Koide
- Department of Internal Medicine, Saitama Medical Center, Kawagoe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gatsios P, Haubeck HD, Van de Leur E, Frisch W, Apte SS, Greiling H, Heinrich PC, Graeve L. Oncostatin M differentially regulates tissue inhibitors of metalloproteinases TIMP-1 and TIMP-3 gene expression in human synovial lining cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:56-63. [PMID: 8898888 DOI: 10.1111/j.1432-1033.1996.0056t.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue inhibitor of metalloproteinases (TIMP) 1, 2 and 3 are related proteins that can form complexes with all known matrix metalloproteinases (MMPs). They inhibit the action of MMPs on extracellular matrix components. The balance of MMPs and TIMPs is important for tissue remodeling and its disturbance is believed to play a crucial role in pathophysiological processes such as tumor metastasis, destruction of cartilage and fibrosis. Cytokines and growth factors were found to regulate TIMPs and MMPs in a complex manner. In order to better understand the role of TIMPs in inflammatory joint diseases we have studied in vitro the regulation of TIMP-1 and TIMP-3 by inflammatory cytokines in cultured human synovial lining cells. We found that transforming growth factor beta 1 as well as interleukin-1 beta induce gene expression of both TIMP-1 and TIMP-3. In contrast, oncostatin M, an interleukin-6-type cytokine produced by activated T-lymphocytes and monocytes, had a differential effect on TIMP mRNA levels. After oncostatin M treatment, TIMP-1 expression was up-regulated but basal, as well as interleukin-1 beta-induced, TIMP-3 expression was inhibited. Interleukin-6 itself had no effect on synovial lining cells but a complex of interleukin-6 and the soluble interleukin-6 receptor induced activation of signal transducer and activator of transcription (STAT) factors in these cells and regulated TIMP-1 and TIMP-3 expression in a similar fashion as oncostatin M. Since TIMP-3 is matrix-associated whereas TIMP-1 is found in many body fluids, the role of oncostatin M during inflammatory processes might be to promote ECM degradation in the local environment but to prevent it systemically.
Collapse
Affiliation(s)
- P Gatsios
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yung S, Coles GA, Davies M. IL-1 beta, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: relevance to peritonitis in CAPD. Kidney Int 1996; 50:1337-43. [PMID: 8887296 DOI: 10.1038/ki.1996.446] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of several different growth factors and cytokines on the synthesis of hyaluronan (HA) by human peritoneal mesothelial cells (HPMC) was investigated. Growth arrested HPMC synthesized low levels of HA, but co-culture with PDGF-bb, TGF-beta 1, TNF-alpha, and IL-6 at a concentration of 10 ng/ml all increased HA synthesis between two- to three-fold. At the same concentration IL-1 beta significantly increased the synthesis eight-fold (N = 3; P < 0.05). The effect of IL-1 beta was also dose- and time-dependent and could be totally negated with interleukin-1 receptor antagonist (IL-1 beta RcA). Non-infected and infected dialysate from patients receiving CAPD was also found to stimulate HA synthesis by HPMC. The levels found with non-infected fluid were 4 x 10(4) dpm/ml (N = 6) and 12.9 x 10(4) dpm/ml (N = 6; P < 0.002) and 8.7 x 10(4) dpm/ml (N = 6; P < 0.003) for infected fluid collected one and two days after the commencement of peritonitis. IL-1 beta RcA dramatically reduced the effect of infected but not non-infected dialysate. These results provide new insights into the manner in which HA synthesis is controlled in the mesothelium and suggest that IL-1 beta is a key cytokine in the inflammatory response in CAPD patients.
Collapse
Affiliation(s)
- S Yung
- Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary, Cardiff, United Kingdom
| | | | | |
Collapse
|
46
|
Price FM, Levick JR, Mason RM. Changes in glycosaminoglycan concentration and synovial permeability at raised intra-articular pressure in rabbit knees. J Physiol 1996; 495 ( Pt 3):821-33. [PMID: 8887785 PMCID: PMC1160784 DOI: 10.1113/jphysiol.1996.sp021635] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. When intra-articular pressure is raised to pathological values (> 9 cmH2O) by saline, the hydraulic conductance of the synovial lining increases manyfold. The increase at 25 cmH2O is only partially accounted for by stretching of the tissue and has been ascribed to washout and/or dilution of interstitial matrix biopolymers. This suggestion was tested in this study by sampling synovium from control joints (rabbit knees) and from joints perfused with saline to 25 cmH2O, and analysing them quantitatively for collagen, chondroitin sulphate, heparan sulphate and hyaluronan. 2. Pressure and trans-synovial flow measurements showed that in samples taken at 25 cmH2O the conductance of the synovial lining had increased by a factor of 5.23 +/- 1.5 (mean +/- S.E.M.) over the conductance at low pressures (just above atmospheric pressure). 3. The tissue concentrations of collagen and the sulphated glycosaminoglycans (GAGs) were reduced by similar amounts after perfusion to 25 cmH2O, namely to 62.8-70.4% of control. The hyaluronan concentration by contrast was not significantly reduced (106% of control). 4. The reduction in collagen concentration (fixed material) indicated increased interstitial hydration. The closely similar reduction in sulphated GAGs indicated that dilution rather than washout of these components was occurring. The hyaluronan results could be explained by synthesis in vivo at a rate of > or = 91 micrograms h-1 (ml synovium)-1 (possibly a non-basal rate under the conditions of the experiment, i.e. raised pressure and a stretched hydrated membrane). 5. Because interstitial hydraulic drag is related to biopolymer concentration by a power function, the overall matrix dilution observed here was more than sufficient to explain the rise in synovial lining hydraulic conductance at 25 cmH2O when taken in conjunction with stretching of the synovial lining (increased area, reduced thickness).
Collapse
Affiliation(s)
- F M Price
- Department of Physiology, St George's Hospital Medical School, London, UK
| | | | | |
Collapse
|
47
|
Stöcker G, Drzeniek Z, Just U, Ostertag W, Siebertz B, Greiling H, Haubeck HD. Proteoglycan synthesis in human and murine haematopoietic progenitor cell lines: isolation and characterization of a heparan sulphate proteoglycan as a major proteoglycan from the human haematopoietic cell line TF-1. Biochem J 1996; 317 ( Pt 1):203-12. [PMID: 8694765 PMCID: PMC1217464 DOI: 10.1042/bj3170203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteoglycans of bone-marrow stromal cells and their extracellular matrix are important components of the microenvironment of haematopoietic tissues. Proteoglycans might also be involved in the interaction of haematopoietic stem and stromal cells. Recently, several studies have been reported on the proteoglycan synthesis of stromal cells, but little is known about the proteoglycan synthesis of haematopoietic stem or progenitor cells. Here we report on the isolation and characterization of proteoglycans from two haematopoietic progenitor cell lines, the murine FDCP-Mix A4 and the human TF-1 cell line. Proteoglycans were isolated from metabolically labelled cells and purified by several chromatographic steps, including anion-exchange and size-exclusion chromatography. Biochemical characterization was performed by electrophoresis or gel-filtration chromatography before and after digestion with glycosaminoglycan-specific enzymes or HNO2 treatment. Whereas FDCP-Mix A4 cells synthesize a homogeneous chondroitin 4-sulphate proteoglycan, isolation and characterization of proteoglycans from the human cell line TF-1 revealed, that TF-1 cells synthesize, in addition to a chondroitin sulphate proteoglycan, a heparan sulphate proteoglycan as major proteoglycan. For this heparan sulphate proteoglycan a core protein size of approx. 59 kDa was determined. Immunochemical analysis of this heparan sulphate proteoglycan revealed that it is not related to the syndecan family nor to glypican.
Collapse
Affiliation(s)
- G Stöcker
- Institute for Clinical Chemistry and Pathobiochemistry, Medical Faculty, University of Technology, Aachen, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|