1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
3
|
Hashiramoto A, Murata M, Kawazoe T, Yoshida K, Akiyama C, Shiozawa K, Shiozawa S. Heat shock protein 90 maintains the tumour-like character of rheumatoid synovial cells by stabilizing integrin-linked kinase, extracellular signal-regulated kinase and protein kinase B. Rheumatology (Oxford) 2010; 50:852-61. [DOI: 10.1093/rheumatology/keq385] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
4
|
Abe Y, Bui-Thanh NA, Ballantyne CM, Burns AR. Extra domain A and type III connecting segment of fibronectin in assembly and cleavage. Biochem Biophys Res Commun 2005; 338:1640-7. [PMID: 16277979 DOI: 10.1016/j.bbrc.2005.10.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
To determine the role of the extra domain A (EDA) and type III connecting segment (IIICS) of fibronectin in fiber assembly, topographical distribution and proteolytic cleavage, eight full-length human fibronectin cDNA variants (aa0, aa64, aa89, and aa120 variations in the IIICS with or without the EDA) tagged with the V5 epitope were cloned from human endothelial cells and were expressed in CHO-K1 cells. All eight variants were assembled on cell surfaces. However, only the EDA(+) variants, regardless of the type of the IIICS domain, formed extensive fibrous networks. In contrast, the EDA(-)/aa64 and EDA(-)/aa89 variants were present predominantly as a soluble form. Western analysis of both soluble and cell-associated fibronectin/V5 variants showed that aa64, aa89, and aa120 variants with or without the EDA domain produced the major 50- to 62-kDa C-terminal fragments, whereas the aa0 variants did not, suggesting that the IIICS domain provides proteolytic cleavage sites.
Collapse
Affiliation(s)
- Yasunori Abe
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, USA.
| | | | | | | |
Collapse
|
5
|
Kitagawa A, Miura Y, Saura R, Mitani M, Ishikawa H, Hashiramoto A, Yoshiya S, Shiozawa S, Kurosaka M. Anchorage on fibronectin via VLA-5 (alpha5beta1 integrin) protects rheumatoid synovial cells from Fas-induced apoptosis. Ann Rheum Dis 2005; 65:721-7. [PMID: 16249227 PMCID: PMC1798166 DOI: 10.1136/ard.2005.041707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rheumatoid synovial cells are resistant to apoptosis induction in vivo, whereas, fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) are vulnerable to Fas-induced apoptosis in vitro. OBJECTIVE To clarify this discrepancy by studying the contribution of the interaction between cellular integrin and matrix fibronectin (Fn), which is significantly increased in the rheumatoid joints, to the induction of apoptosis in RA-FLS. METHODS Integrin and Fas mRNAs were measured by reverse transcription-polymerase chain reaction in RA-FLS. Integrins expressed in rheumatoid synovial tissues were analysed by immunohistochemistry. RA-FLS plated either on Fn or on control poly-L-lysine were incubated with agonistic anti-Fas monoclonal antibodies (mAbs). Apoptosis induction was evaluated using terminal deoxynucleotidyl transferase mediated UTP nick end labelling (TUNEL) and immunoblotting for caspase-3 and poly (ADP-ribose) polymerase in the presence or absence of anti-VLA-5 mAb. RESULTS VLA-5 (alpha5beta1 integrin), a major integrin expressed on RA-FLS, was required for the adhesion of RA-FLS on Fn. RA-FLS plated on Fn were more resistant to Fas-induced apoptosis than those plated on control poly-L-lysine. This protection by Fn was reversed by anti-VLA-5 mAb. CONCLUSION Anchorage of RA-FLS on matrix Fn via VLA-5 protects RA-FLS from Fas-induced apoptosis, and Fn abundantly present in rheumatoid synovium appears to afford RA-FLS resistance against apoptosis induction in vivo.
Collapse
Affiliation(s)
- A Kitagawa
- Department of Orthopaedic Surgery, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Harvima IT, Lappalainen K, Hirvonen MR, Mättö M, Kivinen PK, Hyttinen M, Pelkonen J, Naukkarinen A. Heparin modulates the growth and adherence and augments the growth-inhibitory action of TNF-alpha on cultured human keratinocytes. J Cell Biochem 2005; 92:372-86. [PMID: 15108362 DOI: 10.1002/jcb.20068] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous works suggest the involvement of mast cells in the epithelialization of chronic wounds. Since heparin is a major mediator stored in the secretory granules of mast cells, the purpose of this work was to elucidate the function of heparin in epithelialization using in vitro culture models. For this, low- and high-calcium media in monolayer and epithelium cultures of keratinocytes were used. Also, an assay based on keratinocyte adherence onto plastic surface was used as well. Heparin (0.02-200 microg/ml) inhibited keratinocyte growth in a non-cytotoxic and dose-dependent manner in low- and high-calcium media, Keratinocyte-SFM and DMEM, in the absence of growth factors and serum. Also, heparin inhibited the growth of keratinocyte epithelium in the presence of 10% fetal calf serum and DMEM. Instead, in the presence of Keratinocyte-SFM and growth factors, heparin at 2 microg/ml inhibited the growth by 18% but at higher heparin concentrations the inhibition was reversed to baseline. TNF-alpha is another preformed mediator in mast cell granules and it inhibited keratinocyte growth in monolayer and epithelium cultures. Interestingly, heparin at 2-20 microg/ml augmented or even potentiated this growth-inhibitory effect of TNF-alpha. The association of TNF-alpha with heparin was shown by demonstrating that TNF-alpha bound tightly to heparin-Sepharose chromatographic material. However, heparin could not augment TNF-alpha-induced cell cycle arrest at G0/G1 phase or intercellular adhesion molecule-1 expression in keratinocytes. In the cell adherence assay, heparin at 2 microg/ml inhibited significantly by 12-13% or 33% the adherence of keratinocytes onto the plastic surface coated with fibronectin or collagen, respectively, but this inhibition was reversed back to baseline at 20 or 200 microg/ml heparin. Also, heparin affected the cell membrane rather than the protein coat on the plastic surface. In conclusion, heparin not only inhibits or modulates keratinocyte growth and adherence but it also binds and potentiates the growth-inhibitory function of TNF-alpha.
Collapse
Affiliation(s)
- Ilkka T Harvima
- Department of Dermatology, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yasuda T, Shimizu M, Nakagawa T, Julovi SM, Nakamura T. Matrix metalloproteinase production by COOH-terminal heparin-binding fibronectin fragment in rheumatoid synovial cells. J Transl Med 2003; 83:153-62. [PMID: 12594231 DOI: 10.1097/01.lab.0000056999.08437.b2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibronectin with IIICS region is present in rheumatoid synovium, and fibronectin fragments are increased in rheumatoid joints. We investigated the ability of COOH-terminal heparin-binding fibronectin fragment (COOH-HBFN-f) containing IIICS to induce matrix metalloproteinase (MMP) production and the role of mitogen-activated protein kinase (MAPK) pathway and CS-1 sequence that can bind alpha4beta1 integrin in MMP induction by COOH-HBFN-f in rheumatoid synovial fibroblasts (RSF). When RSF in monolayer culture were incubated with COOH-HBFN-f, COOH-HBFN-f stimulated the production of MMP-1, MMP-3, and MMP-13 by RSF in association with activation of extracellular signal-regulated kinase, p38 MAPK, and c-Jun NH(2)-terminal kinase. Immunoprecipitation of cell lysates demonstrated the presence of alpha4 integrin in cultured RSF. Similar to COOH-HBFN-f, treatment with CS-1 synthetic peptide derived from IIICS resulted in increased MMP production and activation of the kinases, although the MMP levels were low. Preincubation of RSF with anti-alpha4 integrin antibody resulted in partial suppression of the COOH-HBFN-f-stimulated MMP production. Inhibition studies using protein kinase inhibitors (PD98059 and SB203580) showed that those MAPK pathways contributed to MMP up-regulation by COOH-HBFN-f and CS-1. Thus, the present results have clearly shown that COOH-HBFN-f and CS-1 stimulate MMP production in association with activation of MAPK pathways in RSF. Integrin alpha4beta1 may be partially involved in the MMP induction by COOH-HBFN-f.
Collapse
Affiliation(s)
- Tadashi Yasuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Japan.
| | | | | | | | | |
Collapse
|
8
|
Miyamoto K, Kobayashi D, Maeda R, Ito T, Komai T. Inhibition of cryogelation by the novel synthetic peptide (Gly-Arg-Lys-Lys-Thr): recognition site of extra domain A containing fibronectin for heparin in cryogelation. Int J Biol Macromol 2003; 31:207-15. [PMID: 12568929 DOI: 10.1016/s0141-8130(02)00083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cryogel is a physical gel formed by the heterophilic aggregation of extra domain A (EDA) containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep) in the blood of rheumatoid arthritis (RA) patients. In cryogelation EDA(+)FN cross-links to form an interaggregate of cryogel with Hep. In the present study, we determined the recognition structure of Hep for EDA(+)FN by using oligo- and desulfonated-Hep. The affinity constant (KA) (1.2 x 10(8) per M) of oligo-Hep for EDA(+)FN did not change with a decrease in number-average molecular weight (4.9 x 10(4)-->6.0 x 10(3)). The KA-value of desulfonated-Hep for EDA(+)FN decreased from 3.2 x 10(8) to 1.0 x 10(7) per M with a decrease in the sulfonation ratio (7.0-->4.3%). We also determined the recognition structure of EDA(+)FN for Hep by an inhibition experiment on the heparin binding domain II (HepII) in EDA(+)FN with the synthetic peptides, Arg-Arg-Ala-Arg (RRAR), Asp-Gln-Ala-Arg (DNAR), Ile-Lys-Tyr-Glu-Lys (IKYEK), and Gly-Arg-Lys-Lys-Try (GRKKT). The GRKKT sequence clearly inhibited bonding between EDA(+)FN and Heps containing oligo- and desulfonated-Hep. The amount of cryogel formed in the RA-patient model plasma corresponded to the EDA(+)FN concentration in cryogel (36.7%) normalized by the EDA(+)FN concentration in plasma. When GRKKT was added to plasma, the EDA(+)FN concentration fell to 10.5%. These results demonstrated that inhibition of cryogelation in plasma could progress to a novel treatment for RA.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
9
|
Miyamoto K, Kodera N, Umekawa H, Furuichi Y, Tokita M, Komai T. Specific interactions between cryogel components: role of extra domain A containing fibronectin in cryogelation. Int J Biol Macromol 2002; 30:205-12. [PMID: 12063123 DOI: 10.1016/s0141-8130(02)00021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cryogel is a physical gel formed by heterophilic aggregation of extra domain A containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep), which are found in high concentrations in the blood of patients suffering from rheumatoid arthritis. In this study, we clarify the specific interactions between cryogel components in terms of the affinity constant (K(A)), obtained by surface plasmon resonance (SPR). It is found that Fbg self-interactions occur at lower temperatures, and that K(A) of Fbg-Hep changes with temperature. Specifically, K(A) (2.0 x 10(8) [M(-1)]) of Fbg-Hep at 5 degrees C increases significantly from that (1.0x10(7) [M(-1)]) at 40 degrees C. K(A) of EDA(+)FN-Hep increases with temperature, by approximately 100-fold between 40 degrees C (K(A)=10(12) [M(-1)]) and 20 degrees C (K(A)=10(10) [M(-1)]). Although K(A) of the FN fragments of Hep-binding domain containing an EDA region [EDA(+)HBD(+)] and Hep increases with temperatures above 30 degrees C, K(A)s of HBD(+)-Hep and EDA(+)-Hep are not temperature-dependent. Therefore, EDA(+)HBD(+), formed as a special structure for high Hep affinity, exhibits temperature-dependent interaction with Hep. These results suggest that the main role of EDA(+)FN in cryogelation is to support the interaction with Hep.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Cho, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cryogel, prevalent in the plasma of rheumatoid arthritis patients, is a plasma fibronectin (pFN)-extra domain A containing FN [EDA(+)FN]-fibrinogen (Fbg) aggregate formed by the addition of heparin (Hep) at low temperature. Although EDA(+)FN is not usually present in normal plasma, its prevalence in rheumatic patients induces cryogelation. In this study, we determined the hydrodynamic radius (R(h)) ratio (R(h)/R(h30)) of the cryogel component by dynamic light scattering in vitro. R(h)/R(h30) was normalized to R(h) at 30 degrees C (R(h30)) at several temperatures. The R(h)/R(h30) of Fbg was found to increase only by self-aggregation, whereas the R(h)/R(h30) of FNs does not increase in response to temperature changes. The R(h)/R(h30) of the Fbg/FN aggregate is increased by the addition of Hep, and the R(h)/R(h30) (12.5) of the Hep-induced EDA(+)FN/Fbg aggregate is greater than that (2.5) of the pFN/Fbg aggregate. These results suggest that cryogelation requires Fbg self-aggregation and the interaction between EDA(+)FN and Hep.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu, 514-8507, Mie, Japan.
| | | | | | | |
Collapse
|
11
|
Chen G, McCormick TS, Hammerberg C, Ryder-Diggs S, Stevens SR, Cooper KD. Basal keratinocytes from uninvolved psoriatic skin exhibit accelerated spreading and focal adhesion kinase responsiveness to fibronectin. J Invest Dermatol 2001; 117:1538-45. [PMID: 11886520 DOI: 10.1046/j.0022-202x.2001.01535.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously proposed that the keratinocyte hyperproliferative state in psoriatic skin results from a combination of T cell cytokine interaction with basal keratinocytes that exist in a primed state. We now provide evidence that basal keratinocytes from psoriatic uninvolved skin are in a preactivated state with regard to their interaction with fibronectin. Freshly isolated basal keratinocytes (K(1)/K(10)(-)) from non-lesional psoriatic skin demonstrated a significantly higher percentage of spreading cells 1 h after plating on fibronectin-coated plates than keratinocytes isolated from normal skin (p =0.0002). No differences were observed on collagen-laminin-coated plates, however. The keratinocyte spreading on fibronectin-coated plates involved alpha 5 beta 1 and alpha V beta 1 integrins. To address the potential signaling cascades that may respond to integrin changes in psoriatic keratinocytes, focal adhesion kinase changes were assessed. The percentage of keratinocytes from psoriatic uninvolved skin that exhibit positive focal adhesion kinase staining was significantly greater than the percentage from healthy volunteers after 1 h incubation on fibronectin (p =0.006). Additionally, focal adhesion kinase isolated from uninvolved psoriatic keratinocytes had a greater degree of tyrosine phosphorylation. Thus, the proliferative effect of fibronectin in combination with T cell lymphokines on psoriatic uninvolved basal keratinocyte progenitors may be due to abnormal in vivo integrin-driven focal adhesion kinase activity and downstream signaling.
Collapse
Affiliation(s)
- G Chen
- Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Ohio 44106-5028, USA
| | | | | | | | | | | |
Collapse
|
12
|
Shiozawa K, Hino K, Shiozawa S. Alternatively spliced EDA-containing fibronectin in synovial fluid as a predictor of rheumatoid joint destruction. Rheumatology (Oxford) 2001; 40:739-42. [PMID: 11477277 DOI: 10.1093/rheumatology/40.7.739] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Fibronectin containing the EDA region (EDA(+)Fn), a molecule important for rheumatoid joint destruction, was measured in relation to the progression of joint destruction in rheumatoid arthritis (RA). METHODS Total Fn and EDA(+)Fn were measured by ELISA, and the concentrations of Fn in plasma and synovial fluid were compared prospectively for 2 yr with the progression of joint destruction in 41 knee joints of 37 patients with RA. The extent of joint destruction was assessed by the Larsen score and joint space narrowing in X-ray films taken before and 2 yr after measurement of EDA(+)Fn. RESULTS The concentration of synovial fluid EDA(+)Fn showed a positive correlation with the progression of joint destruction in RA (r=0.78). While total Fn in synovial fluid also showed a correlation with joint destruction (r=0.54), total Fn and EDA(+)Fn in plasma showed no correlation with joint destruction. The concentration of synovial fluid EDA(+)Fn was significantly higher in patients who underwent joint replacement after the measurement of EDA(+)Fn than in those who did not receive surgery (P<0.029). CONCLUSION Synovial fluid EDA(+)Fn can be a predictor of subsequent joint destruction in RA.
Collapse
Affiliation(s)
- K Shiozawa
- Department of Medicine and Rheumatology, Kakogawa Konan Hospital, Japan
| | | | | |
Collapse
|
13
|
Carsons S. Extra domain-positive fibronectins in arthritis: wolf in sheep's clothing? Rheumatology (Oxford) 2001; 40:721-3. [PMID: 11477275 DOI: 10.1093/rheumatology/40.7.721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Abstract
Cryogel is a physical gel formed by the heterophilic aggregation of extra domain A containing fibronectin (EDA(+)FN), plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep). Cryogelation is controlled by the interactions between each aggregate and the amount of aggregates. Therefore, the present study attempted to elucidate these properties by studying turbidity (tau). Although only Fbg formed a self-aggregate under low temperatures, from the temperature dependence of tau, the amount of aggregate in three-element (pFN/Fbg/Hep) solution surpassed that of the EDA(+)FN/Fbg/Hep system. The optimal condition for cryogelation was afforded by a solution with Fbg/EDA(+)FN/pFN/Hep expressed in the molar ratio of 12:0.04:0.79:1. This cryogel structure in solution was probably formed via structural changes induced by pFN in Fbg. The structural change in Fbg was examined by circular dichroism under optimal conditions. This concept was based on observations of the direct transmission scanning electron microscopy of a cryogel. The EDA(+)FN/pFN/Fbg/Hep aggregates displayed a network structure that manifested particulate crosslinkage. Cryogelation, a phenomenon related to induction of rheumatoid arthritis in humans, was facilitated by both the EDA(+)FN-Hep interaction and the structural changes of Fbg induced by pFN.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu-city, 514-8507, Mie, Japan.
| | | | | | | | | |
Collapse
|
15
|
Johnson KJ, Sage H, Briscoe G, Erickson HP. The compact conformation of fibronectin is determined by intramolecular ionic interactions. J Biol Chem 1999; 274:15473-9. [PMID: 10336438 DOI: 10.1074/jbc.274.22.15473] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibronectin exists in a compact or extended conformation, depending upon environmental pH and salt concentration. Using recombinant fragments expressed in bacteria and baculovirus, we determined the domains responsible for producing fibronectin's compact conformation. Our velocity and equilibrium sedimentation data show that FN2-14 (a protein containing FN-III domains 2 through 14) forms dimers in low salt. Experiments with smaller fragments indicates that the compact conformation is produced by binding of FN12-14 of one subunit to FN2-3 of the other subunit in the dimer. The binding is weakened at higher salt concentrations, implying an electrostatic interaction. Furthermore, segment FN7-14+A, which contains the alternatively spliced A domain between FN11 and 12, forms dimers, whereas FN7-14 without A does not. Segment FN12-14+A also forms dimers, but the isolated A domain does not. These data imply an association of domain A with FN12-14, and the presence of A may favor an open conformation by competing with FN2-3 for binding to FN12-14.
Collapse
Affiliation(s)
- K J Johnson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
16
|
Toyoshima K, Kimura S, Cheng J, Oda Y, Mori KJ, Saku T. High-molecular-weight fibronectin synthesized by adenoid cystic carcinoma cells of salivary gland origin. Jpn J Cancer Res 1999; 90:308-19. [PMID: 10359046 PMCID: PMC5926065 DOI: 10.1111/j.1349-7006.1999.tb00749.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To understand the morphogenesis of characteristic cribriform structures and the frequent invasion of salivary adenoid cystic carcinomas (ACC) along such basement membrane-rich structures as peripheral nerves, we have isolated fibronectin (FN) from the culture media of ACC3 cells established from a parotid ACC and characterized its glycosylation and alternative splicing status. FN isolated from ACC3 cells (ACC-FN) showed a molecular mass of 315 kDa in SDS-PAGE and was less heterogeneous and larger than plasma FN (pFN) or FNs from other cell sources. Differential enzymatic treatments of immunoprecipitated ACC-FN with neuraminidase, peptide-N-glycosidase F and endo-alpha-N-acetylgalactosaminidase revealed that ACC-FN was composed of a polypeptide chain of 270 kDa, with 10 kDa each of N-linked and O-linked oligosaccharide chains. Reverse transcription polymerase chain reaction (RT-PCR), in-situ hybridization, and immunofluorescence studies showed that most ACC-FNs contained ED-A, ED-B and IIICS regions in the molecules. This alternative splicing status of ACC-FN seemed to contribute to its less heterogeneous and larger molecular form. Cell attachment assay demonstrated that ACC-FN was more potent than pFN in adhesion of ACC3 cells. The results indicated that ACC-FN may function as a substrate for attachment of ACC3 cells, or that ACC3 cells trap and retain ACC-FN in their pericellular space. This isoform of FN may play an important role in the mode of invasion of ACC and the formation of stromal pseudocysts in the characteristic cribriform structure of ACC.
Collapse
Affiliation(s)
- K Toyoshima
- Department of Pathology, Niigata University School of Dentistry
| | | | | | | | | | | |
Collapse
|
17
|
Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K. Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 1997; 139:295-307. [PMID: 9314547 PMCID: PMC2139828 DOI: 10.1083/jcb.139.1.295] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibronectin (FN) has a complex pattern of alternative splicing at the mRNA level. One of the alternatively spliced segments, EDA, is prominently expressed during biological processes involving substantial cell migration and proliferation, such as embryonic development, malignant transformation, and wound healing. To examine the function of the EDA segment, we overexpressed recombinant FN isoforms with or without EDA in CHO cells and compared their cell-adhesive activities using purified proteins. EDA+ FN was significantly more potent than EDA- FN in promoting cell spreading and cell migration, irrespective of the presence or absence of a second alternatively spliced segment, EDB. The cell spreading activity of EDA+ FN was not affected by antibodies recognizing the EDA segment but was abolished by antibodies against integrin alpha5 and beta1 subunits and by Gly-Arg-Gly-Asp-Ser-Pro peptide, indicating that the EDA segment enhanced the cell-adhesive activity of FN by potentiating the interaction of FN with integrin alpha5beta1. In support of this conclusion, purified integrin alpha5beta1 bound more avidly to EDA+ FN than to EDA- FN. Augmentation of integrin binding by the EDA segment was, however, observed only in the context of the intact FN molecule, since the difference in integrin-binding activity between EDA+ FN and EDA- FN was abolished after limited proteolysis with thermolysin. Consistent with this observation, binding of integrin alpha5beta1 to a recombinant FN fragment, consisting of the central cell-binding domain and the adjacent heparin-binding domain Hep2, was not affected by insertion of the EDA segment. Since the insertion of an extra type III module such as EDA into an array of repeated type III modules is expected to rotate the polypeptide up to 180 degrees at the position of the insertion, the conformation of the FN molecule may be globally altered upon insertion of the EDA segment, resulting in an increased exposure of the RGD motif in III10 module and/or local unfolding of the module. Our results suggest that alternative splicing at the EDA exon is a novel mechanism for up-regulating integrin-binding affinity of FN operating when enhanced migration and proliferation of cells are required.
Collapse
Affiliation(s)
- R Manabe
- Research Institute, Osaka Medical Center for Maternal and Child Health, Japan
| | | | | | | | | |
Collapse
|