1
|
Liu YC, Lin TJ, Chong KY, Chen GY, Kuo CY, Lin YY, Chang CW, Hsiao TF, Wang CL, Shih YC, Yu CJ. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer. Cell Commun Signal 2025; 23:22. [PMID: 39800687 PMCID: PMC11727508 DOI: 10.1186/s12964-024-02010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies. Previously, we reported an unconventional role for the Golgi tethering factor golgin-97 in inhibiting breast cell motility, and its downregulation was associated with poor patient prognosis. However, the specific role and regulatory mechanism of golgin-97 in cancer progression in vivo remain unclear. METHODS We integrated genetic knockout (KO) of golgin-97, animal models (zebrafish and xenograft mice), multi-omics analysis (next-generation sequencing and proteomics), bioinformatics analysis, and kinase inhibitor treatment to evaluate the effects of golgin-97 KO in triple-negative breast cancer cells. Gene knockdown and kinase inhibitor treatment followed by qRT‒PCR, Western blotting, cell viability, migration, and cytotoxicity assays were performed to elucidate the mechanisms of golgin-97 KO-mediated cancer invasion. A xenograft mouse model was used to investigate cancer progression and drug therapy. RESULTS We demonstrated that golgin-97 KO promoted breast cell metastasis in zebrafish and xenograft mouse models. Multi-omics analysis revealed that the Wnt signaling pathway, MAPK kinase cascades, and inflammatory cytokines are involved in golgin-97 KO-induced breast cancer progression. Targeting the ERK1/2 and p38 MAPK pathways effectively attenuated golgin-97-induced cancer cell migration, reduced the expression of inflammatory mediators, and enhanced the chemotherapeutic effect of paclitaxel in vitro and in vivo. Specifically, compared with the paclitaxel regimen, the combination of ERK1/2 and p38 MAPK inhibitors significantly prevented lung metastasis and lung injury. We further demonstrated that hypoxia is a physiological condition that reduces golgin-97 expression in cancer, revealing a novel and potential feedback loop between ERK/MAPK signaling and golgin-97. CONCLUSION Our results collectively support a novel regulatory role of golgin-97 in ERK/MAPK signaling and the tumor microenvironment, possibly providing new insights for anti-breast cancer drug development.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
| | - Tsung-Jen Lin
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
- CardioVascular Research Center, Tzu Chi General Hospital, Hualien City, Hualien County, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Guan-Ying Chen
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
| | - Chia-Yu Kuo
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan
| | - Yi-Yun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Feng Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yo-Chen Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Seoane PI, Beswick JA, Leach AG, Swanton T, Morris LV, Couper K, Lowe M, Freeman S, Brough D. Squaramides enhance NLRP3 inflammasome activation by lowering intracellular potassium. Cell Death Discov 2023; 9:469. [PMID: 38129373 PMCID: PMC10739973 DOI: 10.1038/s41420-023-01756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
The NLRP3 inflammasome is a component of the inflammatory response to infection and injury, orchestrating the maturation and release of the pro-inflammatory cytokines interleukin-1β (IL-1β), IL-18, and triggering pyroptotic cell death. Appropriate levels of NLRP3 activation are needed to avoid excessive tissue damage while ensuring host protection. Here we report a role for symmetrical diarylsquaramides as selective K+ efflux-dependent NLRP3 inflammasome enhancers. Treatment of macrophages with squaramides potentiated IL-1β secretion and ASC speck formation in response to K+ efflux-dependent NLRP3 inflammasome activators without affecting priming, endosome cargo trafficking, or activation of other inflammasomes. The squaramides lowered intracellular K+ concentration which enabled cells to respond to a below-threshold dose of the inflammasome activator nigericin. Taken together these data further highlight the role of ion flux in inflammasome activation and squaramides as an interesting platform for therapeutic development in conditions where enhanced NLRP3 activity could be beneficial.
Collapse
Affiliation(s)
- Paula I Seoane
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| | - James A Beswick
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Andrew G Leach
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Lucy V Morris
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Kevin Couper
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 2023; 12:RP89317. [PMID: 38126335 PMCID: PMC10735228 DOI: 10.7554/elife.89317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.
Collapse
Affiliation(s)
- Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Xiaobo Jia
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Wenjun Liang
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Sihan Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Zhiqiang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
5
|
Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. The role of the Golgi apparatus in disease (Review). Int J Mol Med 2021; 47:38. [PMID: 33537825 PMCID: PMC7891830 DOI: 10.3892/ijmm.2021.4871] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease-related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
6
|
Sjögren's Syndrome Associated with Chikungunya Infection: A Case Report. Rheumatol Ther 2021; 8:631-637. [PMID: 33527325 PMCID: PMC7991050 DOI: 10.1007/s40744-021-00281-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 11/05/2022] Open
Abstract
Chikungunya virus (CHIKV) infection is caused by an arbovirus prevalent in various parts of the world. The virus can induce autoantibodies and rheumatic diseases, such as rheumatoid arthritis and spondylarthritis. However, until now, no case of Sjögren syndrome (SS) was described associated with CHIKV. In this article, we describe a 49-year-old female with polyarthralgia and a temporary rash on her trunk and arms. Her physical examination showed polyarthritis of her ankles and wrists. Serologies for CHIKV were interpreted as positive with IgM 6.5 (normal range < 0.8) and negative for IgG. Antinuclear antibodies were positive at a titer of 1:640 as well as anti-Ro/SS-A. The diagnosis of subacute CHIKV infection was determined. The Schirmer test, Rose Bengal, and salivary scintigraphy were positive and the diagnosis of SS was confirmed. She was treated with hydroxychloroquine, methotrexate, and a single dose of betamethasone depot. This is the first report on CHIKV associated with SS. Sequence analysis of the CHIKV proteome versus SS autoantigens showed an extensive peptide sharing between the virus and numerous SS autoantigens, thus supporting the hypothesis that autoimmune cross-reactivity might causally link CHIKV to SS.
Collapse
|
7
|
Rodríguez-Cruz F, Torres-Cruz FM, Monroy-Ramírez HC, Escobar-Herrera J, Basurto-Islas G, Avila J, García-Sierra F. Fragmentation of the Golgi Apparatus in Neuroblastoma Cells Is Associated with Tau-Induced Ring-Shaped Microtubule Bundles. J Alzheimers Dis 2019; 65:1185-1207. [PMID: 30124450 DOI: 10.3233/jad-180547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.
Collapse
Affiliation(s)
- Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Francisco Miguel Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
8
|
Variants at potential loci associated with Sjogren's syndrome in Koreans: A genetic association study. Clin Immunol 2019; 207:79-86. [PMID: 31349012 DOI: 10.1016/j.clim.2019.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Sjogren's syndrome (SS), a chronic autoimmune disease, typically causes or involves inflammation in the salivary and lacrimal glands. Although recent genetic association studies have contributed to the discovery of SS susceptible genes, few studies have reported on the Korean population. Here, we did a genetic association study of SS in Korean patients using whole-exome sequencing data of 15 patients and 100 healthy controls. In addition to confirming previously described SS susceptibility loci MSH5 (p = 1.67 × 10-5) and RELN (p = 4.91 × 10-6), we also validated PRAMEF13 (p = 2.28 × 10-5), TARBP1 (p = 1.87 × 10-5), UGT2B28 (p = 1.33 × 10-5), TRBV5-6 (p = 2.27 × 10-5) and NAPB (p = 3.73 × 10-5) as novel susceptibility loci for SS. Furthermore, we identified UGT2B28, TARBP1 and PRAMEF13 as associated with human immune function. These findings may provide useful insight into to the pathways and pathogenesis contributing to SS susceptibility in the Korean population.
Collapse
|
9
|
Fritzler MJ, Brown RD, Zhang M. A Monoclonal Antibody to M-Phase Phosphoprotein 1/Kinesin-Like Protein KIF20B. Monoclon Antib Immunodiagn Immunother 2019; 38:162-170. [PMID: 31260385 PMCID: PMC6709729 DOI: 10.1089/mab.2019.0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kinesin-like protein KIF20B, originally named M-phase phosphoprotein 1 (MPP1), is a plus-end-directed kinesin-related protein that exhibits in vitro microtubule-binding and -bundling properties as well as microtubule-stimulated ATPase activity. It has been characterized as a slow molecular motor that moves toward the plus-end of microtubules. Human autoantibodies directed against KIF20B have been described in up to 25% of patients with idiopathic ataxia and less commonly in other neuropathies and autoinflammatory conditions. One of the limitations of research into the structure and function of KIF20B has been a reliable monoclonal antibody that can be used in a variety of applications. To establish a reference standard for anti-KIF20B immunoassays and facilitate studies on the role of KIF20B in developmental cell biology, we developed an IgG1 monoclonal antibody, 10C7, which reacts with the cognate KIF20B protein in Western immunoblots and in addressable laser bead immunoassays. In HEp2 cells, leptomeningeal pericytes, and transfected HEK293T cells, indirect immunofluorescence studies showed that reactivity was mainly localized to a proportion of interphase nuclei, but during metaphase, it was redistributed throughout the cytoplasm and perichromatin mass. Later in telophase/anaphase, KIF20B was localized to the stem body and midzone of the midbody. 10C7 also showed remarkable staining of a subset of cells in the cerebellum, ovary, and testis tissues. KIF20B was shown to have extensive coiled-coil domains. The monoclonal antibody, 10C7, will be of value to diagnostic laboratory scientists interested in having a reliable reference standard for anti-KIF20B immunoassays as well as cell, molecular, and developmental biology researchers.
Collapse
Affiliation(s)
- Marvin J Fritzler
- 1Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachael D Brown
- 2Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Meifeng Zhang
- 1Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Herber J, Njavro J, Feederle R, Schepers U, Müller UC, Bräse S, Müller SA, Lichtenthaler SF. Click Chemistry-mediated Biotinylation Reveals a Function for the Protease BACE1 in Modulating the Neuronal Surface Glycoproteome. Mol Cell Proteomics 2018; 17:1487-1501. [PMID: 29716987 DOI: 10.1074/mcp.ra118.000608] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
The cell surface proteome is dynamic and has fundamental roles in cell signaling. Many surface membrane proteins are proteolytically released into a cell's secretome, where they can have additional functions in cell-cell-communication. Yet, it remains challenging to determine the surface proteome and to compare it to the cell secretome, under serum-containing cell culture conditions. Here, we set up and evaluated the 'surface-spanning protein enrichment with click sugars' (SUSPECS) method for cell surface membrane glycoprotein biotinylation, enrichment and label-free quantitative mass spectrometry. SUSPECS is based on click chemistry-mediated labeling of glycoproteins, is compatible with labeling of living cells and can be combined with secretome analyses in the same experiment. Immunofluorescence-based confocal microscopy demonstrated that SUSPECS selectively labeled cell surface proteins. Nearly 700 transmembrane glycoproteins were consistently identified at the surface of primary neurons. To demonstrate the utility of SUSPECS, we applied it to the protease BACE1, which is a key drug target in Alzheimer's disease. Pharmacological BACE1-inhibition selectively remodeled the neuronal surface glycoproteome, resulting in up to 7-fold increased abundance of the BACE1 substrates APP, APLP1, SEZ6, SEZ6L, CNTN2, and CHL1, whereas other substrates were not or only mildly affected. Interestingly, protein changes at the cell surface only partly correlated with changes in the secretome. Several altered proteins were validated by immunoblots in neurons and mouse brains. Apparent nonsubstrates, such as TSPAN6, were also increased, indicating that BACE1-inhibition may lead to unexpected secondary effects. In summary, SUSPECS is broadly useful for determination of the surface glycoproteome and its correlation with the secretome.
Collapse
Affiliation(s)
- Julia Herber
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jasenka Njavro
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Regina Feederle
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,¶Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,‖Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Ute Schepers
- **Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Ulrike C Müller
- ‡‡Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | - Stefan Bräse
- **Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Karlsruhe, Germany
| | - Stephan A Müller
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- From the ‡German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; .,§Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,¶Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,§§Institute for Advanced Study, Technische Universität München, Munich, Germany
| |
Collapse
|
11
|
Hsu RM, Zhong CY, Wang CL, Liao WC, Yang C, Lin SY, Lin JW, Cheng HY, Li PY, Yu CJ. Golgi tethering factor golgin-97 suppresses breast cancer cell invasiveness by modulating NF-κB activity. Cell Commun Signal 2018; 16:19. [PMID: 29703230 PMCID: PMC5923015 DOI: 10.1186/s12964-018-0230-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Background Golgin-97 is a tethering factor in the trans-Golgi network (TGN) and is crucial for vesicular trafficking and maintaining cell polarity. However, the significance of golgin-97 in human diseases such as cancer remains unclear. Methods We searched for a potential role of golgin-97 in cancers using Kaplan-Meier Plotter (http://kmplot.com) and Oncomine (www.oncomine.org) datasets. Specific functions of golgin-97 in migration and invasion were examined in golgin-97-knockdown and golgin-97-overexpressing cells. cDNA microarray, pathway analysis and qPCR were used to identify gene profiles regulated by golgin-97. The role of golgin-97 in NF-κB signaling pathway was examined by using subcellular fractionation, luciferase reporter assay, western blot analysis and immunofluorescence assay (IFA). Results We found that low expression of golgin-97 correlated with poor overall survival of cancer patients and was associated with invasiveness in breast cancer cells. Golgin-97 knockdown promoted cell migration and invasion, whereas re-expression of golgin-97 restored the above phenotypes in breast cancer cells. Microarray and pathway analyses revealed that golgin-97 knockdown induced the expression of several invasion-promoting genes that were transcriptionally regulated by NF-κB p65. Mechanistically, golgin-97 knockdown significantly reduced IκBα protein levels and activated NF-κB, whereas neither IκBα levels nor NF-κB activity was changed in TGN46- or GCC185-knockdown cells. Conversely, golgin-97 overexpression suppressed NF-κB activity and restored the levels of IκBα in golgin-97-knockdown cells. Interestingly, the results of Golgi-disturbing agent treatment revealed that the loss of Golgi integrity was not involved in the NF-κB activation induced by golgin-97 knockdown. Moreover, both TGN-bound and cytosolic golgin-97 inhibited NF-κB activation, indicating that golgin-97 functions as an NF-κB suppressor regardless of its subcellular localization. Conclusion Our results collectively demonstrate a novel and suppressive role of golgin-97 in cancer invasiveness. We also provide a new avenue for exploring the relationship between the TGN, golgin-97 and NF-κB signaling in tumor progression. Electronic supplementary material The online version of this article (10.1186/s12964-018-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rae-Mann Hsu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cai-Yan Zhong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Chi Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Wei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Yun Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Yu Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Jagdeo JM, Dufour A, Klein T, Solis N, Kleifeld O, Kizhakkedathu J, Luo H, Overall CM, Jan E. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. J Virol 2018; 92:e02211-17. [PMID: 29437971 PMCID: PMC5874412 DOI: 10.1128/jvi.02211-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cproin vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner.IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection.
Collapse
Affiliation(s)
- Julienne M Jagdeo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antoine Dufour
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Theo Klein
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oded Kleifeld
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Vest KE, Paskavitz AL, Lee JB, Padilla-Benavides T. Dynamic changes in copper homeostasis and post-transcriptional regulation of Atp7a during myogenic differentiation. Metallomics 2018; 10:309-322. [PMID: 29333545 PMCID: PMC5824686 DOI: 10.1039/c7mt00324b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022]
Abstract
Copper (Cu) is an essential metal required for activity of a number of redox active enzymes that participate in critical cellular pathways such as metabolism and cell signaling. Because it is also a toxic metal, Cu must be tightly controlled by a series of transporters and chaperone proteins that regulate Cu homeostasis. The critical nature of Cu is highlighted by the fact that mutations in Cu homeostasis genes cause pathologic conditions such as Menkes and Wilson diseases. While Cu homeostasis in highly affected tissues like the liver and brain is well understood, no study has probed the role of Cu in development of skeletal muscle, another tissue that often shows pathology in these conditions. Here, we found an increase in whole cell Cu content during differentiation of cultured immortalized or primary myoblasts derived from mouse satellite cells. We demonstrate that Cu is required for both proliferation and differentiation of primary myoblasts. We also show that a key Cu homeostasis gene, Atp7a, undergoes dynamic changes in expression during myogenic differentiation. Alternative polyadenylation and stability of Atp7a mRNA fluctuates with differentiation stage of the myoblasts, indicating post-transcriptional regulation of Atp7a that depends on the differentiation state. This is the first report of a requirement for Cu during myogenic differentiation and provides the basis for understanding the network of Cu transport associated with myogenesis.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Biology , Emory University , 1510 Clifton Road , Atlanta , GA 30322 , USA
| | - Amanda L. Paskavitz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| | - Joseph B. Lee
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , 394 Plantation St. , Worcester , MA 01605 , USA .
| |
Collapse
|
14
|
Pituitary Microsomal Autoantibodies in Patients with Childhood-Onset Combined Pituitary Hormone Deficiency: an Antigen Identification Attempt. Arch Immunol Ther Exp (Warsz) 2016; 64:485-495. [PMID: 26970862 PMCID: PMC5085985 DOI: 10.1007/s00005-016-0386-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/15/2016] [Indexed: 12/03/2022]
Abstract
The role of autoimmunization in the pathogenesis of pituitary disorders is poorly understood. The presence of pituitary autoantibodies (APA) has been detected in various pituitary disorders. Their role, however, remains elusive. Childhood-onset combined pituitary hormone deficiency (CPHD) may be caused by environmental or genetic factors. In some of patients, causes of the disease remain unclear and contributions of autoimmune processes have been postulated. The aim of this study was to identify the microsomes-derived pituitary antigens (MPA) as potential immunogenic autoantigens in patients with hypopituitarism, therefore 62 CPHD patients, 100 healthy controls and five autoimmune polyglandular syndrome type II (APS II) patients were included in the study. The clinical evaluation included hormonal tests and magnetic resonance imaging of the pituitary. The sources of MPA were pituitary glands taken from autopsies. Isolated MPA were then separated on SDS-PAGE gel and incubated with sera obtained from patients and controls. Microsomal APA were detected using Western blot and radioimmunological method. In all CPHD and APS II patients and in 9 % individuals from control group marked immunoreactivity was detected against MPA. Antibodies showed high affinity to 67, 60, 50 and 36 kDa MPAs. Since the identified autoantigens were of unknown nature, an in silico exploration of UniProt database was applied and indicated their possible relationship with chaperones, golgins and already known autoantigens like GAD67. Reactivity against MPA indicates that these proteins certainly play a role in the processes undergoing within pituitary of CPHD patients. The identification and further detailed studies on their role in the pathogenesis of CPHD should be continued.
Collapse
|
15
|
Cheung PYP, Pfeffer SR. Transport Vesicle Tethering at the Trans Golgi Network: Coiled Coil Proteins in Action. Front Cell Dev Biol 2016; 4:18. [PMID: 27014693 PMCID: PMC4791371 DOI: 10.3389/fcell.2016.00018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network (TGN). How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress toward understanding these questions and remaining, unresolved mysteries will be discussed.
Collapse
Affiliation(s)
- Pak-Yan P Cheung
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
16
|
Gunkel M, Erfle H, Starkuviene V. High-Content Analysis of the Golgi Complex by Correlative Screening Microscopy. Methods Mol Biol 2016; 1496:111-21. [PMID: 27632005 DOI: 10.1007/978-1-4939-6463-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Golgi complex plays a central role in a number of diverse cellular processes, and numerous regulators that control these functions and/or morphology of the Golgi complex are known by now. Many of them were identified by large-scale experiments, such as RNAi-based screening. However, high-throughput experiments frequently provide only initial information that a particular protein might play a role in regulating structure and function of the Golgi complex. Multiple follow-up experiments are necessary to functionally characterize the selected hits. In order to speed up the discovery, we have established a system for correlative screening microscopy that combines rapid data collection and high-resolution imaging in one experiment. We describe here a combination of wide-field microscopy and dual-color direct stochastical optical reconstruction microscopy (dSTORM). We apply the technique to simultaneously capture and differentiate alterations of the cis- and trans-Golgi network when depleting several proteins in a singular and combinatorial manner.
Collapse
Affiliation(s)
- Manuel Gunkel
- BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Vytaute Starkuviene
- BioQuant, University of Heidelberg, 69120, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Joint Life Sciences Center, University of Vilnius, Vilnius, Lithuania
| |
Collapse
|
17
|
A Role of TMEM16E Carrying a Scrambling Domain in Sperm Motility. Mol Cell Biol 2015; 36:645-59. [PMID: 26667038 DOI: 10.1128/mcb.00919-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
Transmembrane protein 16E (TMEM16E) belongs to the TMEM16 family of proteins that have 10 transmembrane regions and appears to localize intracellularly. Although TMEM16E mutations cause bone fragility and muscular dystrophy in humans, its biochemical function is unknown. In the TMEM16 family, TMEM16A and -16B serve as Ca(2+)-dependent Cl(-) channels, while TMEM16C, -16D, -16F, -16G, and -16J support Ca(2+)-dependent phospholipid scrambling. Here, we show that TMEM16E carries a segment composed of 35 amino acids homologous to the scrambling domain in TMEM16F. When the corresponding segment of TMEM16A was replaced by this 35-amino-acid segment of TMEM16E, the chimeric molecule localized to the plasma membrane and supported Ca(2+)-dependent scrambling. We next established TMEM16E-deficient mice, which appeared to have normal skeletal muscle. However, fertility was decreased in the males. We found that TMEM16E was expressed in germ cells in early spermatogenesis and thereafter and localized to sperm tail. TMEM16E(-/-) sperm showed no apparent defect in morphology, beating, mitochondrial function, capacitation, or binding to zona pellucida. However, they showed reduced motility and inefficient fertilization of cumulus-free but zona-intact eggs in vitro. Our results suggest that TMEM16E may function as a phospholipid scramblase at inner membranes and that its defect affects sperm motility.
Collapse
|
18
|
Kakinuma T, Toh BH, Sentry JW. Human autoantibodies as reagents in biomedical research. Mod Rheumatol 2014; 13:15-21. [PMID: 24387111 DOI: 10.3109/s101650300002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Autoantibodies are typically associated with autoimmune diseases. In some instances the association of specific autoantibodies to a specific autoimmune disease have made their detection invaluable in clinical diagnosis. However, certain autoantibodies show no specific disease association and therefore have limited clinical utility. Nevertheless, autoantibodies are powerful tools for identification, characterization, and functional studies of their cognate antoantigens. In addition, the study of autoantibodies and their cognate autoantigens in human disease and in experimental animal models can provide valuable insight into disease mechanisms and the factors that ameliorate or reverse disease. This review will focus on three specific sets of autoantibodies, which were initially selected for investigation purely on the basis of their novel patterns of reactivity. These were observed when they were applied to a diagnostic HEp-2 test slide for antinuclear antibody detection by indirect immunofluorescence. The target autoantigens were identified as the trans-Golgi network protein GOLGA4 (Golgin 245 or p230), the early endosome antigen-1 (EEA1) and a yet to be identified and fully characterized phosphoepitope(s) restricted to chromosomal arms of condensed mitotic/meiotic chromosomes (MCA1). This laboratory has exploited sera which are reactive to these autoantigens for their identification and characterization, and in functional studies. This review highlights the uses of autoantibodies that may have limited diagnostic or prognostic utility, but are nonetheless novel reagents in the prosecution of molecular cell biology.
Collapse
Affiliation(s)
- T Kakinuma
- Department of Orthopaedic Surgery, Faculty of Medicine, Kyoto University , Kyoto , Japan
| | | | | |
Collapse
|
19
|
Okada M, Suzuki K, Miyamoto S, Shinohara T, Takada K, Sato K, Ishiyama N, Ohsuzu F. A case of rheumatoid arthritis that developed autoimmune hepatitis associated with anti-Golgi complex antibody. Mod Rheumatol 2014; 13:185-8. [DOI: 10.3109/s10165-002-0221-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Miyachi K, Iwai M, Asada K, Saito I, Hankins R, Mikoshiba K. Inositol 1,4,5-trisphosphate receptors are autoantibody target antigens in patients with Sjögren's syndrome and other systemic rheumatic diseases. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0555-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Dellavance A, Alvarenga RR, Rodrigues SH, Barbosa SH, Camilo ACP, Shiguedomi HSO, Rodrigues SS, Silva CG, Andrade LEC. Autoantibodies to 60kDa SS-A/Ro yield a specific nuclear myriad discrete fine speckled immunofluorescence pattern. J Immunol Methods 2013; 390:35-40. [DOI: 10.1016/j.jim.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
22
|
Fritzler MJ, Chan EKL. The Discovery of GW Bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:5-21. [DOI: 10.1007/978-1-4614-5107-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
F-actin modulates measles virus cell-cell fusion and assembly by altering the interaction between the matrix protein and the cytoplasmic tail of hemagglutinin. J Virol 2012; 87:1974-84. [PMID: 23221571 DOI: 10.1128/jvi.02371-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Actin filament (F-actin) is believed to be involved in measles virus (MV) assembly as a cellular factor, but the precise roles remain unknown. Here we show that Phe at position 50 of the MV matrix (M) protein is important for its association with F-actin, through which the function of the M protein is regulated. In plasmid-expressed or MV-infected cells, a coimmunoprecipitation study revealed that the wild-type M (M-WT) protein associated strongly with F-actin but only weakly with the cytoplasmic tail of the hemagglutinin (H) protein. Since the F50P mutation allowed the M protein the enhanced interaction with the H protein in return for the sharply declined association with F-actin, the mutant M (M-F50P) protein strongly inhibited MV cell-cell fusion and promoted the uptake of the H protein into virus particles. The abundantly incorporated H protein resulted in the increase in infectivity of the F50P virus, although the virus contained a level of genome RNA equal to that of the WT virus. When the structure of F-actin was disrupted with cytochalasin D, the M-WT protein liberated from F-actin interacted with the H protein as tightly as the M-F50P protein, suppressing cell-cell fusion and promoting virus assembly comparably efficiently as the M-F50P protein. The cell-cell fusion activity of the WT virus appeared to be upheld by F-actin, which prevents the M protein interaction with the H protein. Our results indicate that F-actin in association with the M protein alters the interaction between the M and H proteins, thereby modulating MV cell-cell fusion and assembly.
Collapse
|
24
|
Abstract
As plant Golgi bodies move through the cell along the actin cytoskeleton, they face the need to maintain their polarized stack structure whilst receiving, processing and distributing protein cargo destined for secretion. Structural proteins, or Golgi matrix proteins, help to hold cisternae together and tethering factors direct cargo carriers to the correct target membranes. This review focuses on golgins, a protein family containing long coiled-coil regions, summarizes their known functions in animal cells and highlights recent findings about plant golgins and their putative roles in the plant secretory pathway.
Collapse
Affiliation(s)
- A Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
25
|
|
26
|
Abstract
A number of long coiled-coil proteins are present on the Golgi. Often referred to as "golgins," they are well conserved in evolution and at least five are likely to have been present in the last common ancestor of all eukaryotes. Individual golgins are found in different parts of the Golgi stack, and they are typically anchored to the membrane at their carboxyl termini by a transmembrane domain or by binding a small GTPase. They appear to have roles in membrane traffic and Golgi structure, but their precise function is in most cases unclear. Many have binding sites for Rab family GTPases along their length, and this has led to the suggestion that the golgins act collectively to form a tentacular matrix that surrounds the Golgi to capture Rab-coated membranes in the vicinity of the stack. Such a collective role might explain the lack of cell lethality seen following loss of some of the genes in human familial conditions or mouse models.
Collapse
|
27
|
Simon M, Barberet P, Delville MH, Moretto P, Seznec H. Titanium dioxide nanoparticles induced intracellular calcium homeostasis modification in primary human keratinocytes. Towards anin vitroexplanation of titanium dioxide nanoparticles toxicity. Nanotoxicology 2010; 5:125-39. [DOI: 10.3109/17435390.2010.502979] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Lieu ZZ, Gleeson PA. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 2010; 89:379-93. [PMID: 20138391 DOI: 10.1016/j.ejcb.2009.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/22/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
The retrograde transport pathways from early/recycling endosomes are critical for recycling a range of endogenous cargo, as well as internalisation of bacterial and plant toxins. We have previously shown that the retrograde transport of the two model cargos, TGN38 and Shiga toxin, differs in the requirement for TGN golgins; transport of TGN38 requires the TGN golgin GCC88 whereas that of Shiga toxin requires GCC185. Here we have further defined the retrograde transport requirements of these two cargos. Tracking the transport of these cargos demonstrated that the bulk of Shiga toxin is transported from early endosomes to recycling endosomes en route to the TGN whereas the bulk of TGN38 is transported from early endosomes to the TGN with only low levels detected in recycling endosomes. In cells depleted of the TGN t-SNARE syntaxin 16, TGN38 accumulated predominantly in early endosomes whereas Shiga toxin accumulated in Rab11-positive recycling endosomes, suggesting distinct routes for each cargo. Retrograde transport of Shiga toxin and TGN38 requires retromer, however, whereas sorting nexin 1 (SNX1) is specifically required for transport of Shiga toxin, sorting nexin 2 (SNX2) is required for the transport of TGN38. Overall, our data have identified different itineraries for the retrograde transport of Shiga toxin and TGN38 and distinct retromer components that regulate the transport of these cargos.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
29
|
Pauley KM, Satoh M, Pauley BA, Dominguez-Gutierrez PR, Wallet SM, Holliday LS, Cha S, Reeves WH, Chan EKL. Formation of GW/P bodies as marker for microRNA-mediated regulation of innate immune signaling in THP-1 cells. Immunol Cell Biol 2009; 88:205-12. [PMID: 19918258 PMCID: PMC2824770 DOI: 10.1038/icb.2009.84] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GW bodies (GWB, or P bodies) are cytoplasmic foci thought to result from microRNA (miRNA) regulation of mRNA targets and subsequent mRNA degradation. The purpose of this study is to examine the effects of lipopolysaccharide (LPS) stimulation of human monocytes on GW body formation, miRNA induction, miRNA target regulation, and downstream cytokine and chemokine expression. In response to LPS stimulation, the number of GWB consistently increased by 2 fold at 8 hours after stimulation and this increase was abolished when the miRNA-effector proteins Rck/p54 or argonaute 2 (Ago2) were depleted. Since the level of miR-146a increased from 19 fold up to 100 fold during LPS stimulation, the transfection of a miR-146a-mimic into THP-1 cells was examined to determine whether miR-146a alone can induce similar changes in GWB. The results showed transfected miR-146a could produce a comparable increase in the number of GWB and this was accompanied by a reduction in major cytokines/chemokines induced by LPS. These data show that the increase in size and number of GWB may serve as a biomarker for miRNA mediated gene regulation, and miR-146a plays a significant role in the regulation of LPS-induced cytokine production in THP-1 cells.
Collapse
Affiliation(s)
- Kaleb M Pauley
- Department of Oral Biology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
31
|
Sztul E, Lupashin V. Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett 2009; 583:3770-83. [PMID: 19887069 DOI: 10.1016/j.febslet.2009.10.083] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 12/27/2022]
Abstract
Tethers are a diverse group of loosely related proteins and protein complexes grouped into three families based on structural and functional similarities. A well-accepted role for tethering factors is the initial attachment of transport carriers to acceptor membranes prior to fusion. However, accumulating evidence indicates that tethers are more than static bridges. Tethers have been shown to interact with components of the fusion machinery and with components involved in vesicle formation. Tethers belonging to the three families act at the same stage of traffic, suggesting that they mediate distinct events during vesicle tethering. Thus, multiple tether-facilitated events are required to provide selectivity to vesicle fusion. In this review, we highlight findings that support this model.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
32
|
The Localization of the Golgin GCC185 Is Independent of Rab6A/A' and Arl1. Cell 2009; 138:787-94. [DOI: 10.1016/j.cell.2009.05.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/14/2009] [Accepted: 05/26/2009] [Indexed: 12/21/2022]
|
33
|
Dellavance A, Gallindo C, Soares MG, da Silva NP, Mortara RA, Andrade LEC. Redefining the Scl-70 indirect immunofluorescence pattern: autoantibodies to DNA topoisomerase I yield a specific compound immunofluorescence pattern. Rheumatology (Oxford) 2009; 48:632-7. [PMID: 19395540 PMCID: PMC2681287 DOI: 10.1093/rheumatology/kep070] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objectives. To report on a novel IIF pattern specifically associated with antibodies to DNA topo I. Methods. A novel compound IF pattern, designated Scl-70 pattern, was characterized in routine ANA-HEp-2 IIF screening. Within the last 3 years, all serum samples presenting the Scl-70 pattern at the ANA-HEp2 IIF screening were tested for anti-topo I reactivity. Conversely, 16 serum samples with known anti-topo I reactivity and affinity-purified anti-topo I antibody preparations were tested for the Scl-70 pattern. Results. The Scl-70 pattern comprised the staining of five cellular regions: nucleus, nucleolus and cytoplasm in interphase cells; nucleolar organizing region (NOR) and chromosomes in mitotic cells. All 81 serum samples selected as Scl-70 pattern reacted with topo I. All 16 anti-topo I samples and antibody preparations reproduced the Scl-70 pattern. This compound IF pattern was consistently observed in different commercial HEp-2 cell slides and in home-made slides with HEp-2 cells and human fibroblasts fixed with alternative protocols. Double IIF experiments demonstrated the co-localization of topo I and human upstream binding factor at the NOR. Conclusions. The Scl-70 pattern belongs to the group of compound IF patterns that hold strong association with the respective autoantibody specificities, such as that observed with centromere protein F (CENP-F) and nuclear mitotic apparatus-1 (NuMA-1) protein. The identification of the Scl-70 pattern at routine ANA-HEp-2 IIF screening may lead to implementation of specific tests for the identification of anti-topo I antibodies. In addition, the Scl-70 pattern outlines cellular domains other than those previously reported for topo I, which is of interest for further understanding the roles of this enzyme in cell biology.
Collapse
|
34
|
Shen L, Suresh L, Li H, Zhang C, Kumar V, Pankewycz O, Ambrus JL. IL-14 alpha, the nexus for primary Sjögren's disease in mice and humans. Clin Immunol 2009; 130:304-12. [DOI: 10.1016/j.clim.2008.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 11/29/2022]
|
35
|
Milstein ML, Houle TD, Cala SE. Calsequestrin isoforms localize to different ER subcompartments: Evidence for polymer and heteropolymer-dependent localization. Exp Cell Res 2009; 315:523-34. [DOI: 10.1016/j.yexcr.2008.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 11/25/2022]
|
36
|
Bulosan M, Pauley K, Yo K, Chan EK, Katz J, Peck AB, Cha S. Inflammatory caspases are critical for enhanced cell death in the target tissue of Sjögren's syndrome before disease onset. Immunol Cell Biol 2009; 87:81-90. [PMID: 18936772 PMCID: PMC4476255 DOI: 10.1038/icb.2008.70] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To date, little is known about why exocrine glands are subject to immune cell infiltrations in Sjögren's syndrome (SjS). Studies with SjS-prone C57BL/6.NOD-Aec1Aec2 mice showed altered glandular homeostasis in the submandibular glands (SMX) at 8 weeks before disease onset and suggested the potential involvement of inflammatory caspases (caspase-11 and -1). To determine whether inflammatory caspases are critical for the increased epithelial cell death before SjS-like disease, we investigated molecular events involving caspase-11/caspase-1 axis. Our results revealed concurrent upregulation of caspase-11 in macrophages, STAT-1 activity, caspase-1 activity and apoptotic epithelial cells in the SMX of C57BL/6.NOD-Aec1Aec2 at 8 weeks. Caspase-1, a critical factor for interleukin (IL)-1beta and IL-18 secretion, resulted in an elevated level of IL-18 in saliva. Interestingly, TUNEL-positive cells in the SMX of C57BL/6.NOD-Aec1Aec2 were not colocalized with caspase-11, indicating that caspase-11 functions in a noncell autonomous manner. Increased apoptosis of a human salivary gland (HSG) cell line occurred only in the presence of lipopolysaccharide (LPS-) and interferon (IFN)-gamma-stimulated human monocytic THP-1 cells, which was reversed when caspase-1 in THP-1 cells was targeted by siRNA. Taken together, our study discovered that inflammatory caspases are essential in promoting a pro-inflammatory microenvironment and influencing increased epithelial cell death in the target tissues of SjS before disease onset.
Collapse
Affiliation(s)
- Marievic Bulosan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences (OMSDS), University of Florida College of Dentistry (UFCD)
| | - Kaleb Pauley
- Department of Oral Biology, University of Florida College of Dentistry (UFCD)
| | - Kyumee Yo
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences (OMSDS), University of Florida College of Dentistry (UFCD)
| | - Edward K. Chan
- Department of Oral Biology, University of Florida College of Dentistry (UFCD)
| | - Joseph Katz
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences (OMSDS), University of Florida College of Dentistry (UFCD)
| | - Ammon B. Peck
- Department of Oral Biology, University of Florida College of Dentistry (UFCD)
- Department of Pathology, University of Florida College of Dentistry (UFCD)
| | - Seunghee Cha
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences (OMSDS), University of Florida College of Dentistry (UFCD)
- Department of Oral Biology, University of Florida College of Dentistry (UFCD)
| |
Collapse
|
37
|
Co-clustering of Golgi complex and other cytoplasmic organelles to crescentic region of half-moon nuclei during apoptosis. Cell Biol Int 2008; 33:148-57. [PMID: 19000931 DOI: 10.1016/j.cellbi.2008.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/19/2008] [Accepted: 10/13/2008] [Indexed: 01/13/2023]
Abstract
Early apoptosis is defined by stereotypic morphological changes, especially evident in the nucleus, where chromatin condenses and compacts, and assumes a globular, half-moon or crescent-shaped morphology. Accumulating evidence suggests that cytoplasmic organelles such as mitochondria and the Golgi complex are major sites of integration of pro-apoptotic signaling. In this study, cytoplasmic organelles including Golgi complex, mitochondria, endosomes, lysosomes, and peroxisomes were shown to condense at the same unique region adjacent to the crescentic nucleus during a relatively early stage of apoptosis induced by staurosporine or other agents. The co-clustering phenomenon may be caused by shrinkage of cytoplasm during apoptosis although cytoskeletal markers actin and tubulin were not condensed and appeared excluded. These data suggest the co-clustering of cytoplasmic organelles plays an interesting role during the progression of the apoptotic process. It is possible that modification of pro-apoptotic proteins may arise as a result of the interplay of these cytoplasmic organelles.
Collapse
|
38
|
Abstract
RKTG (Raf kinase trapping to Golgi) is exclusively localized at the Golgi apparatus and functions as a spatial regulator of Raf-1 kinase by sequestrating Raf-1 to the Golgi. Based on the structural similarity with adiponectin receptors, RKTG was predicted to be a seven-transmembrane protein with a cytosolic N-terminus, distinct from classical GPCRs (G-protein-coupled receptors). We analysed in detail the topology and functional domains of RKTG in this study. We determined that the N-terminus of RKTG is localized on the cytosolic side. Two short stretches of amino acid sequences at the membrane proximal to the N- and C-termini (amino acids 61-71 and 299-303 respectively) were indispensable for Golgi localization of RKTG, but were not required for the interaction with Raf-1. The three loops facing the cytosol between the transmembrane domains had different roles in Golgi localization and Raf-1 interaction. While the first cytosolic loop was only important for Golgi localization, the third cytosolic loop was necessary for both Golgi localization and Raf-1 sequestration. Taken together, these findings suggest that RKTG is a type III membrane protein with its N-terminus facing the cytosol and multiple sequences are responsible for its localization at the Golgi apparatus and Raf-1 interaction. As RKTG is the first discovered Golgi protein with seven transmembrane domains, the knowledge derived from this study would not only provide structural information about the protein, but also pave the way for future characterization of the unique functions of RKTG in the regulation of cell signalling.
Collapse
|
39
|
Candela P, Gosselet F, Miller F, Buee-Scherrer V, Torpier G, Cecchelli R, Fenart L. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2008; 15:254-64. [PMID: 19065317 DOI: 10.1080/10623320802487759] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although an immense knowledge has accumulated concerning regulation of cholesterol homeostasis in the body, this does not include the brain, where details are just emerging. Using an in vitro blood-brain barrier model, the authors have demonstrated that low-density lipoprotein (LDL) underwent transcytosis through the endothelial cells (ECs) by a receptor-mediated process, bypassing the lysosomal compartment. Moreover, caveolae might be involved in these blood-borne molecule transports from the blood to the brain. Although several ligands are known to be internalized through cell surface caveolae, the subsequent intracellular pathways have remained elusive. By cell fractionation experiment and Western blot, the authors have demonstrated that the LDL receptor is located in the caveolae membrane fraction. Then, LDLs internalized were detected by electron microscopy in multivesicular bodies. The authors identified in brain capillary ECs a novel endosomal compartment, mildly acidic, positive for marker Lamp-1 but devoid of any degradative capability. From the point of view of pH, cellular location, and caveolae-derived formation, the multivesicular organelles described here can be related to the caveosome structure. These results could provide clues to physiological functions of caveolae-caveosome transcellular pathway in brain capillary ECs and may help in the rational design of more effective therapeutic drugs to the brain.
Collapse
Affiliation(s)
- Pietra Candela
- Faculté des Sciences Jean Perrin, Laboratoire de Physiopathologie de la BHE, Lens Cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, von Aulock S, Hartung T, Lien E, Bakke O, Espevik T. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol 2008; 84:280-91. [PMID: 18458151 DOI: 10.1189/jlb.0907656] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lipoteichoic acid (LTA) is a central inducer of inflammatory responses caused by Gram-positive bacteria, such as Staphylococcus aureus, via activation of TLR2. Localization of TLR2 in relation to its coreceptors may be important for function. This study explores the signaling, uptake, and trafficking pattern of LTA in relation to expression of TLR2 and its coreceptors CD36 and CD14 in human monocytes. We found TLR2 expressed in early endosomes, late endosomes/lysosomes, and in Rab-11-positive compartments but not in the Golgi apparatus or endoplasmic reticulum (ER). Rapid internalization of fluorescently labeled LTA was observed in human monocytes, colocalizing with markers for early and late endosomes, lysosomes, ER, and Golgi network. Blocking CD14 and CD36 with antibodies inhibited LTA binding and LTA-induced TNF release from monocytes, emphasizing an important role for both molecules as coreceptors for TLR2. Importantly, blocking CD36 did not affect TNF release induced by N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2R,S)-propyl]-(R)-cysteinyl-seryl-(lysyl)3-lysine or LPS. Expression of CD14 markedly enhanced LTA binding to the plasma membrane and also enhanced NF-kappaB activation. LTA internalization, but not NF-kappaB activation, was inhibited in Dynamin-I K44A dominant-negative transfectants, suggesting that LTA is internalized by receptor-mediated endocytosis but that internalization is not required for signaling. In fact, immobilizing LTA and thereby inhibiting internalization resulted in enhanced TNF release from monocytes. Our results suggest that LTA signaling preferentially occurs at the plasma membrane, is independent of internalization, and is facilitated by CD36 and CD14 as coreceptors for TLR2.
Collapse
Affiliation(s)
- Nadra J Nilsen
- Norwegian University of Science and Technology, Institute of Cancer Research and Molecular Medicine, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A trans-Golgi network golgin is required for the regulated secretion of TNF in activated macrophages in vivo. Proc Natl Acad Sci U S A 2008; 105:3351-6. [PMID: 18308930 DOI: 10.1073/pnas.0800137105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane precursor of tumor necrosis factor-alpha (TNF) exits the trans-Golgi network (TGN) in tubular carriers for subsequent trafficking and delivery to the cell surface; however, the molecular machinery responsible for Golgi export is unknown. We previously reported that members of the TGN golgin family are associated with subdomains and tubules of the TGN. Here, we show that the TGN golgin, p230/golgin-245 (p230), is essential for intracellular trafficking and cell surface delivery of TNF in transfected HeLa cells and activated macrophages. Live-cell imaging revealed that TNF transport from the TGN is mediated selectively by tubules and carriers marked by p230. Significantly, LPS activation of macrophages resulted in a dramatic increase of p230-labeled tubules and carriers emerging from the TGN, indicating that macrophages up-regulate the transport pathway for TNF export. Depletion of p230 in LPS-stimulated macrophages reduced cell surface delivery of TNF by >10-fold compared with control cells. To determine whether p230 depletion blocked TNF secretion in vivo, we generated retrogenic mice expressing a microRNA-vector to silence p230. Bone-marrow stem cells were transduced with recombinant retrovirus containing microRNA constructs and transplanted into irradiated recipients. LPS-activated peritoneal macrophages from p230 miRNA retrogenic mice were depleted of p230 and had dramatically reduced levels of cell surface TNF. Overall, these studies have identified p230 as a key regulator of TNF secretion and have shown that LPS activation of macrophages results in increased Golgi carriers for export. Also, we have demonstrated a previously undescribed approach to control cytokine secretion by the specific silencing of trafficking machinery.
Collapse
|
42
|
Williams PH, Cobb BL, Namjou B, Scofield RH, Sawalha AH, Harley JB. Horizons in Sjögren's syndrome genetics. Clin Rev Allergy Immunol 2008; 32:201-9. [PMID: 17963047 DOI: 10.1007/s12016-007-8002-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sjögren's syndrome (SS) is a complex polygenic autoimmune disorder. A few major genetic effects have been identified. Historically, HLA and non-HLA genetic associations have been reported. Recently, the HLA region continued to reveal association findings. A new susceptibility region has been suggested by a study of a D6S349 microsatellite marker. Among non-HLA studies, recent association of immunoglobulin kappa chain allotype KM1 with anti-La autoantibodies in primary Sjögren's syndrome confirms findings in a study from two decades ago. Meanwhile, mouse models have been employed to study the genetic contribution to salivary lymphadenitis or dry eyes and mouth. Gene transfer exploration in mouse models shows promise. The authors review the HLA and non-HLA association studies and the mouse model work that has been reported. Newly developed genomic capacity will provide, in the future, a much closer approximation of the true picture of the genetic architecture of Sjögren's syndrome.
Collapse
Affiliation(s)
- Pamela H Williams
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA. The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 2007; 18:4979-91. [PMID: 17914056 PMCID: PMC2096601 DOI: 10.1091/mbc.e07-06-0622] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Merran C. Derby
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Hart
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Priscilla Gunn
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Paul A. Gleeson
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| |
Collapse
|
44
|
|
45
|
Endocytosis of pulchellin and its recombinant B-chain into K-562 cells: binding and uptake studies. Biochim Biophys Acta Gen Subj 2007; 1770:1660-6. [PMID: 17920772 DOI: 10.1016/j.bbagen.2007.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/10/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
Most of the type 2 ribosome-inactivating proteins (RIPs) are toxins formed by an RNA-N-glycosidase A-chain polypeptide linked to a lectin B-chain by a single disulfide bond. Members of this protein class vary greatly in cytotoxity, correlating more with B-chain diversity rather than to A-chain differences. Pulchellin is a type 2 ribosome-inactivating protein toxin found in the seeds of Abrus pulchellus tenuiflorus. Recombinant pulchellin B-Chain (rPBC) has been previously produced as inclusion bodies in Escherichia coli and successfully refolded recovering biological activity. New approaches for using this kind of protein as a biotechnological tool require a better understanding of cell targeting, binding, uptake, intracellular routing and delivery. In this work, cell adhesion experiments were used to determine the interaction of rPBC with mammalian cells. Fluorescence and confocal microscopy revealed the intracellular localization and trafficking. Subcellular sorting of the native pulchellin could also be determined. The results support that the endosomal internalization pathway and the retrograde transport through the Golgi apparatus might be used by both native protein and rPBC.
Collapse
|
46
|
Abstract
The membrane glycoproteins (Gn and Gc) of viruses in the family Bunyaviridae form projections on the virion envelope and are involved in virus entry and eliciting protective immunity. The glycoproteins are modified by N-linked glycosylation and accumulate in the Golgi complex where virions mature and bud. In this chapter, we describe the methods that have been used in our laboratory for the study of the glycoproteins of Bunyamwera virus, the prototype of the family. The protocols cover the expression of viral glycoproteins, examination of intracellular localization by immnunofluorescent confocal microscopy, radiolabeling, immunoprecipitation, and SDS-PAGE analysis of the proteins, and the improved reverse genetic system to rescue recombinant viruses that contain mutations at N-linked glycosylation sites.
Collapse
Affiliation(s)
- Xiaohong Shi
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, UK
| | | |
Collapse
|
47
|
Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA. The trans-Golgi Network Golgin, GCC185, is Required for Endosome-to-Golgi Transport and Maintenance of Golgi Structure. Traffic 2007; 8:758-73. [PMID: 17488291 DOI: 10.1111/j.1600-0854.2007.00563.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four mammalian golgins are specifically targeted to the trans-Golgi network (TGN) membranes via their C-terminal GRIP domains. The TGN golgins, p230/golgin-245 and golgin-97, are recruited via the GTPase Arl1, whereas the TGN golgin GCC185 is recruited independently of Arl1. Here we show that GCC185 is localized to a region of the TGN distinct from Arl1 and plays an essential role in maintaining the organization of the Golgi apparatus. Using both small interfering RNA (siRNA) and microRNA (miRNA), we show that depletion of GCC185 in HeLa cells frequently resulted in fragmentation of the Golgi apparatus. Golgi apparatus fragments were dispersed throughout the cytoplasm and contained both cis and trans markers. Trafficking of anterograde and retrograde cargo was analysed over an extended period following GCC185 depletion. Early effects of GCC185 depletion included a perturbation in the distribution of the mannose-6-phosphate receptor and a block in shiga toxin trafficking to the Golgi apparatus, which occurred in parallel with the fragmentation of the Golgi ribbon. Internalized shiga toxin accumulated in Rab11-positive endosomes, indicating GCC185 is essential for transport between the recycling endosome and the TGN. In contrast, the plasma membrane-TGN recycling protein TGN38 was efficiently transported into GCC185-depleted Golgi apparatus fragments throughout a 96-h period, and anterograde transport of E-cadherin was functional until a late stage of GCC185 depletion. This study demonstrated (i) a more effective long-term depletion of GCC185 using miRNA than siRNA and (ii) a dual role for the GCC185 golgin in the regulation of endosome-to-TGN membrane transport and in the organization of the Golgi apparatus.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia, and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Miyachi K, Iwai M, Asada K, Saito I, Hankins R, Mikoshiba K. Inositol 1,4,5-trisphosphate receptors are autoantibody target antigens in patients with Sjögren's syndrome and other systemic rheumatic diseases. Mod Rheumatol 2007; 17:137-43. [PMID: 17437169 DOI: 10.1007/s10165-006-0555-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
IP(3)R2 and IP(3)R3 double knock-out mice present with exocrine dysfunctions such as secretion deficits of saliva and pancreatic juice. Therefore, we investigated whether the presence of antibodies to IP(3)Rs could be found in patients with Sjögren's syndrome, and the location of the epitopes. Subjects included 35 primary Sjögren's syndrome, 39 secondary Sjögren's syndrome, 144 rheumatoid arthritis, and 96 other connective tissue disease patients. As controls, 33 healthy subjects were included. Immunoblot was conducted using recombinant proteins IP(3)R1, IP(3)R2, and IP(3)R3 made from full-length cDNA, and core, T604, and EL for epitope mapping. Antibodies to IP(3)R1 in sera from patients with primary Sjögren's syndrome, secondary Sjögren's syndrome, and rheumatoid arthritis were found to be positive in 17 of 35 (48.6%), 13 of 39 (33%), and 34 of 124 (27.4%) cases, respectively. These frequencies were significantly higher than the 1 of 33 (3.0%) found in normal healthy subjects. The frequency of anti-IP(3)R2 antibodies in rheumatoid arthritis was found to be higher than those found in Sjögren's syndrome, systemic lupus erythematosus, and systemic sclerosis. Anti-IP(3)R2 antibodies found in rheumatoid arthritis primarily recognized residues 578-2171 of the internal coupling and regulatory domain. On the other hand, anti-IP(3)R1 found in Sjögren's syndrome recognized residues 224-604 of the core protein IP(3)R1. Anti-IP(3)R1 antibodies were present in 48.6% of primary Sjögren's syndrome and in 3.0% of normal healthy subjects. Anti-IP(3)R2 antibodies were detected most frequently in rheumatoid arthritis. Locations of the antigenic epitopes were found to differ among the disease conditions.
Collapse
Affiliation(s)
- Kiyomitsu Miyachi
- Health Sciences Research Institute, 106 Godo-cho, Hodogaya-ku, Yokohama, 240-0005 Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
50
|
Stea EA, Routsias JG, Samiotaki M, Panayotou G, Papalambros E, Moutsopoulos HM, Tzioufas AG. Analysis of parotid glands of primary Sjögren's syndrome patients using proteomic technology reveals altered autoantigen composition and novel antigenic targets. Clin Exp Immunol 2007; 147:81-9. [PMID: 17177966 PMCID: PMC1810445 DOI: 10.1111/j.1365-2249.2006.03262.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2006] [Indexed: 11/29/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration, destruction of the salivary and lacrimal glands and production of autoantibodies against a variety of cellular proteins. The aberrant immune response against these autoantigens may begin or extend to other proteins that are not yet defined. Several studies have shown that autoantibody production is taking place in the affected salivary glands. In the present study, using proteomic approaches, we aimed to: (a) identify new autoantigens in the salivary glands of primary SS (pSS) patients and (b) evaluate the epigenetic changes of known autoantigens. Total parotid gland extracts of pSS patients were analysed using two-dimensional gel electrophoresis, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot with pSS patients' sera or purified autoantibodies and immunoprecipitation using homologous IgG. Identification of the unknown proteins was performed using mass spectrometry (MS). Immunoblot analysis on two-dimensional gels using purified anti-La/SSB antibodies revealed that pSS salivary glands contain high levels of post-translationally modified La/SSB autoantigen, while the native form of the protein is recognized faintly, in contrast to normal controls. Moreover, salivary glands of pSS patients contain post-translationally modified actin that becomes immunogenic in the microenviroment of the affected tissue. The alteration of the physicochemical properties of self-proteins could thus contribute to the break of immune tolerance against them.
Collapse
Affiliation(s)
- E A Stea
- Department of Pathophysiology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|