1
|
Panichi V, Costantini S, Grasso M, Arciola CR, Dolzani P. Innate Immunity and Synovitis: Key Players in Osteoarthritis Progression. Int J Mol Sci 2024; 25:12082. [PMID: 39596150 PMCID: PMC11594236 DOI: 10.3390/ijms252212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive disease of the joint. Although representing the most frequent cause of disability in the elderly, OA remains partly obscure in its pathogenic mechanisms and is still the orphan of resolutive therapies. The concept of what was once considered a "wear and tear" of articular cartilage is now that of an inflammation-related disease that affects over time the whole joint. The attention is increasingly focused on the synovium. Even from the earliest clinical stages, synovial inflammation (or synovitis) is a crucial factor involved in OA progression and a major player in pain onset. The release of inflammatory molecules in the synovium mediates disease progression and worsening of clinical features. The activation of synovial tissue-resident cells recalls innate immunity cells from the bloodstream, creating a proinflammatory milieu that fuels and maintains a damaging condition of low-grade inflammation in the joint. In such a context, cellular and molecular inflammatory behaviors in the synovium could be the primum movens of the structural and functional alterations of the whole joint. This paper focuses on and discusses the involvement of innate immunity cells in synovitis and their role in the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Costantini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Merimma Grasso
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Carla Renata Arciola
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
2
|
Controlling Macrophage Polarization to Modulate Inflammatory Cues Using Immune-Switch Nanoparticles. Int J Mol Sci 2022; 23:ijms232315125. [PMID: 36499452 PMCID: PMC9739781 DOI: 10.3390/ijms232315125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The persistence of inflammatory mediators in tissue niches significantly impacts regenerative outcomes and contributes to chronic diseases. Interleukin-4 (IL4) boosts pro-healing phenotypes in macrophages (Mφ) and triggers the activation of signal transducer and activator of transcription 6 (STAT6). Since the IL4/STAT6 pathway reduces Mφ responsiveness to inflammation in a targeted and precise manner, IL4 delivery offers personalized possibilities to overcome inflammatory events. Despite its therapeutic potential, the limited success of IL4-targeted delivery is hampered by inefficient vehicles. Magnetically assisted technologies offer precise and tunable nanodevices for the delivery of cytokines by combining contactless modulation, high tissue penetration, imaging features, and low interference with the biological environment. Although superparamagnetic iron oxide nanoparticles (SPION) have shown clinical applicability in imaging, SPION-based approaches have rarely been explored for targeted delivery and cell programming. Herein, we hypothesized that SPION-based carriers assist in efficient IL4 delivery to Mφ, favoring a pro-regenerative phenotype (M2φ). Our results confirmed the efficiency of SPION-IL4 and Mφ responsiveness to SPION-IL4 with evidence of STAT6-mediated polarization. SPION-IL4-treated Mφ showed increased expression of M2φ associated-mediators (IL10, ARG1, CCL2, IL1Ra) when compared to the well-established soluble IL4. The ability of SPION-IL4 to direct Mφ polarization using sophisticated magnetic nanotools is valuable for resolving inflammation and assisting innovative strategies for chronic inflammatory conditions.
Collapse
|
3
|
Jaggi U, Matundan HH, Lee DH, Ghiasi H. Blocking Autophagy in M1 Macrophages Enhances Virus Replication and Eye Disease in Ocularly Infected Transgenic Mice. J Virol 2022; 96:e0140122. [PMID: 36286481 PMCID: PMC9645210 DOI: 10.1128/jvi.01401-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are one of the first innate immune infiltrates in the cornea of mice following ocular infection with herpes simplex virus 1 (HSV-1). Using gamma interferon (IFN-γ) and interleukin-4 (IL-4) injections to polarize macrophages into M1 and M2, respectively, and in M1 and M2 conditional knockout mice, we have shown that M1 macrophages play an important role in suppressing both virus replication in the eye and eye disease in HSV-1-infected mice. Autophagy is also important in controlling HSV infection and integrity of infected cells. To determine if blocking autophagy in M1 and M2 macrophages affects HSV-1 infectivity and eye disease, we generated two transgenic mouse strains expressing the HSV-1 γ34.5 autophagy gene under the M1 promoter (M1-γ34.5) or the M2 promoter (M2-γ34.5). We found that blocking autophagy in M1 macrophages increased both virus replication in the eyes and eye disease in comparison to blocking autophagy in M2 macrophages or wild-type (WT) control mice, but blocked autophagy did not affect latency-reactivation. However, blocking autophagy affected fertility in both M1 and M2 transgenic mice. Analysis of 62 autophagy genes and 32 cytokines/chemokines from infected bone marrow-derived macrophages from M1-γ34.5, M2-γ34.5, and WT mice suggested that upregulation of autophagy-blocking genes (i.e., Hif1a, Mtmr14, mTOR, Mtmr3, Stk11, and ULK2) and the inflammatory tumor necrosis factor alpha (TNF-α) gene in M1-γ34.5 transgenic mice correlated with increased pathogenicity, while upregulation of proautophagy genes (Nrbf2 and Rb1cc1) in M2-γ34.5 macrophages correlated with reduced pathogenicity. The in vivo and in vitro responses of M1-γ34.5 and M2-γ34.5 transgenic mice to HSV-1 infection were independent of the presence of the γ34.5 gene in wild-type HSV-1. Our results suggest that M1 macrophages, but not M2 macrophages, play an important role in autophagy relative to primary virus replication in the eye and eye disease in infected mice. IMPORTANCE Autophagy plays a critical role in clearing, disassembling, and recycling damaged cells, thus limiting inflammation. The HSV-1 γ34.5 gene is involved in neurovirulence and immune evasion by blocking autophagy in infected cells. We found that blocking autophagy in M1 macrophages enhances HSV-1 virus replication in the eye and eye disease in ocularly infected transgenic mice. Our results also show the suppressive effects of γ34.5 on immune responses to infection, suggesting the importance of intact autophagy in M1 but not M2 macrophages in controlling primary infection and eye disease.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Dhong Hyun Lee
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
4
|
Inflammatory Arthritis and Bone Metabolism Regulated by Type 2 Innate and Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23031104. [PMID: 35163028 PMCID: PMC8834748 DOI: 10.3390/ijms23031104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
While type 2 immunity has traditionally been associated with the control of parasitic infections and allergic reactions, increasing evidence suggests that type 2 immunity exerts regulatory functions on inflammatory diseases such as arthritis, and also on bone homeostasis. This review summarizes the current evidence of the regulatory role of type 2 immunity in arthritis and bone. Key type 2 cytokines, like interleukin (IL)-4 and IL-13, but also others such as IL-5, IL-9, IL-25, and IL-33, exert regulatory properties on arthritis, dampening inflammation and inducing resolution of joint swelling. Furthermore, these cytokines share anti-osteoclastogenic properties and thereby reduce bone resorption and protect bone. Cellular effectors of this action are both T cells (i.e., Th2 and Th9 cells), but also non-T cells, like type 2 innate lymphoid cells (ILC2). Key regulatory actions mediated by type 2 cytokines and immune cells on both inflammation as well as bone homeostasis are discussed.
Collapse
|
5
|
Iwaszko M, Biały S, Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021; 10:cells10113000. [PMID: 34831223 PMCID: PMC8616130 DOI: 10.3390/cells10113000] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-4 and IL-13 belong to the T helper 2 (Th2) cytokine family, along with IL-3, IL-5, and IL-9. These cytokines are key mediators of allergic inflammation. They have important immunomodulatory activities and exert influence on a wide variety of immune cells, such as B cells, eosinophils, basophils, monocytes, fibroblasts, endothelial cells, airway epithelial cells, smooth muscle cells, and keratinocytes. Recent studies have implicated IL-4 and IL-13 in the development of various autoimmune diseases. Additionally, these cytokines have emerged as potential players in pathogenesis of inflammatory arthritis. Recent findings suggest that the IL-4 and IL-13 might play a significant role in the downregulation of inflammatory processes underlying RA pathology, and beneficially modulate the course of the disease. This review summarizes the biological features of the IL-4 and IL-13 and provides current knowledge regarding the role of these cytokines in inflammatory arthritis.
Collapse
|
6
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ameliorated Autoimmune Arthritis and Impaired B Cell Receptor-Mediated Ca 2+ Influx in Nkx2-3 Knock-out Mice. Int J Mol Sci 2020; 21:ijms21176162. [PMID: 32859051 PMCID: PMC7503974 DOI: 10.3390/ijms21176162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
B cells play a crucial role in the pathogenesis of rheumatoid arthritis. In Nkx2-3-deficient mice (Nkx2-3−/−) the spleen’s histological structure is fundamentally changed; therefore, B cell homeostasis is seriously disturbed. Based on this, we were curious, whether autoimmune arthritis could be induced in Nkx2-3−/− mice and how B cell activation and function were affected. We induced arthritis with immunization of recombinant human proteoglycan aggrecan G1 domain in Nkx2-3−/− and control BALB/c mice. We followed the clinical picture, characterized the radiological changes, the immune response, and intracellular Ca2+ signaling of B cells. Incidence of the autoimmune arthritis was lower, and the disease severity was milder in Nkx2-3−/− mice than in control BALB/c mice. The radiological changes were in line with the clinical picture. In Nkx2-3−/− mice, we measured decreased antigen-induced proliferation and cytokine production in spleen cell cultures; in the sera, we found less anti-CCP-IgG2a, IL-17 and IFNγ, but more IL-1β, IL-4 and IL-6. B cells isolated from the lymph nodes of Nkx2-3−/− mice showed decreased intracellular Ca2+ signaling compared to those isolated from BALB/c mice. Our findings show that the transcription factor Nkx2-3 might regulate the development of autoimmune arthritis most likely through modifying B cell activation.
Collapse
|
8
|
IL-4 controls activated neutrophil FcγR2b expression and migration into inflamed joints. Proc Natl Acad Sci U S A 2020; 117:3103-3113. [PMID: 31980518 PMCID: PMC7022208 DOI: 10.1073/pnas.1914186117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are the most abundant immune cells found in actively inflamed joints of patients with rheumatoid arthritis (RA), and most animal models for RA depend on neutrophils for the induction of joint inflammation. Exogenous IL-4 and IL-13 protect mice from antibody-mediated joint inflammation, although the mechanism is not understood. Neutrophils display a very strong basal expression of STAT6, which is responsible for signaling following exposure to IL-4 and IL-13. Still, the role of IL-4 and IL-13 in neutrophil biology has not been well studied. This can be explained by the low neutrophil surface expression of the IL-4 receptor α-chain (IL-4Rα), essential for IL-4- and IL-13-induced STAT6 signaling. Here we identify that colony stimulating factor 3 (CSF3), released during acute inflammation, mediates potent STAT3-dependent neutrophil IL-4Rα up-regulation during sterile inflammatory conditions. We further demonstrate that IL-4 limits neutrophil migration to inflamed joints, and that CSF3 combined with IL-4 or IL-13 results in a prominent neutrophil up-regulation of the inhibitory Fcγ receptor (FcγR2b). Taking these data together, we demonstrate that the IL-4 and CSF3 pathways are linked and play important roles in regulating proinflammatory neutrophil behavior.
Collapse
|
9
|
Neutrophils, monocytes and other immune components in the equine endometrium: Friends or foes? Theriogenology 2020; 150:150-157. [PMID: 31973963 DOI: 10.1016/j.theriogenology.2020.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
The innate and adaptive immune mechanisms are key components of regulation of reproductive physiological function and uterine disorders in equine uterus. The predominant immunological response in equine endometrium, characterized by an innate immune response, occurs under estrogens influence, in the follicular phase. Although, the increase in immune-related genes in equine endometrium during estrus has been suggested to play a role in uterine clearance after mating, immune cells and their product, i.e. cytokines play also mandatory role in the luteal development and maintenance, regression of equine corpus luteum, as well as in early pregnancy. Innate immune response is nonspecific and acts as the first line of defense against pathogens, foreign stimuli that include constituents of seminal fluid and local infections (endometritis). It has been recently established that a phagocytosis-independent mechanism to restrain bacteria, by means of neutrophil extracellular traps (NETs) formation, is involved in pathogenesis of in mare endometrial fibrosis (endometrosis). Moreover, persistent macrophages and mast cell activation could also have pro-fibrotic roles by secreting great amounts of pro-fibrotic factors and lead to fibrosis. This review will highlight the involvement of immune key components of the innate and adaptive immune system and their products in equine uterus and their contribution to reproductive physiological function and uterine disorders.
Collapse
|
10
|
Egholm C, Heeb LEM, Impellizzieri D, Boyman O. The Regulatory Effects of Interleukin-4 Receptor Signaling on Neutrophils in Type 2 Immune Responses. Front Immunol 2019; 10:2507. [PMID: 31708926 PMCID: PMC6821784 DOI: 10.3389/fimmu.2019.02507] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4 (IL-4) receptor (IL-4R) signaling plays a pivotal role in type 2 immune responses. Type 2 immunity ensures several host-protective processes such as defense against helminth parasites and wound repair, however, type 2 immune responses also drive the pathogenesis of allergic diseases. Neutrophil granulocytes (neutrophils) have not traditionally been considered a part of type 2 immunity. While neutrophils might be beneficial in initiating a type 2 immune response, their involvement and activation is rather unwanted at later stages. This is evidenced by examples of type 2 immune responses where increased neutrophil responses are able to enhance immunity, however, at the cost of increased tissue damage. Recent studies have linked the type 2 cytokines IL-4 and IL-13 and their signaling via type I and type II IL-4Rs on neutrophils to inhibition of several neutrophil effector functions. This mechanism directly curtails neutrophil chemotaxis toward potent intermediary chemoattractants, inhibits the formation of neutrophil extracellular traps, and antagonizes the effects of granulocyte colony-stimulating factor on neutrophils. These effects are observed in both mouse and human neutrophils. Thus, we propose for type 2 immune responses that neutrophils are, as in other immune responses, the first non-resident cells to arrive at a site of inflammation or infection, thereby guiding and attracting other innate and adaptive immune cells; however, as soon as the type 2 cytokines IL-4 and IL-13 predominate, neutrophil recruitment, chemotaxis, and effector functions are rapidly shut off by IL-4/IL-13-mediated IL-4R signaling in neutrophils to prevent them from damaging healthy tissues. Insight into this neutrophil checkpoint pathway will help understand regulation of neutrophilic type 2 inflammation and guide the design of targeted therapeutic approaches for modulating neutrophils during inflammation and neutropenia.
Collapse
Affiliation(s)
- Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas E M Heeb
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Combination Therapy of Mesenchymal Stromal Cells and Interleukin-4 Attenuates Rheumatoid Arthritis in a Collagen-Induced Murine Model. Cells 2019; 8:cells8080823. [PMID: 31382595 PMCID: PMC6721641 DOI: 10.3390/cells8080823] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a disease of the joints that causes decreased quality of life. Mesenchymal stromal cells (MSCs) have immunosuppressive properties, with possible use in the treatment of RA. Similarly, interleukin (IL)-4 has been shown as a potential RA treatment. However, their combination has not been explored before. Therefore, this study aimed to investigate the effect of a combination therapy of MSCs and IL-4 in the treatment of RA, using a murine collagen-induced arthritis (CIA) model. Arthritis was induced in Balb/c mice by two intradermal injections of type II collagen (CII), at days 0 and 21. CIA mice were randomly assigned to four groups; group I received an intravenous injection of mouse bone marrow-derived MSCs, while group II received an intraperitoneal injection of IL-4. Group III received a combined treatment of MSC and IL-4, while group IV served as a CIA diseased control group receiving phosphate buffer saline (PBS). A fifth group of healthy mice served as the normal healthy control. To assess changes induced by different treatments, levels of RA-associated inflammatory cytokines and biomarkers were measured in the serum, knee joints, and synovial tissue, using ELISA and Real Time-qPCR. Histopathological features of knee joints were analyzed for all groups. Results showed that combined MSC and IL-4 treatment alleviated signs of synovitis in CIA mice, reverting to the values of healthy controls. This was evident by the decrease in the levels of rheumatic factor (RF), C-reactive protein (CRP) and anti-nuclear antibodies (ANA) by 64, 80, and 71%, respectively, compared to the diseased group. Moreover, tumor necrosis factor-alpha (TNF- α) and monocyte chemoattractant protein-1 (MCP-1) levels decreased by 63 and 68%, respectively. Similarly, our gene expression data showed improvement in mice receiving combined therapy compared to other groups receiving single treatment, where cartilage oligomeric matrix protein (Comp), tissue inhibitor metalloproteinase-1 (Timp1), matrix metalloproteinase1 (Mmp-1), and IL-1 receptor (Il-1r) gene expression levels decreased by 75, 70, and 78%, respectively. Collectively, treatment with a combined therapy of MSC and IL-4 might have an efficient therapeutic effect on arthritis. Thus, further studies are needed to assess the potential of different MSC populations in conjugation with IL-4 in the treatment of experimental arthritis.
Collapse
|
12
|
Lee DH, Jaggi U, Ghiasi H. CCR2+ migratory macrophages with M1 status are the early-responders in the cornea of HSV-1 infected mice. PLoS One 2019; 14:e0215727. [PMID: 30998796 PMCID: PMC6472814 DOI: 10.1371/journal.pone.0215727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Complex interactions between HSV-1 and infiltrating immune cells play important roles in establishing localized, acute virus replication as well as chronic latent infection. The extent and duration of initial virus replication are the key determinants of subsequent pathologic inflammatory responses and therefore, the accumulation of immune cell populations at this time point is a key target for prevention. Therefore, we evaluated the role of various immune cell infiltrates between 1 h and 28 days post-infection (PI) using mice infected with virulent HSV-1 strain McKrae without corneal scarification. The effect of corneal scarification on immune cell infiltrates was also determined. We first determined the activation status and origin of macrophage infiltrates as early as 1 h PI. We found a sharp increase in the total macrophage population after 12 h PI, that was primarily due to infiltration of CCR2+ migratory macrophages, mostly in M1 status (MHC II+). The number of CCR2- resident macrophages, mostly unpolarized (M0), increased gradually over time and peaked at 48 h PI. Interestingly, some of the resident macrophages gained an M2-like phenotype (CD206Low), which peaked at 12 h PI, concurrent with M1 macrophage infiltration. From 1–7 days PI, infiltration of various immune cells correlated strongly with HSV-1 replication, with neutrophils showing the biggest increase, and NKT cells the biggest decrease, after infection. The presence of geographical ulcer did not correlate with increased infiltration, while mice with corneal scarring had significantly more immune cell infiltration than those without corneal scarring. Overall, we showed time-dependent infiltration of various immune cells in the eye of HSV-1 infected mice. Initial infiltration of macrophages followed by infiltration of T cells at later times PI demonstrates the importance of targeting macrophages rather than other immune cells type, for therapeutic treatment of HSV-1.
Collapse
Affiliation(s)
- Dhong Hyun Lee
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, CA, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, CA, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC–SSB3, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Regulation of neutrophils in type 2 immune responses. Curr Opin Immunol 2018; 54:115-122. [PMID: 30015087 DOI: 10.1016/j.coi.2018.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
Abstract
Type 2 immune responses contribute to the resistance to helminths and toxins as well as several physiological processes. Although they usually do not participate in type 2 immune responses, neutrophils have been shown in mice to enhance the anti-helminth response, but they also contribute to increased target tissue damage. Increased pathology and morbidity is also observed in type 2 immune-mediated disorders, such as allergic asthma, when neutrophils become a predominant subset of the infiltrate. How neutrophil recruitment is regulated during type 2 immune responses is now starting to become clear, with recent data showing that signaling via the prototypic type 2 cytokine interleukin-4 receptor mediates direct and indirect inhibitory actions on neutrophils in mice and humans.
Collapse
|
14
|
Dong C, Fu T, Ji J, Li Z, Gu Z. The role of interleukin-4 in rheumatic diseases. Clin Exp Pharmacol Physiol 2018; 45:747-754. [PMID: 29655253 DOI: 10.1111/1440-1681.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
Rheumatism is a group of diseases, most of which are autoimmune diseases, that violate joints, bones, muscles, blood vessels and related soft tissue. As is well known, cytokines play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, and systemic lupus erythematosus. Recently, the role of interleukin-4 (IL-4), which may participate in the mechanism of rheumatism, have been discovered. It is reported that IL-4 takes part in the regulation of T cell activation, differentiation, proliferation, and survival of different T cell types. IL-4 also has an immunomodulatory effect on B cells, mast cells, macrophages, and many cell types. A review of the literature on functions of IL-4 in rheumatic diseases is presented.
Collapse
Affiliation(s)
- Chen Dong
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenyu Li
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
15
|
An M2 Rather than a T H2 Response Contributes to Better Protection against Latency Reactivation following Ocular Infection of Naive Mice with a Recombinant Herpes Simplex Virus 1 Expressing Murine Interleukin-4. J Virol 2018; 92:JVI.00051-18. [PMID: 29491152 DOI: 10.1128/jvi.00051-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
We found previously that altering macrophage polarization toward M2 responses by injection of colony-stimulating factor 1 (CSF-1) was more effective in reducing both primary and latent infections in mice ocularly infected with herpes simplex virus 1 (HSV-1) than M1 polarization by gamma interferon (IFN-γ) injection. Cytokines can coordinately regulate macrophage and T helper (TH) responses, with interleukin-4 (IL-4) inducing type 2 TH (TH2) as well as M2 responses and IFN-γ inducing TH1 as well as M1 responses. We have now differentiated the contributions of these immune compartments to protection against latency reactivation and corneal scarring by comparing the effects of infection with recombinant HSV-1 in which the latency-associated transcript (LAT) gene was replaced with either the IL-4 (HSV-IL-4) or IFN-γ (HSV-IFN-γ) gene using infection with the parental (LAT-negative) virus as a control. Analysis of peritoneal macrophages in vitro established that the replacement of LAT with the IL-4 or IFN-γ gene did not affect virus infectivity and promoted polarization appropriately. Protection against corneal scarring was significantly higher in mice ocularly infected with HSV-IL-4 than in those infected with HSV-IFN-γ or parental virus. Levels of primary virus replication in the eyes and trigeminal ganglia (TG) were similar in the three groups of mice, but the numbers of gC+ cells were lower on day 5 postinfection in the eyes of HSV-IL-4-infected mice than in those infected with HSV-IFN-γ or parental virus. Latency and explant reactivation were lower in both HSV-IL-4- and HSV-IFN-γ-infected mice than in those infected with parental virus, with the lowest level of latency being associated with HSV-IL-4 infection. Higher latency correlated with higher levels of CD8, PD-1, and IFN-γ mRNA, while reduced latency and T-cell exhaustion correlated with lower gC+ expression in the TG. Depletion of macrophages increased the levels of latency in all ocularly infected mice compared with their undepleted counterparts, with macrophage depletion increasing latency in the HSV-IL-4 group greater than 3,000-fold. Our results suggest that shifting the innate macrophage immune responses toward M2, rather than M1, responses in HSV-1 infection would improve protection against establishment of latency, reactivation, and eye disease.IMPORTANCE Ocular HSV-1 infections are among the most frequent serious viral eye infections in the United States and a major cause of virus-induced blindness. As establishment of a latent infection in the trigeminal ganglia results in recurrent infection and is associated with corneal scarring, prevention of latency reactivation is a major therapeutic goal. It is well established that absence of latency-associated transcripts (LATs) reduces latency reactivation. Here we demonstrate that recombinant HSV-1 expressing IL-4 (an inducer of TH2/M2 responses) or IFN-γ (an inducer of TH1/M1 responses) in place of LAT further reduced latency, with HSV-IL-4 showing the highest overall protective efficacy. In naive mice, this higher protective efficacy was mediated by innate rather than adaptive immune responses. Although both M1 and M2 macrophage responses were protective, shifting macrophages toward an M2 response through expression of IL-4 was more effective in curtailing ocular HSV-1 latency reactivation.
Collapse
|
16
|
Lee DH, Ghiasi H. Roles of M1 and M2 Macrophages in Herpes Simplex Virus 1 Infectivity. J Virol 2017; 91:e00578-17. [PMID: 28490589 PMCID: PMC5512262 DOI: 10.1128/jvi.00578-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Macrophages are the predominant infiltrate in the corneas of mice that have been ocularly infected with herpes simplex virus 1 (HSV-1). However, very little is known about the relative roles of M1 (classically activated or polarized) and M2 (alternatively activated or polarized) macrophages in ocular HSV-1 infection. To better understand these relationships, we assessed the impact of directed M1 or M2 activation of RAW264.7 macrophages and peritoneal macrophages (PM) on subsequent HSV-1 infection. In both the RAW264.7 macrophage and PM in vitro models, HSV-1 replication in M1 macrophages was markedly lower than in M2 macrophages and unstimulated controls. The M1 macrophages expressed significantly higher levels of 28 of the 32 tested cytokines and chemokines than M2 macrophages, with HSV-1 infection significantly increasing the levels of proinflammatory cytokines and chemokines in the M1 versus the M2 macrophages. To examine the effects of shifting the immune response toward either M1 or M2 macrophages in vivo, wild-type mice were injected with gamma interferon (IFN-γ) DNA or colony-stimulating factor 1 (CSF-1) DNA prior to ocular infection with HSV-1. Virus replication in the eye, latency in trigeminal ganglia (TG), and markers of T cell exhaustion in the TG were determined. We found that injection of mice with IFN-γ DNA, which enhances the development of M1 macrophages, increased virus replication in the eye; increased latency; and also increased CD4, CD8, IFN-γ, and PD-1 transcripts in the TG of latently infected mice. Conversely, injection of mice with CSF-1 DNA, which enhances the development of M2 macrophages, was associated with reduced virus replication in the eye and reduced latency and reduced the levels of CD4, CD8, IFN-γ,and PD-1 transcripts in the TG. Collectively, these results suggest that M2 macrophages directly reduce the levels of HSV-1 latency and, thus, T-cell exhaustion in the TG of ocularly infected mice.IMPORTANCE Our findings demonstrate a novel approach to further reducing HSV-1 replication in the eye and latency in the TG by modulating immune components, specifically, by altering the phenotype of macrophages. We suggest that inclusion of CSF-1 as part of any vaccination regimen against HSV infection to coax responses of macrophages toward an M2, rather than an M1, response may further improve vaccine efficacy against ocular HSV-1 replication and latency.
Collapse
Affiliation(s)
- Dhong Hyun Lee
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
17
|
Tibbitt C, Falconer J, Stoop J, van Eden W, Robinson JH, Hilkens CMU. Reduced TCR-dependent activation through citrullination of a T-cell epitope enhances Th17 development by disruption of the STAT3/5 balance. Eur J Immunol 2017; 46:1633-43. [PMID: 27173727 PMCID: PMC4949576 DOI: 10.1002/eji.201546217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 01/10/2023]
Abstract
Citrullination is a post‐translational modification of arginine that commonly occurs in inflammatory tissues. Because T‐cell receptor (TCR) signal quantity and quality can regulate T‐cell differentiation, citrullination within a T‐cell epitope has potential implications for T‐cell effector function. Here, we investigated how citrullination of an immunedominant T‐cell epitope affected Th17 development. Murine naïve CD4+ T cells with a transgenic TCR recognising p89‐103 of the G1 domain of aggrecan (agg) were co‐cultured with syngeneic bone marrow‐derived dendritic cells (BMDC) presenting the native or citrullinated peptides. In the presence of pro‐Th17 cytokines, the peptide citrullinated on residue 93 (R93Cit) significantly enhanced Th17 development whilst impairing the Th2 response, compared to the native peptide. T cells responding to R93Cit produced less IL‐2, expressed lower levels of the IL‐2 receptor subunit CD25, and showed reduced STAT5 phosphorylation, whilst STAT3 activation was unaltered. IL‐2 blockade in native p89‐103‐primed T cells enhanced the phosphorylated STAT3/STAT5 ratio, and concomitantly enhanced Th17 development. Our data illustrate how a post‐translational modification of a TCR contact point may promote Th17 development by altering the balance between STAT5 and STAT3 activation in responding T cells, and provide new insight into how protein citrullination may influence effector Th‐cell development in inflammatory disorders.
Collapse
Affiliation(s)
- Christopher Tibbitt
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, U.K
| | - Jane Falconer
- Rheumatology Research Group, School of Immunity and Infection, University of Birmingham, U.K.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), U.K
| | - Jeroen Stoop
- Department of Rheumatology, Leiden University, The Netherlands
| | - Willem van Eden
- Institute of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | - John H Robinson
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, U.K
| | - Catharien M U Hilkens
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, U.K.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), U.K
| |
Collapse
|
18
|
Arthritis models: usefulness and interpretation. Semin Immunopathol 2017; 39:469-486. [PMID: 28349194 DOI: 10.1007/s00281-017-0622-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Animal models of arthritis are used to better understand pathophysiology of a disease or to seek potential therapeutic targets or strategies. Focusing on models currently used for studying rheumatoid arthritis, we show here in which extent models were invaluable to enlighten different mechanisms such as the role of innate immunity, T and B cells, vessels, or microbiota. Moreover, models were the starting point of in vivo application of cytokine-blocking strategies such as anti-TNF or anti-IL-6 treatments. The most popular models are the different types of collagen-induced arthritis and arthritis in KBN mice. As spontaneous arthritides, human TNF-α transgenic mice are a reliable model. It is mandatory to use animal models in the respect of ethical procedure, particularly regarding the number of animals and the control of pain. Moreover, design of experiments should be of the highest level, animal models of arthritis being dedicated to exploration of well-based novelties, and never used for confirmation or replication of already proven concepts. The best interpretations of data in animal models of arthritis suppose integrated research, including translational studies from animals to humans.
Collapse
|
19
|
Apaer S, Tuxun T, Ma HZ, Zhang H, Aierken A, Aini A, Li YP, Lin RY, Wen H. Parasitic infection as a potential therapeutic tool against rheumatoid arthritis. Exp Ther Med 2016; 12:2359-2366. [PMID: 27698735 DOI: 10.3892/etm.2016.3660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/15/2016] [Indexed: 12/11/2022] Open
Abstract
Parasites, which are a recently discovered yet ancient dweller in human hosts, remain a great public health burden in underdeveloped countries, despite preventative efforts. Rheumatoid arthritis is a predominantly cosmopolitan health problem with drastic morbidity rates, although encouraging progress has been achieved regarding treatment. However, although various types of methods and agents have been applied clinically, their broad usage has been limited by their adverse effects and/or high costs. Sustained efforts have been exerted on the 'hygiene hypothesis' since the 1870s. The immunosuppressive nature of parasitic infections may offer potential insight into therapeutic strategies for rheumatoid arthritis, in which the immune system is overactivated. An increasing number of published papers are focusing on the preventive and/or curative effect of various parasitic infection on rheumatoid arthritis from experimental studies to large-scale epidemiological studies and clinical trials. Therefore, the present review aimed to provide a general literature review on the possible beneficial role of parasitic infection on rheumatoid arthritis.
Collapse
Affiliation(s)
- Shadike Apaer
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tuerhongjiang Tuxun
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hai-Zhang Ma
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Heng Zhang
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Amina Aierken
- Department of Ultrasonography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abudusalamu Aini
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yu-Peng Li
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ren-Yong Lin
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hao Wen
- State Key Laboratory of Xinjiang Major Diseases Research and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China; Department of Liver and Laparoscopic Surgery, Digestive and Vascular Centre, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
20
|
Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation? PLoS One 2015; 10:e0119751. [PMID: 25799240 PMCID: PMC4370704 DOI: 10.1371/journal.pone.0119751] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1) or alternatively activated macrophages (M2). This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes. METHODS AND RESULTS Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-γ and LPS (M1), by IL-4 (M2a), and by IL-10 (M2c). Unstimulated cells (RM) served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM. CONCLUSION Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti-inflammatory) role of M2a in inflammatory diseases.
Collapse
|
21
|
Rosenthal KS, Mikecz K, Steiner HL, Glant TT, Finnegan A, Carambula RE, Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 2015; 14:891-908. [PMID: 25787143 DOI: 10.1586/14760584.2015.1026330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Collapse
|
22
|
Neill DR, Coward WR, Gritzfeld JF, Richards L, Garcia-Garcia FJ, Dotor J, Gordon SB, Kadioglu A. Density and duration of pneumococcal carriage is maintained by transforming growth factor β1 and T regulatory cells. Am J Respir Crit Care Med 2014; 189:1250-9. [PMID: 24749506 DOI: 10.1164/rccm.201401-0128oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal carriage of Streptococcus pneumoniae is a prerequisite for invasive disease, but the majority of carriage episodes are asymptomatic and self-resolving. Interactions determining the development of carriage versus invasive disease are poorly understood but will influence the effectiveness of vaccines or therapeutics that disrupt nasal colonization. OBJECTIVES We sought to elucidate immunological mechanisms underlying noninvasive pneumococcal nasopharyngeal carriage. METHODS Pneumococcal interactions with human nasopharyngeal and bronchial fibroblasts and epithelial cells were investigated in vitro. A murine model of nasopharyngeal carriage and an experimental human pneumococcal challenge model were used to characterize immune responses in the airways during carriage. MEASUREMENTS AND MAIN RESULTS We describe the previously unknown immunological basis of noninvasive carriage and highlight mechanisms whose perturbation may lead to invasive disease. We identify the induction of active transforming growth factor (TGF)-β1 by S. pneumoniae in human host cells and highlight the key role for TGF-β1 and T regulatory cells in the establishment and maintenance of nasopharyngeal carriage in mice and humans. We identify the ability of pneumococci to drive TGF-β1 production from nasopharyngeal cells in vivo and show that an immune tolerance profile, characterized by elevated TGF-β1 and high nasopharyngeal T regulatory cell numbers, is crucial for prolonged carriage of pneumococci. Blockade of TGF-β1 signaling prevents prolonged carriage and leads to clearance of pneumococci from the nasopharynx. CONCLUSIONS These data explain the mechanisms by which S. pneumoniae colonize the human nasopharynx without inducing damaging host inflammation and provide insight into the role of bacterial and host constituents that allow and maintain carriage.
Collapse
Affiliation(s)
- Daniel R Neill
- 1 Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Riner DK, Ferragine CE, Maynard SK, Davies SJ. Regulation of innate responses during pre-patent schistosome infection provides an immune environment permissive for parasite development. PLoS Pathog 2013; 9:e1003708. [PMID: 24130499 PMCID: PMC3795041 DOI: 10.1371/journal.ppat.1003708] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/29/2013] [Indexed: 12/19/2022] Open
Abstract
Blood flukes of the genus Schistosoma infect over 200 million people, causing granulomatous pathology with accompanying morbidity and mortality. As a consequence of extensive host-parasite co-evolution, schistosomes exhibit a complex relationship with their hosts, in which immunological factors are intimately linked with parasite development. Schistosomes fail to develop normally in immunodeficient mice, an outcome specifically dependent on the absence of CD4⁺ T cells. The role of CD4⁺ T cells in parasite development is indirect and mediated by interaction with innate cells, as repeated toll-like receptor 4 stimulation is sufficient to restore parasite development in immunodeficient mice in the absence of CD4⁺ T cells. Here we show that repeated stimulation of innate immunity by an endogenous danger signal can also restore parasite development and that both these stimuli, when administered repeatedly, lead to the regulation of innate responses. Supporting a role for regulation of innate responses in parasite development, we show that regulation of inflammation by neutralizing anti-TNF antibodies also restores parasite development in immunodeficient mice. Finally, we show that administration of IL-4 to immunodeficient mice to regulate inflammation by induction of type 2 responses also restores parasite development. These findings suggest that the type 2 response driven by CD4⁺ T cells during pre-patent infection of immunocompetent hosts is exploited by schistosomes to complete their development to reproductively mature adult parasites.
Collapse
Affiliation(s)
- Diana K. Riner
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Christine E. Ferragine
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sean K. Maynard
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Stephen J. Davies
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Acute inflammation primes myeloid effector cells for anti-inflammatory STAT6 signaling. Proc Natl Acad Sci U S A 2013; 110:13487-91. [PMID: 23898202 DOI: 10.1073/pnas.1312525110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The anti-inflammatory drug high-dose intravenous immunoglobulin, widely used to suppress inflammation, depends on a specific α-2,6-sialylated glycoform of IgG Fc to induce Interleukin 4 (IL-4) and Signal Transducer and Activator of Transcription 6 (STAT6) signaling for its activity. Here we show that anti-inflammatory activities of IL-4 can be attributed to the direct action of this cytokine on myeloid effector cells, depending on their expression of the IL-4 receptor alpha chain (IL-4Rα/CD124). However, in their basal state, these cells express low levels of IL-4Rα and would not be expected to result in significant signaling compared with other cell populations. This apparent paradox can be explained by the observation that during inflammation, triggered by a variety of stimuli (including autoantibodies, adjuvants, and TLR ligands), IL-4Rα is up-regulated specifically on these cells, priming them for STAT6 signaling. The regulation is mediated by a soluble, proteinase K-sensitive factor, released to the circulation by bone marrow-derived, non-B/non-T cells found in several organs, including the lungs, and fat. We propose that this regulation is part of a homeostatic mechanism to limit excessive inflammation and tissue damage. High-dose intravenous immunoglobulin thus exploits an endogenous feedback loop, general to inflammation, that could be further targeted for therapeutic purposes.
Collapse
|
25
|
Correlation analyses of clinical and molecular findings identify candidate biological pathways in systemic juvenile idiopathic arthritis. BMC Med 2012; 10:125. [PMID: 23092393 PMCID: PMC3523070 DOI: 10.1186/1741-7015-10-125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/23/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinicians have long appreciated the distinct phenotype of systemic juvenile idiopathic arthritis (SJIA) compared to polyarticular juvenile idiopathic arthritis (POLY). We hypothesized that gene expression profiles of peripheral blood mononuclear cells (PBMC) from children with each disease would reveal distinct biological pathways when analyzed for significant associations with elevations in two markers of JIA activity, erythrocyte sedimentation rate (ESR) and number of affected joints (joint count, JC). METHODS PBMC RNA from SJIA and POLY patients was profiled by kinetic PCR to analyze expression of 181 genes, selected for relevance to immune response pathways. Pearson correlation and Student's t-test analyses were performed to identify transcripts significantly associated with clinical parameters (ESR and JC) in SJIA or POLY samples. These transcripts were used to find related biological pathways. RESULTS Combining Pearson and t-test analyses, we found 91 ESR-related and 92 JC-related genes in SJIA. For POLY, 20 ESR-related and 0 JC-related genes were found. Using Ingenuity Systems Pathways Analysis, we identified SJIA ESR-related and JC-related pathways. The two sets of pathways are strongly correlated. In contrast, there is a weaker correlation between SJIA and POLY ESR-related pathways. Notably, distinct biological processes were found to correlate with JC in samples from the earlier systemic plus arthritic phase (SAF) of SJIA compared to samples from the later arthritis-predominant phase (AF). Within the SJIA SAF group, IL-10 expression was related to JC, whereas lack of IL-4 appeared to characterize the chronic arthritis (AF) subgroup. CONCLUSIONS The strong correlation between pathways implicated in elevations of both ESR and JC in SJIA argues that the systemic and arthritic components of the disease are related mechanistically. Inflammatory pathways in SJIA are distinct from those in POLY course JIA, consistent with differences in clinically appreciated target organs. The limited number of ESR-related SJIA genes that also are associated with elevations of ESR in POLY implies that the SJIA associations are specific for SJIA, at least to some degree. The distinct pathways associated with arthritis in early and late SJIA raise the possibility that different immunobiology underlies arthritis over the course of SJIA.
Collapse
|
26
|
Dall'Asta M, Derlindati E, Ardigò D, Zavaroni I, Brighenti F, Del Rio D. Macrophage polarization: the answer to the diet/inflammation conundrum? Nutr Metab Cardiovasc Dis 2012; 22:387-392. [PMID: 22397874 DOI: 10.1016/j.numecd.2011.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022]
Abstract
Macrophages, a heterogeneous and ubiquitous cell population representing up to 15% of the cellular content of different types of tissue, are the principal cell mediators in response to pathogens, inflammation process, tissue homeostasis and repair and play a pivotal role in atherosclerosis and insulin resistance because of their capacity to be the major source of inflammatory cytokines, which can function through paracrine and endocrine mechanisms. Recently, differently activated macrophage populations have been described, depending on a large variety of microenvironmental signals, and it is now recognized that their activation plays a crucial role in the development and progression of atherosclerosis. There is good evidence of the ability of conjugated linoleic acids and polyphenolic compounds to modulate inflammation in experimental models involving macrophages. This observation leaves room to the intriguing hypothesis that macrophage polarization could represent one of the unifying mechanisms through which specific food components can exert anti-inflammatory effects in humans, contributing to the prevention of chronic diseases strongly linked to inflammation, such as atherosclerosis. Future studies should be addressed to substantiate this hypothesis, investigating whether or not physiological concentrations of food-derived metabolites can perturb macrophage activation in vitro. On the in vivo side, the evaluation of macrophage populations in tissues, however complex, should be included among the analyses performed in observational and intervention studies, in order to understand if macrophage activation is involved in the anti-inflammatory activity of a specific dietary regimen.
Collapse
Affiliation(s)
- M Dall'Asta
- The φ² Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Public Health, University of Parma, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Nieuwenhuizen NE, Kirstein F, Jayakumar J, Emedi B, Hurdayal R, Horsnell WGC, Lopata AL, Brombacher F. Allergic airway disease is unaffected by the absence of IL-4Rα-dependent alternatively activated macrophages. J Allergy Clin Immunol 2012; 130:743-750.e8. [PMID: 22552110 DOI: 10.1016/j.jaci.2012.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Markers of alternatively activated macrophages (AAMs) are upregulated in the lungs of asthmatic patients and in mice with allergic airway disease. AAMs are thought to contribute to the pathogenesis of allergic airway disease by virtue of their decreased NO production and increased production of proline and polyamines, which are important in the synthesis of connective tissues such as collagen. OBJECTIVE We aimed to define the role of AAMs in the pathogenesis of allergic airway disease. METHODS The IL-4 receptor alpha (IL-4Rα) gene is genetically abrogated in macrophages in LysM(cre)IL-4Rα(-/lox) mice, which therefore have impaired IL-4/IL-13 activation of AAMs through IL-4R types 1 and 2. Responses of LysM(cre)IL-4Rα(-/lox) mice and IL-4Rα(-/lox) littermate controls were examined in ovalbumin- and house dust mite-induced allergic airway disease. RESULTS IL-4Rα expression was shown to be efficiently depleted from alveolar macrophages, interstitial macrophages, and CD11b(+)MHCII(+) inflammatory macrophages. Although the expression of markers of AAMs such as Ym-1, arginase and found in inflammatory zone 1 was decreased in macrophages of LysM(cre)IL-4Rα(-/lox) mice in chronic ovalbumin-induced allergic airway disease, airway hyperreactivity, T(H)2 responses, mucus hypersecretion, eosinophil infiltration, and collagen deposition were not significantly reduced. LysM(cre)IL-4Rα(-/lox) mice and littermate controls also developed similar responses in acute ovalbumin- and house dust mite-induced allergic airway disease. CONCLUSION Our results suggest that the presence of AAMs in allergic airway disease may be only an association, as a result of the increased T(H)2 responses present during disease, and that IL-4Rα-dependent AAMs do not play an important role in the pathology of disease.
Collapse
|
28
|
A polymorphism in the interleukin-4 receptor affects the ability of interleukin-4 to regulate Th17 cells: a possible immunoregulatory mechanism for genetic control of the severity of rheumatoid arthritis. Arthritis Res Ther 2011; 13:R15. [PMID: 21294892 PMCID: PMC3241359 DOI: 10.1186/ar3239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/08/2010] [Accepted: 02/04/2011] [Indexed: 12/17/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is now suspected to be driven by pathogenic Th17 cells that secrete interleukin (IL)-17 and can be regulated by IL-4. A single-nucleotide polymorphism (SNP), I50V, in the coding region of the human IL-4 receptor (IL-4R) is associated with rapid development of erosive disease in RA. The present study was undertaken to determine whether this SNP renders the IL-4R less able to transduce signals that regulate IL-17 production. Methods Peripheral blood mononuclear cells were activated under Th17-stimulating conditions in the presence or absence of IL-4, and IL-17 production was measured by both enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Serum IL-17 was also measured by ELISA. Paired comparisons were performed using the two-tailed t-test. IL-4 receptor gene alleles were determined by polymerase chain reaction. Results In healthy individuals, IL-4 significantly inhibited IL-17 production by cells from subjects with the I/I genotype (P = 0.0079) and the I/V genotype (P = 0.013), but not the V/V genotype (P > 0.05). In a cross-sectional sample of patients with established RA, the magnitude of the in vitro effect of IL-4 was lower and was not associated with a specific IL-4R allele. Serum IL-17 levels were higher in RA patients than in healthy individuals, as was the percentage of CD4+ cells that produced IL-17. Conclusions These results indicate that an inherited polymorphism of the IL-4R controls the ability of the human immune system to regulate the magnitude of IL-17 production. However, in established RA, this pattern may be altered, possibly due to secondary effects of both RA itself as well as immunomodulatory medications. Ineffective control of Th17 immune responses is a potential mechanism to explain why IL-4R is an important severity gene in RA, but this issue will require careful study of a cohort of new-onset RA patients.
Collapse
|
29
|
Hünig T, Lühder F, Elflein K, Gogishvili T, Fröhlich M, Guler R, Cutler A, Brombacher F. CD28 and IL-4: two heavyweights controlling the balance between immunity and inflammation. Med Microbiol Immunol 2010; 199:239-46. [PMID: 20390297 PMCID: PMC3128750 DOI: 10.1007/s00430-010-0156-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Indexed: 12/25/2022]
Abstract
The costimulatory receptor CD28 and IL-4Rα-containing cytokine receptors play key roles in controlling the size and quality of pathogen-specific immune responses. Thus, CD28-mediated costimulation is needed for effective primary T-cell expansion and for the generation and activation of regulatory T-cells (Treg cells), which protect from immunopathology. Similarly, IL-4Rα signals are required for alternative activation of macrophages, which counteract inflammation by type 1 responses. Furthermore, immune modulation by CD28 and IL-4 is interconnected through the promotion of IL-4 producing T-helper 2 cells by CD28 signals. Using conditionally IL-4Rα and CD28 deleting mice, as well as monoclonal antibodies, which block or stimulate CD28, or mAb that deplete Treg cells, we have studied the roles of CD28 and IL-4Rα in experimental mouse models of virus (influenza), intracellular bacteria (L. monocytogenes, M. tuberculosis), and parasite infections (T. congolense, L. major). We observed that in some, but not all settings, Treg cells and type 2 immune deviation, including activation of alternative macrophages can be manipulated to protect the host either from infection or from immunopathology with an overall beneficial outcome. Furthermore, we provide direct evidence that secondary CD8 T-cell responses to i.c. bacteria are dependent on CD28-mediated costimulation.
Collapse
Affiliation(s)
- Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Horsnell WG, Brombacher F. Genes associated with alternatively activated macrophages discretely regulate helminth infection and pathogenesis in experimental mouse models. Immunobiology 2010; 215:704-8. [DOI: 10.1016/j.imbio.2010.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/20/2010] [Indexed: 01/13/2023]
|
31
|
Bharhani MS, Chiu B, Na KS, Inman RD. Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int Immunol 2009; 21:859-70. [DOI: 10.1093/intimm/dxp052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
32
|
Varin A, Gordon S. Alternative activation of macrophages: immune function and cellular biology. Immunobiology 2009; 214:630-41. [PMID: 19264378 DOI: 10.1016/j.imbio.2008.11.009] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 12/19/2022]
Abstract
Macrophages are the first line of defense of the organism against pathogens and, in response to the microenvironment, become differentially activated. In the presence of IL-4 and IL-13, cytokines that are produced in a Th-2 type response, particularly during allergy and parasitic infections, macrophages become differentially activated. Alternative activated macrophages play an important role in the protection of the host by decreasing inflammation and promoting tissues repair. However, alternative activation of macrophages also downregulates host protection against selected pathogens. This defect is associated with an altered receptor expression pattern and extensive modulation of intracellular membrane trafficking. This review shows how alternative activation of macrophages induces extensive cellular remodelling of phagocytic, endocytic, signaling and secretory pathways which play an important, but unclear role in the pathogenesis of different disease.
Collapse
Affiliation(s)
- Audrey Varin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
33
|
Boldizsar F, Tarjanyi O, Nemeth P, Mikecz K, Glant TT. Th1/Th17 polarization and acquisition of an arthritogenic phenotype in arthritis-susceptible BALB/c, but not in MHC-matched, arthritis-resistant DBA/2 mice. Int Immunol 2009; 21:511-22. [PMID: 19254958 PMCID: PMC2675029 DOI: 10.1093/intimm/dxp018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proteoglycan (PG) aggrecan-induced arthritis (PGIA) is a murine model of rheumatoid arthritis (RA). Although BALB/c and DBA/2 mice share the same MHC (H-2d) haplotype, the BALB/c strain is susceptible to PGIA, while DBA/2 mice are resistant. Therefore, these two inbred mouse strains provide an opportunity to study arthritis susceptibility factors excluding the effects of MHC-associated genetic components. The goal of this study was to monitor changes in the cellular composition and activation state following intra-peritoneal (i.p.) immunization to induce PGIA; additionally, we sought to identify new susceptibility factors by comparing PG-induced immune responses in BALB/c and DBA/2 mice. Upon i.p. PG injection, resident naive B1 cells are replaced by both T cells and conventional B cells in the peritoneum of BALB/c mice. These peritoneal T cells produce IFNγ and IL-17, cytokines shown to be important in RA and corresponding arthritis models. Moreover, peritoneal cells can adoptively transfer PGIA to SCID mice, demonstrating their arthritogenic properties. Our results indicate that repeatedly injected antigen leads to the recruitment and activation of immune cells in the peritoneum; these cells then trigger the effector phase of the disease. The migration and activation of Th1/Th17 cells in the peritoneal cavity in response to PG immunization, which did not occur in the arthritis-resistant DBA/2 strain, may be critical factors of arthritis susceptibility in BALB/c mice.
Collapse
Affiliation(s)
- Ferenc Boldizsar
- Section of Molecular Medicine, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
34
|
Cardoso CR, Provinciatto PR, Godoi DF, Ferreira BR, Teixeira G, Rossi MA, Cunha FQ, Silva JS. IL-4 regulates susceptibility to intestinal inflammation in murine food allergy. Am J Physiol Gastrointest Liver Physiol 2009; 296:G593-600. [PMID: 19136382 DOI: 10.1152/ajpgi.90431.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Allergies involve a state of immediate hypersensitivity to antigens, including food proteins. The mechanism underlying the initiation and development of allergic responses involves IL-4 that directly induces the differentiation of committed effector Th2 lymphocytes. Although it is clear that Th2 responses play a pivotal role in the development of allergic responses, it remains unclear which mechanisms are involved in the development of the intestinal damages observed in food allergy. Accordingly, this work aimed to study the role of Th2/IL-4-dependent responses in the development of food allergy and intestinal pathology. C57BL/6 wild-type (WT) and IL-4-/- mice were sensitized with peanut proteins, challenged with peanut seeds, and followed for the development of food allergy and intestinal inflammation. Results demonstrated that exposure to peanut seeds led to weight loss in WT but not in IL-4-/- mice that preserved gut integrity with no signs of mucosal inflammation. These animals presented increased levels of IgG2a in sera, suggesting a role for allergic antibodies in the pathogenesis of WT animals. Most importantly, results also showed that lack of IL-4 modulated gut mucosal response in food allergy through diminished expression of TNF-alpha mRNA, increased Th1 IFN-gamma, IL-12p40, regulatory cytokines, and Foxp3, demonstrating their relevance in the control of allergic inflammatory processes, especially in the intestine. Finally, this study highlighted some of the complex mechanisms involved in the pathogenesis of allergic responses to food antigens in the gut, thereby providing valuable tools for directing novel therapeutic or preventive strategies to the control of allergic enteropathy.
Collapse
Affiliation(s)
- Cristina R Cardoso
- School of Medicine of Ribeirão Preto, University of São Paulo, Department of Biochemistry and Immunology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|