1
|
Poon EK, Liu L, Wu KC, Lim J, Sweet MJ, Lohman RJ, Iyer A, Fairlie DP. A novel inhibitor of class IIa histone deacetylases attenuates collagen-induced arthritis. Br J Pharmacol 2024; 181:4804-4821. [PMID: 39223784 DOI: 10.1111/bph.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Most inhibitors of histone deacetylases (HDACs) are not selective and are cytotoxic. Some have anti-inflammatory activity in disease models, but cytotoxicity prevents long-term uses in non-fatal diseases. Inhibitors selective for class IIa HDACs are much less cytotoxic and may have applications in management of chronic inflammatory diseases. EXPERIMENTAL APPROACH LL87 is a novel HDAC inhibitor examined here for HDAC enzyme selectivity. It was also investigated in macrophages for cytotoxicity and for inhibition of lipopolysaccharide (LPS)-stimulated cytokine secretion. In a rat model of collagen-induced arthritis, LL87 was investigated for effects on joint inflammation in Dark Agouti rats. Histological, immunohistochemical, micro-computed tomography and molecular analyses characterise developing arthritis and anti-inflammatory efficacy. KEY RESULTS LL87 was significantly more inhibitory against class IIa than class I or IIb HDAC enzymes. In macrophages, LL87 was not cytotoxic and reduced both LPS-induced secretion of pro-inflammatory cytokines, and IL6-induced class IIa HDAC activity. In rats, LL87 attenuated paw swelling and clinical signs of arthritis, reducing collagen loss and histological damage in ankle joints. LL87 decreased immune cell infiltration, especially pro-inflammatory macrophages and osteoclasts, into synovial joints and significantly reduced expression of pro-inflammatory cytokines and tissue-degrading proteases. CONCLUSION AND IMPLICATIONS A novel inhibitor of class IIa HDACs has been shown to have an anti-inflammatory and anti-arthritic profile distinct from current therapies. It is efficacious in reducing macrophage infiltration and joint inflammation in a chronic model of rat arthritis.
Collapse
Affiliation(s)
- Eunice K Poon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Ligong Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Rink-Jan Lohman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
3
|
Baba H, Hosoya T, Ishida R, Tai K, Hatsuzawa S, Kondo Y, Kusuhara H, Kagechika H, Yasuda S. Anti-Inflammatory Effects of a Novel Nuclear Factor- κB Inhibitory Derivative Derived from Pyrazolo[3,4- d]Pyrimidine in Three Inflammation Models. J Pharmacol Exp Ther 2024; 388:788-797. [PMID: 38253385 DOI: 10.1124/jpet.123.001904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Nuclear factor-κB (NF-κB) plays a central role in inflammatory responses, and its physiologic functions are essential for cell survival and proliferation. Currently, drugs targeting NF-κB inhibition have not yet been applied in clinical practice. We investigated the physiologic effect of a novel NF-κB inhibitory compound, 1H-pyrazolo[3,4-d]pyrimidin-4-amine derivative (INH #1), on three inflammatory animal models. The pharmacokinetics were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Acute hepatitis was induced by administrating lipopolysaccharide (LPS) and D-(+)-galactosamine hydrochloride followed by the analysis of survival time and inflammatory mediators. Collagen-induced arthritis (CIA) was induced by immunization with type II collagen (CII), and serum-transfer arthritis (STA) was caused by injecting K/BxN mice serum. Clinical and histologic scores were evaluated in both arthritis models. Immune cell subset analysis, CII-induced interferon-gamma (IFN-γ) production and proliferation, and measurement of anti-CII IgG antibodies were performed in the CIA model. In the acute hepatitis model, INH #1 suppressed tumor necrosis factor-α (TNF-α) production and prevented early death in a dose-dependent manner. INH #1 significantly attenuated arthritis scores and joint inflammation in both arthritis models. Additionally, in the CIA model, dendritic cells (DCs) in the regional lymph nodes were decreased in the treated mice and antigen-induced IFN-γ production and cell proliferation in splenocytes were inhibited, whereas the titers of anti-CII IgG antibodies were comparable regardless of the treatment. Here we revealed that INH #1 exerted anti-inflammatory effects in vivo via inhibition of inflammatory mediators and suppression of cellular immune responses. This compound could be a novel candidate for inhibition of NF-κB in certain inflammatory diseases. SIGNIFICANCE STATEMENT: A novel nuclear factor-κB (NF-κB) inhibitory compound, 1H-pyrazolo[3,4-d]pyrimidin-4-amine derivative (INH #1), which retains physiologically essential NF-κB bioactivity, suppressed inflammation in three different mouse models: the acute hepatitis model, the collagen-induced arthritis model, and the K/BxN serum-transfer arthritis model. These results suggest that this compound could be a novel and potent anti-inflammatory agent.
Collapse
Affiliation(s)
- Hiroyuki Baba
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Ryosuke Ishida
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Kenpei Tai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Saki Hatsuzawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Yuma Kondo
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Hiroyuki Kusuhara
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Hiroyuki Kagechika
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences (H.B., T.H., S.Y.), Institute of Biomaterials and Bioengineering (R.I., S.H., H.Ka.), and School of Medicine, Graduate School of Medical and Dental Sciences (Y.K.), Tokyo Medical and Dental University, Tokyo, Japan; and Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan (K.T., H.Ku.)
| |
Collapse
|
4
|
Wang C, Wu R, Zhang S, Gong L, Fu K, Yao C, Peng C, Li Y. A comprehensive review on pharmacological, toxicity, and pharmacokinetic properties of phillygenin: Current landscape and future perspectives. Biomed Pharmacother 2023; 166:115410. [PMID: 37659207 DOI: 10.1016/j.biopha.2023.115410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Forsythiae Fructus is a traditional Chinese medicine frequently in clinics. It is extensive in the treatment of various inflammation-related diseases and is renowned as 'the holy medicine of sores'. Phillygenin (C21H24O6, PHI) is a component of lignan that has been extracted from Forsythiae Fructus and exhibits notable biological activity. Modern pharmacological studies have confirmed that PHI demonstrates significant activities in the treatment of various diseases, including inflammatory diseases, liver diseases, cancer, bacterial infection and virus infection. Therefore, this review comprehensively summarizes the pharmacological effects of PHI up to June 2023 by searching PubMed, Web of Science, Science Direct, CNKI, and SciFinder databases. According to the data, PHI shows remarkable anti-inflammatory, antioxidant, hepatoprotective, antitumour, antibacterial, antiviral, immunoregulatory, analgesic, antihypertensive and vasodilatory activities. More importantly, NF-κB, MAPK, PI3K/AKT, P2X7R/NLRP3, Nrf2-ARE, JAK/STAT, Ca2+-calcineurin-TFEB, TGF-β/Smads, Notch1 and AMPK/ERK/NF-κB signaling pathways are considered as important molecular targets for PHI to exert these pharmacological activities. Studies of its toxicity and pharmacokinetic properties have shown that PHI has very low toxicity, incomplete absorption in vivo and low oral bioavailability. In addition, the physico-chemical properties, new formulations, derivatives and existing challenges and prospects of PHI are also reviewed and discussed in this paper, aiming to provide direction and rationale for the further development and clinical application of PHI.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenhao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Zheng X, Qiu J, Zhang H, Gao N, Jiang T, Gong Y, Zhang W, Li Z, Feng X, Hong Z. PD184352 exerts anti-inflammatory and antioxidant effects by promoting activation of the Nrf2/HO-1 axis. Biochem Pharmacol 2023; 211:115542. [PMID: 37028460 DOI: 10.1016/j.bcp.2023.115542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Osteoarthritis (OA) is a disabling joint disease characterized by cartilage degeneration. Reactive oxygen species (ROS)-induced oxidative stress is an important cause of early chondrocyte death. For this reason, we investigated PD184352, a small molecule inhibitor with potential anti-inflammatory and antioxidant activity. We evaluated the protective effect of PD184352 against destabilized medial meniscus (DMM)-induced OA in mice. The knee joints of the PD184352-treated group had higher Nrf2 expression and milder cartilage damage. Moreover, in in vitro experiments, PD184352 suppressed IL-1β-induced NO, iNOS, PGE2 production, and attenuated pyroptosis. PD184352 treatment promoted antioxidant protein expression and reduced the accumulation of ROS by activating the Nrf2/HO-1 axis. Finally, the anti-inflammatory and antioxidant effects of PD184352 were shown to be partially dependent on Nrf2 activation. Our study reveals the potential role of PD184352 as an antioxidant and provides a new strategy for OA treatment.
Collapse
|
6
|
Wang Z, Zhang X, Cheng X, Ren T, Xu W, Li J, Wang H, Zhang J. Inflammation produced by senescent osteocytes mediates age-related bone loss. Front Immunol 2023; 14:1114006. [PMID: 36814916 PMCID: PMC9940315 DOI: 10.3389/fimmu.2023.1114006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose The molecular mechanisms of age-related bone loss are unclear and without valid drugs yet. The aims of this study were to explore the molecular changes that occur in bone tissue during age-related bone loss, to further clarify the changes in function, and to predict potential therapeutic drugs. Methods We collected bone tissues from children, middle-aged individuals, and elderly people for protein sequencing and compared the three groups of proteins pairwise, and the differentially expressed proteins (DEPs) in each group were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). K-means cluster analysis was then used to screen out proteins that continuously increased/decreased with age. Canonical signaling pathways that were activated or inhibited in bone tissue along with increasing age were identified by Ingenuity Pathway Analysis (IPA). Prediction of potential drugs was performed using the Connectivity Map (CMap). Finally, DEPs from sequencing were verified by Western blot, and the drug treatment effect was verified by quantitative real-time PCR. Results The GO and KEGG analyses show that the DEPs were associated with inflammation and bone formation with aging, and the IPA analysis shows that pathways such as IL-8 signaling and acute-phase response signaling were activated, while glycolysis I and EIF2 signaling were inhibited. A total of nine potential drugs were predicted, with rapamycin ranking the highest. In cellular experiments, rapamycin reduced the senescence phenotype produced by the H2O2-stimulated osteocyte-like cell MLO-Y4. Conclusion With age, inflammatory pathways are activated in bone tissue, and signals that promote bone formation are inhibited. This study contributes to the understanding of the molecular changes that occur in bone tissue during age-related bone loss and provides evidence that rapamycin is a drug of potential clinical value for this disease. The therapeutic effects of the drug are to be further studied in animals.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianxing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Genetics, Basic School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jinxiang Zhang, ; Hui Wang,
| |
Collapse
|
7
|
Sun W, Ma J, Chen M, Zhang W, Xu C, Nan Y, Wu W, Mao X, Cheng X, Cai H, Zhang J, Xu H, Wang Y. 4-Iodo-6-phenylpyrimidine (4-IPP) suppresses fibroblast-like synoviocyte- mediated inflammation and joint destruction associated with rheumatoid arthritis. Int Immunopharmacol 2023; 115:109714. [PMID: 36657337 DOI: 10.1016/j.intimp.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic immune-mediated inflammatory disease that significantly impacts patients' quality of life. Fibroblast-like synovial cells (FLSs) within the synovial intima exhibit "tumor-like" properties such as increased proliferation, migration, and invasion. Activation of FLSs and secretion of pro-inflammation factors result in pannus formation and cartilage destruction. As an inhibitor of the cytokine, macrophage migration inhibitory factor (MIF), 4-Iodo-6-phenylpyrimidine (4-IPP) has been shown to reduce cell proliferation, migration, invasion, and the secretion of pro-inflammatory mediators in a variety of diseases. However, the usefulness of 4-IPP for RA treatment has not been assessed and was the purpose of this study. In vitro, 4-IPP was demonstrated to inhibit proliferation, migration, and invasion of RA FLSs, as well as the expression of pro-inflammatory cytokines. 4-IPP was also shown to inhibit MIF-induced phosphorylation of ERK, JNK, and p38, as well as reduce expression of COX2 and PGE2. In order to efficiently deliver 4-IPP to anatomical RA sites, we developed lactic-co-glycolic acid (PLGA) nanospheres, which not only protected 4-IPP from degradation but also controlled the release of 4-IPP. 4-IPP/PLGA nanospheres had potent anti-inflammatory activity and a high degree of biosafety. Results showed that local 4-IPP concentration was increased by nanosphere delivery, effectively reducing the inflammatory microenvironment as well as synovial inflammation, joint swelling, and cartilage destruction in a collagen-induced rheumatoid arthritis (CIA) rat model. Therefore, 4-IPP nanospheres are a sustained-release delivery system that may be an effective therapeutic strategy for RA treatment.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jinquan Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chunxiang Xu
- Department of Nursing, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xingxing Mao
- Department of Orthopaedics, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, China
| | - Xi Cheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Kwon HK, Dussik CM, Kim SH, Kyriakides TR, Oh I, Lee FY. Treating 'Septic' With Enhanced Antibiotics and 'Arthritis' by Mitigation of Excessive Inflammation. Front Cell Infect Microbiol 2022; 12:897291. [PMID: 35755835 PMCID: PMC9218192 DOI: 10.3389/fcimb.2022.897291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial infection within the synovial joint, commonly known as septic arthritis, remains a clinical challenge as it presents two concurrent therapeutic goals of reducing bacterial burden and preservation of articular cartilage from destructive host inflammation. We hypothesized that mitigation of MRSA-induced inflammatory signaling could diminish destruction of articular cartilage in the setting of septic arthritis when used in conjunction with antibiotics. Herein, we provide evidence which supports a new therapeutic notion that concurrent antimicrobial therapy to address the 'septic' component of the disease with inflammation mitigation to manage the destructive 'arthritis' component. We established a murine model to mimic septic knee arthritis, as well as a variety of other inflammatory joint conditions. This murine septic arthritis model, in conjunction with in vitro and ex-vivo models, was utilized to characterize the inflammatory profile seen in active septic arthritis, as well as post-antibiotic treatment, via transcriptomic and histologic studies. Finally, we provided the clinical rationale for a novel therapeutic strategy combining enhanced antibiotic treatment with rifampin and adjuvant immunomodulation to inhibit post-infectious, excess chondrolysis and osteolysis. We identified that septic arthritis secondary to MRSA infection in our murine model led to increased articular cartilage damage compared to various types of inflammatory arthritis. The activation of the pERK1/2 signaling pathway, which is implicated with the mounting of an immune response and generation of inflammation, was increased in intracellular MRSA-infected synovial tissue and persisted despite antibiotic treatment. Trametinib, an inhibitor of ERK signaling through suppression of MEK1/2, alleviated the inflammation produced by the addition of intra-articular, heat-killed MRSA. Further, when combined with vancomycin and rifampin, mitigation of inflammation by pERK1/2 targeting improved outcomes for MRSA septic arthritis by conferring chondroprotection to articular cartilage and diminishing inflammatory osteolysis within bone. Our results support a new therapeutic notion that cell/biofilm-penetrating antibiotics alongside adjuvant mitigation of excessive intra-articular inflammation accomplish distinct therapeutic goals: reduction of bacterial burden and preservation of articular cartilage integrity.
Collapse
Affiliation(s)
- Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Christopher M. Dussik
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Irvin Oh
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Francis Y. Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Achudhan D, Li-Yun Chang S, Liu SC, Lin YY, Huang WC, Wu YC, Huang CC, Tsai CH, Ko CY, Kuo YH, Tang CH. Antcin K inhibits VCAM-1-dependent monocyte adhesion in human rheumatoid arthritis synovial fibroblasts. FOOD & NUTRITION RESEARCH 2022; 66:8645. [PMID: 35783555 PMCID: PMC9210827 DOI: 10.29219/fnr.v66.8645] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
Affiliation(s)
- David Achudhan
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sunny Li-Yun Chang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yen-You Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Yueh-Hsiung Kuo, Institute: Tsuzuki Institute for Traditional Medicine Address: 91, Hsueh-Shih Road, Taichung,404, Taiwan, Republic of China. . Tel: 886-4-22053366 ext 5701, 5709
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Chih-Hsin Tang, Institute: Department of Pharmacology, School of Medicine, China Medical University Address: #91, Hsueh-Shih Road, Taichung city 40402, Taiwan. E-mail: . Tel: +886-4-22053366#7726
| |
Collapse
|
10
|
Hong W, Yang B, He Q, Wang J, Weng Q. New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Front Pharmacol 2022; 13:841687. [PMID: 35281921 PMCID: PMC8914285 DOI: 10.3389/fphar.2022.841687] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
CCR7, collaborated with its ligands CCL19 and CCL21, controls extensive migratory events in the immune system. CCR7-bearing dendritic cells can swarm into T-cell zones in lymph nodes, initiating the antigen presentation and T-cell response. Abnormal expression of CCR7 in dendritic cells will cause a series of inflammatory diseases due to the chaotic dendritic cell trafficking. In this review, we take an in-depth look at the structural–functional domains of CCR7 and CCR7-bearing dendritic cell trajectory to lymph nodes. Then, we summarize the regulatory network of CCR7, including transcriptional regulation, translational and posttranslational regulation, internalization, desensitization, and recycling. Furthermore, the potential strategies of targeting the CCR7 network to regulate dendritic cell migration and to deal with inflammatory diseases are integrated, which not only emphasizes the possibility of CCR7 to be a potential target of immunotherapy but also has an implication on the homing of dendritic cells to benefit inflammatory diseases.
Collapse
Affiliation(s)
- Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| |
Collapse
|
11
|
Frontera A, Bauzá A. Biological halogen bonds in protein-ligand complexes: a combined QTAIM and NCIPlot study in four representative cases. Org Biomol Chem 2021; 19:6858-6864. [PMID: 34319314 DOI: 10.1039/d1ob01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, the PDB has been manually scrutinized by using a subset of all PDB entries containing organic iodinated ligands. Four structures exhibiting short IA halogen bonding (HaB) contacts (A stands for the σ-hole acceptor) have been selected and further analysed. In most hits, the sigma-hole acceptor corresponds to an O-atom of the amido group belonging to the protein backbone. In a minority of hits, the electron donors are O, S, Se or π-systems of the amino-acid side chains. A judicious selection of four PDB structures presenting all four types of HaB interactions (C-IA, A = O, S, Se, π) has been performed. For these selected structures, a comprehensive RI-MP2/def2-TZVP study has been carried out to evaluate the HaB energetically. Moreover, the interactions have been characterized by combining the quantum theory of "atoms-in-molecules" (QTAIM) and the noncovalent interaction plot (NCIPlot) and rationalized using the molecular electrostatic potential (MEP) surface.
Collapse
Affiliation(s)
- Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | | |
Collapse
|
12
|
A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol Res 2021; 169:105690. [PMID: 34029711 DOI: 10.1016/j.phrs.2021.105690] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Forsythiae Fructus, the dried fruit of Forsythia suspensa (Thunb.) Vahl, is a widely used Chinese medicinal herb in clinic for its extensive pharmacological activities. Forsythiaside A is the main active index component isolated from Forsythiae Fructus and possesses prominent bioactivities. Modern pharmacological studies have confirmed that Forsythiaside A exhibits significant activities in treating various diseases, including inflammation, virus infection, neurodegeneration, oxidative stress, liver injury, and bacterial infection. In this review, the pharmacological activities of Forsythiaside A have been comprehensively reviewed and summarized. According to the data, Forsythiaside A shows remarkable anti-inflammation, antivirus, neuroprotection, antioxidant, hepatoprotection, and antibacterial activities through regulating multiple signaling transduction pathways such as NF-κB, MAPK, JAK/STAT, Nrf2, RLRs, TRAF, TLR7, and ER stress. In addition, the toxicity and pharmacokinetic properties of Forsythiaside A are also discussed in this review, thus providing a solid foundation and evidence for further studies to explore novel effective drugs from Chinese medicine monomers.
Collapse
|
13
|
Xu Y, Gu Y, Ji W, Dong Q. Activation of the extracellular-signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) signal pathway and osteogenic factors in subchondral bone of patients with knee osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:663. [PMID: 33987361 PMCID: PMC8106020 DOI: 10.21037/atm-21-1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND The objectives of this study was to explore the activation of the extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway and osteogenesis-related factors in the subchondral bone of patients with knee osteoarthritis (OA). METHODS Ten patients with primary OA who underwent total knee arthroplasty in the Department of Arthritis Surgery of our hospital were enrolled, and subchondral bone tissue samples were obtained during the operation. He staining and saffron staining were used to observe the arrangement of chondrocytes in the patient tissues. The protein expression levels of JNK, p-JNK, ERK, p-ERK, Runx2 and OMD in subchondral bone were detected by Western Blot. Knee osteoarthritis mice were established. He staining was used to observe the arrangement of subchondral bone cells in the knee joint of mice. Cellular mineralized nodules were determined by alizarin red staining. RESULTS Firstly, in general and staining, it was observed that the subchondral bone lesions of knee OA participants were obvious. Compared with normal knee joints, the levels of phosphorylation-c-Jun N-terminal kinase (P-JNK) and phosphorylation-extracellular-signal-regulated kinase (P-ERK) in the subchondral bone of knee arthritis participants were significantly increased (P<0.05). The level of osteomodulin (OMD) was significantly reduced (P<0.05). Secondly, compared with normal mice, the levels of JNK, P-JNK, OMD, ERK, and P-ERK in the model group were significantly different (P<0.05). At 2-8 weeks, the JNK and P-JNK levels in the mice model group increased significantly over time (P<0.05), and the OMD level decreased significantly over time (P<0.05). The levels of ERK and P-ERK fluctuated over time. Thirdly, osteoblasts were treated with different concentrations of anisomycin, and stained with alizarin red after continuous culture for 24 and 48 h, respectively. It was found that all the cells were stained with orange-red mineralized nodules. As the concentration of anisomycin was increased, the number of cell mineralization nodules was significantly larger, and the positive rate of chemical nodules increased. Different concentrations of anisomycin were given to interfere with the osteoblasts of mice. When anisomycin was administered at a dose of 25 ng, the OMD level reached the highest level. When the concentration of anisomycin was increased, the osteocalcin (OCN) level also showed an upward trend. CONCLUSIONS The process by which the JNK signaling pathway regulates OMD may be closely related to the pathological changes of subchondral bone in patients with knee OA, and is involved in the occurrence and development of knee arthritis.
Collapse
Affiliation(s)
- Yaofeng Xu
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou, China
| | - Yuguo Gu
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou, China
| | - Wanbo Ji
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Suzhou, China
| | - Qirong Dong
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Yeh MC, Wu BJ, Li Y, Elahy M, Prado-Lourenco L, Sockler J, Lau H, Day RO, Khachigian LM. BT2 Suppresses Human Monocytic-Endothelial Cell Adhesion, Bone Erosion and Inflammation. J Inflamm Res 2021; 14:1019-1028. [PMID: 33790617 PMCID: PMC8001047 DOI: 10.2147/jir.s296676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Inflammation and bone erosion are processes key to the pathogenesis of rheumatoid arthritis, a systemic autoimmune disease causing progressive disability and pain, impacting around 1.3 million people in the United States alone. However, many patients do not respond sufficiently to existing therapies or benefit is not sustained and alternate therapeutic approaches are lacking. We recently identified the dibenzoxazepinone BT2, which inhibits ERK phosphorylation, from a high-throughput chemical screen and identified its ability to inhibit angiogenesis and vascular leakiness. Methods Here we evaluated BT2 for potential anti-inflammatory activity in in vitro models of human monocytic-endothelial cell adhesion, monocytic cell extravasation and collagen antibody-induced arthritis in mice. Results BT2 inhibits human monocytic cell adhesion to IL-1ß-treated human endothelial cells and inhibits monocytic transendothelial migration toward MCP-1. In mice rendered arthritic, single systemic administration of BT2 prevented footpad swelling, bone destruction and TRAP+ cells in the joints. BT2 suppressed inducible circulating levels of IL-1ß, IL-2 and IL-6 to normal levels without affecting levels of IL-4 or IL-10 among other cytokines. BT2 also inhibited the expression of pro-inflammatory adhesion molecules ICAM-1 and VCAM-1 in arthritic joints. There was no evidence of toxicity following intraperitoneal, gavage or intraarticular administration of BT2. Conclusion BT2 is a novel small molecule inhibitor of joint inflammation, bone erosion, pro-inflammatory cytokine and adhesion molecule expression. This suggests the potential clinical utility of BT2 as a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Mei-Chun Yeh
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ben J Wu
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yue Li
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mina Elahy
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Leonel Prado-Lourenco
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jim Sockler
- Statistical Operations & Programming, Datapharm Australia Pty Ltd, Drummoyne, NSW, 2047, Australia
| | - Herman Lau
- BJC Health, Chatswood, NSW, 2067, Australia
| | - Ric O Day
- Department of Clinical Pharmacology & Toxicology, Therapeutics Centre, St Vincent's Hospital, UNSW Medicine and Health, Darlinghurst, NSW, 2010, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
15
|
Arthralgia Induced by BRAF Inhibitor Therapy in Melanoma Patients. Cancers (Basel) 2020; 12:cancers12103004. [PMID: 33081201 PMCID: PMC7602871 DOI: 10.3390/cancers12103004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary BRAF inhibitors (BRAFi) are standard of care for BRAF-mutated metastatic melanoma (MM). One of the most common side effects is arthralgia, for which a high incidence has been described, but whose clinical presentation and management have not yet been characterized. The aim of this retrospective study was to assess the patterns and clinical course of this drug-induced joint pain and to discuss a potential pathogenesis based on our clinical findings. In our cohort of patients treated with BRAFi between 2010 and 2018, 48 of 154 (31%) patients suffered from new-onset joint pain, which primarily affected small joints with a symmetrical pattern, as can be observed in patients affected by rheumatoid arthritis, the most frequent rheumatic and musculoskeletal disease. Most cases were sufficiently treated by non-steroidal anti-inflammatory drugs; however, some patients required dose reduction or permanent discontinuation of the BRAFi. Interestingly, we found that the occurrence of arthralgia was associated with better tumor control. Abstract Introduction: BRAF inhibitors (BRAFi), commonly used in BRAF-mutated metastatic melanoma (MM) treatment, frequently cause arthralgia. Although this is one of the most common side effects, it has not been characterized yet. Methods: We retrospectively included all patients treated with BRAFi +/− MEK inhibitors (MEKi) for MM at the National Center for Tumor Diseases (Heidelberg) between 2010 and 2018 and reviewed patient charts for the occurrence and management of arthralgia. The evaluation was supplemented by an analysis of frozen sera. Results: We included 154 patients (63% males); 31% (48/154) of them reported arthralgia with a median onset of 21 days after the start of the therapy. Arthralgia mostly affected small joints (27/36, 75%) and less frequently large joints (19/36, 53%). The most commonly affected joints were in fingers (19/36, 53%), wrists (16/36, 44%), and knees (12/36, 33%). In 67% (24/36) of the patients, arthralgia occurred with a symmetrical polyarthritis, mainly of small joints, resembling the pattern typically observed in patients affected by rheumatoid arthritis (RA), for which a role of the MAPK signaling pathway was previously described. Patients were negative for antinuclear antibodies, anti-citrullinated protein antibodies, and rheumatoid factor; arthritis was visible in 10 of 13 available PET–CT scans. The development of arthralgia was linked to better progression-free survival and overall survival. Conclusion: Arthralgia is a common side effect in patients receiving BRAFi +/− MEKi therapy and often presents a clinical pattern similar to that observed in RA patients. Its occurrence was associated with longer-lasting tumor control.
Collapse
|
16
|
Jiang J, Li Y, Zheng D, Wang Z, Zhou H, Liu G. Fortified phosphorus‑lowering treatment through administration of lanthanum protects against vascular calcification via regulation of FGF23 in chronic kidney disease. Int J Mol Med 2020; 46:1783-1793. [PMID: 32901861 PMCID: PMC7521475 DOI: 10.3892/ijmm.2020.4719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphorus reduction can prevent against vascular calcification (VC) in chronic kidney disease (CKD), but the mechanisms underlying its actions remain unclear. The aim of the present study was to determine the effect of a fortified phosphorus-lowing treatment on VC in CKD. Serum levels of creatinine, blood urea nitrogen (BUN), fibroblast growth factor 23 (FGF23), calcium and phosphorus, and the plasma levels of parathyroid hormone (PTH) were determined in an animal model of CKD treated with or without lanthanum. Haematoxylin and eosin (H&E) staining was performed to examine the structure of kidney tissues. Western blot analysis was performed to compare the levels of total- (t-) extracellular signal-related kinase (ERK) and phospho- (p-)ERK among the different experimental groups to investigate the effect of FGF23 on p-ERK expression. In the animal model, administration of adenine increased the serum levels of creatinine, BUN, FGF23 and phosphorus but decreased the serum levels of calcium. In addition, adenine treatment increased the plasma levels of PTH. H&E staining showed that lanthanum treatment did not alter the severity of renal cortex injury. Furthermore, the levels of t-ERK levels did not notably differ between the Adenine-free, Adenine-vehicle and Adenine-lanthanum groups, whereas the levels of p-ERK and aortic calcium in the Adenine-vehicle group were significantly upregulated. In addition, ectopic overexpression of FGF23 increased the levels of p-ERK, Msx2 and Osx in a dose-dependent manner. Furthermore, a total of 48 patients were enrolled in the present study. In the fortified group, the serum levels of FGF23, phosphorus and PTH were significantly reduced, whereas the serum levels of calcium were significantly increased, indicating an enhanced preventative effect in the fortified group. The results of the present study suggest that FGF23 may be used as a therapeutic target in the management and prevention of VC in CKD.
Collapse
Affiliation(s)
- Jie Jiang
- Nephrology Department, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Yi Li
- Nephrology Department, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Dongwen Zheng
- Nephrology Department, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Zhen Wang
- Nephrology Department, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Hongmei Zhou
- Nephrology Department, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| | - Guohui Liu
- Nephrology Department, Dongguan People's Hospital Affiliated to Southern Medical University, Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
17
|
Andersson CR, Selvin T, Blom K, Rubin J, Berglund M, Jarvius M, Lenhammar L, Parrow V, Loskog A, Fryknäs M, Nygren P, Larsson R. Mebendazole is unique among tubulin-active drugs in activating the MEK-ERK pathway. Sci Rep 2020; 10:13124. [PMID: 32753665 PMCID: PMC7403428 DOI: 10.1038/s41598-020-68986-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 11/09/2022] Open
Abstract
We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity in monocyte/macrophage models and induces ERK signalling. In the present study we investigated whether MBZ induced ERK activation is shared by other tubulin binding agents (TBAs) and if it is observable also in other human cell types. Curated gene signatures for a panel of TBAs in the LINCS Connectivity Map (CMap) database showed a unique strong negative correlation of MBZ with MEK/ERK inhibitors indicating ERK activation also in non-haematological cell lines. L1000 gene expression signatures for MBZ treated THP-1 monocytes also connected negatively to MEK inhibitors. MEK/ERK phosphoprotein activity testing of a number of TBAs showed that only MBZ increased the activity in both THP-1 monocytes and PMA differentiated macrophages. Distal effects on ERK phosphorylation of the substrate P90RSK and release of IL1B followed the same pattern. The effect of MBZ on MEK/ERK phosphorylation was inhibited by RAF/MEK/ERK inhibitors in THP-1 models, CD3/IL2 stimulated PBMCs and a MAPK reporter HEK-293 cell line. MBZ was also shown to increase ERK activity in CD4+ T-cells from lupus patients with known defective ERK signalling. Given these mechanistic features MBZ is suggested suitable for treatment of diseases characterized by defective ERK signalling, notably difficult to treat autoimmune diseases.
Collapse
Affiliation(s)
- Claes R Andersson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| | - Tove Selvin
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Kristin Blom
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Jenny Rubin
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Malin Berglund
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Malin Jarvius
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Lena Lenhammar
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Vendela Parrow
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 75185, Uppsala, Sweden
| | - Mårten Fryknäs
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, 75185, Uppsala, Sweden
| | - Rolf Larsson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
18
|
Lu K, Yang K, Niyongabo E, Shu Z, Wang J, Chang K, Zou Q, Jiang J, Jia C, Liu B, Zhou X. Integrated network analysis of symptom clusters across disease conditions. J Biomed Inform 2020; 107:103482. [PMID: 32535270 DOI: 10.1016/j.jbi.2020.103482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Identifying the symptom clusters (two or more related symptoms) with shared underlying molecular mechanisms has been a vital analysis task to promote the symptom science and precision health. Related studies have applied the clustering algorithms (e.g. k-means, latent class model) to detect the symptom clusters mostly from various kinds of clinical data. In addition, they focused on identifying the symptom clusters (SCs) for a specific disease, which also mainly concerned with the clinical regularities for symptom management. Here, we utilized a network-based clustering algorithm (i.e., BigCLAM) to obtain 208 typical SCs across disease conditions on a large-scale symptom network derived from integrated high-quality disease-symptom associations. Furthermore, we evaluated the underlying shared molecular mechanisms for SCs, i.e., shared genes, protein-protein interaction (PPI) and gene functional annotations using integrated networks and similarity measures. We found that the symptoms in the same SCs tend to share a higher degree of genes, PPIs and have higher functional homogeneities. In addition, we found that most SCs have related symptoms with shared underlying molecular mechanisms (e.g. enriched pathways) across different disease conditions. Our work demonstrated that the integrated network analysis method could be used for identifying robust SCs and investigate the molecular mechanisms of these SCs, which would be valuable for symptom science and precision health.
Collapse
Affiliation(s)
- Kezhi Lu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Kuo Yang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Edouard Niyongabo
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Zixin Shu
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Jingjing Wang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Kai Chang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Qunsheng Zou
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Jiyue Jiang
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Caiyan Jia
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Baoyan Liu
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xuezhong Zhou
- Institute of Medical Intelligence, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China; Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
19
|
MEK inhibition suppresses B regulatory cells and augments anti-tumor immunity. PLoS One 2019; 14:e0224600. [PMID: 31671149 PMCID: PMC6822709 DOI: 10.1371/journal.pone.0224600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) kinase (MEK) is an integral component of the RAS pathway and a therapeutic target in RAS-driven cancers. Although tumor responses to MEK inhibition are rarely durable, MEK inhibitors have shown substantial activity and durable tumor regressions when combined with systemic immunotherapies in preclinical models of RAS-driven tumors. MEK inhibitors have been shown to potentiate anti-tumor T cell immunity, but little is known about the effects of MEK inhibition on other immune subsets, including B cells. We show here that treatment with a MEK inhibitor reduces B regulatory cells (Bregs) in vitro, and reduces the number of Bregs in tumor draining lymph nodes in a colorectal cancer model in vivo. MEK inhibition does not impede anti-tumor humoral immunity, and B cells contribute meaningfully to anti-tumor immunity in the context of MEK inhibitor therapy. Treatment with a MEK inhibitor is associated with improved T cell infiltration and an enhanced response to anti-PD1 immunotherapy. Together these data indicate that MEK inhibition may reduce Bregs while sparing anti-tumor B cell function, resulting in enhanced anti-tumor immunity.
Collapse
|
20
|
FM0807 decelerates experimental arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-κB and MAPK pathways. Biosci Rep 2019; 39:BSR20182263. [PMID: 31431516 PMCID: PMC6722489 DOI: 10.1042/bsr20182263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/07/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic articular synovial inflammatory disease. The precise etiology underlying the pathogenesis of RA remains unknown. We aimed to investigate the inhibitory effect of curcumin analog FM0807 (curcumin salicylate monoester, 2-hydroxy-, 4-[(1E,6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxo-1,6-heptadien-1-yl]-2-methoxyphenyl ester) on experimental RA and investigate its possible mechanisms of action. Method: Rats with Freund’s complete adjuvant (FCA)-induced arthritis (AIA) were administered aspirin (0.1 mmol.kg−1), curcumin (0.1 mmol.kg−1), FM0807 (0.1, 0.2 mmol.kg−1) and vehicle via gastric gavage, from days 7 to 21, once daily. The hind paw volume and arthritis index (AI) were measured, and radiographic and histological examinations were performed. Twenty-one days later, the animals were killed and left ankle joints were removed to measure protein expression of the elements of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway by Western blot analysis. The enzyme-linked immunosorbent assay (ELISA) was employed to measure synovial fluid levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10. Results: Compared with AIA group, FM0807 reduced the AI and swelling of the injected hind paw in a dose-dependent manner, and inhibited increases in inflammatory cell infiltration, pannus formation and cartilage destruction. FM0807 also potently attenuated the increase in the expression of inflammatory factors TNF-α, IL-6 and IL-1β in synovial fluid, while IL-10 levels were also elevated. FM0807 significantly suppressed phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2 (ERK1/2), c-Jun-N-terminal kinase (JNK) 1/2 (JNK1/2), p38MAPK, inhibitor of NF-κB kinase (IKK), IκB and NF-κB p65 protein, (all P<0.05), which displayed more potential effects compared with those of the aspirin and curcumin groups. Conclusion: FM0807 exerts its therapeutic effects on RA by inhibiting cartilage degeneration. FM0807 treatment might be an effective therapeutic approach for RA.
Collapse
|
21
|
Lu N, Malemud CJ. Extracellular Signal-Regulated Kinase: A Regulator of Cell Growth, Inflammation, Chondrocyte and Bone Cell Receptor-Mediated Gene Expression. Int J Mol Sci 2019; 20:ijms20153792. [PMID: 31382554 PMCID: PMC6696446 DOI: 10.3390/ijms20153792] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family of signaling molecules. ERK is predominantly found in two forms, ERK1 (p44) and ERK2 (p42), respectively. There are also several atypical forms of ERK, including ERK3, ERK4, ERK5 and ERK7. The ERK1/2 signaling pathway has been implicated in many and diverse cellular events, including proliferation, growth, differentiation, cell migration, cell survival, metabolism and transcription. ERK1/2 is activated (i.e., phosphorylated) in the cytosol and subsequently translocated to the nucleus, where it activates transcription factors including, but not limited to, ETS, c-Jun, and Fos. It is not surprising that the ERK1/2 signaling cascade has been implicated in many pathological conditions, namely, cancer, arthritis, chronic inflammation, and osteoporosis. This narrative review examines many of the cellular events in which the ERK1/2 signaling cascade plays a critical role. It is anticipated that agents designed to inhibit ERK1/2 activation or p-ERK1/2 activity will be developed for the treatment of those diseases characterized by dysregulated gene expression through ERK1/2 activation.
Collapse
Affiliation(s)
- Nathan Lu
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Chan KK, Bass AR. Checkpoint inhibitor-induced polymyalgia rheumatica controlled by cobimetinib, a MEK 1/2 inhibitor. Ann Rheum Dis 2019; 78:e70. [PMID: 29760158 DOI: 10.1136/annrheumdis-2018-213672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Karmela Kim Chan
- Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, New York, New York, USA
| | - Anne R Bass
- Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
23
|
Abstract
Encorafenib (Braftovi™), a BRAF inhibitor, and binimetinib (Mektovi®), a MEK inhibitor, are two orally bioavailable drugs developed by Array BioPharma. In June 2018 they each received their first global approval, in the USA, for use in combination, for patients with unresectable or metastatic melanoma with a BRAFV600E or -V600K mutation as detected by an FDA-approved test. Registration applications for encorafenib and binimetinib for use in combination in the treatment of BRAF-mutation-positive advanced melanoma have also been submitted in the EU, Australia, Switzerland and Japan, with the EMA Committee for Medicinal Products for Human Use adopting a positive opinion in July 2018 towards granting the drugs marketing authorizations in the EU. Encorafenib plus binimetinib combination therapy is also in ongoing phase III clinical development in the treatment of metastatic colorectal cancer. This article summarizes the milestones in the development of encorafenib and binimetinib leading to these first approvals for the treatment of BRAFV600E or -V600K-mutation-positive unresectable or metastatic melanoma.
Collapse
|
24
|
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139:126-140. [DOI: 10.1016/j.phrs.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
|
25
|
Liu F, Feng XX, Zhu SL, Huang HY, Chen YD, Pan YF, June RR, Zheng SG, Huang JL. Sonic Hedgehog Signaling Pathway Mediates Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via MAPK/ERK Signaling Pathway. Front Immunol 2018; 9:2847. [PMID: 30568656 PMCID: PMC6290332 DOI: 10.3389/fimmu.2018.02847] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the major effector cells that lead to rheumatoid arthritis (RA) synovitis and joint destruction. Our previous studies showed that Sonic Hedgehog (SHH) signaling pathway is involved in aberrant activation of RA-FLSs and inhibition of SHH pathway decreases proliferation and migration of RA-FLSs. The objective of this study was to investigate if the SHH pathway mediates proliferation and migration of RA-FLSs via the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. SHH signaling was studied by using SHH agonist (Purmorphamine) and antagonist (Cyclopamine) targeting the Smoothened (SMO) in FLSs. U0126-EtOH was used to inhibit the MAPK/ERK signaling pathway. The phosphorylation of ERK 1/2 (p-ERKl/2) was examined by western blot. Cell viability was detected using cell proliferation and cytotoxicity kit-8 (CCK8), and cell cycle distribution and proliferating cells were evaluated by the flow cytometry. Cell migration was examined by Transwell assay. Results showed that, compared with the control group, Purmorphamine increased the levels of p-ERK1/2 in concentration-and time-dependent manners (P < 0.01). Co-treated with Purmorphamine and U0126-EtOH or Cyclopamine both decreased the levels of p-ERK1/2 (P < 0.05). RA-FLSs treated with Purmorphamine resulted in alteration of cell cycle distribution, increasing of proliferating cells, cell viability, and migration cells compared to controls (P < 0.01). However, the above phenomenon can be abolished by U0126-EtOH (P < 0.05). The findings suggest that SHH signaling pathway mediates proliferation and migration of RA-FLSs via MAPK/ERK pathway and may contribute to progression of RA. Targeting SHH signaling may have a therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Fang Liu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Xiao Xue Feng
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shang Ling Zhu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Yu Huang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Ying Di Chen
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Feng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Rayford R June
- Division of Rheumatology, Milton S. Hershey Medical College at Penn State University, Hershey, PA, United States
| | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical College at Penn State University, Hershey, PA, United States
| | - Jian Lin Huang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Cai L, Li CM, Tang WJ, Liu MM, Chen WN, Qiu YY, Li R. Therapeutic Effect of Penta-acetyl Geniposide on Adjuvant-Induced Arthritis in Rats: Involvement of Inducing Synovial Apoptosis and Inhibiting NF-κB Signal Pathway. Inflammation 2018; 41:2184-2195. [DOI: 10.1007/s10753-018-0861-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Peng W, Shen H, Lin B, Han P, Li C, Zhang Q, Ye B, Rahman K, Xin H, Qin L, Han T. Docking study and antiosteoporosis effects of a dibenzylbutane lignan isolated from Litsea cubeba targeting Cathepsin K and MEK1. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2215-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Jones DS, Jenney AP, Joughin BA, Sorger PK, Lauffenburger DA. Inflammatory but not mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 inhibition. Sci Signal 2018; 11:11/520/eaal1601. [PMID: 29511118 DOI: 10.1126/scisignal.aal1601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes joint pain, swelling, and loss of function. Development of effective new drugs has proven challenging in part because of the complexities and interconnected nature of intracellular signaling networks that complicate the effects of pharmacological interventions. We characterized the kinase signaling pathways that are activated in RA and evaluated the multivariate effects of targeted inhibitors. Synovial fluids from RA patients activated the kinase signaling pathways JAK, JNK, p38, and MEK in synovial fibroblasts (SFs), a stromal cell type that promotes RA progression. Kinase inhibitors enhanced signaling of "off-target" pathways in a manner dependent on stimulatory context. Inhibitors of p38, which have been widely explored in clinical trials for RA, resulted in undesirable increases in nuclear factor κB (NF-κB), JNK, and MEK signaling in SFs in inflammatory, but not mitogenic, contexts. This was mediated by the transcription factor CREB, which functions in part within a negative feedback loop in MAPK signaling. CREB activation was induced predominately by p38 in response to inflammatory stimuli, but by MEK in response to mitogenic stimuli; hence, the effects of drugs targeting p38 or MEK were markedly different in SFs cultured under mitogenic or inflammatory conditions. Together, these findings illustrate how stimulatory context can alter dominance in pathway cross-talk even for a fixed network topology, thereby providing a rationale for why p38 inhibitors deliver limited benefits in RA and demonstrating the need for careful consideration of p38-targeted drugs in inflammation-related disorders.
Collapse
Affiliation(s)
- Douglas S Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anne P Jenney
- Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
A novel gene and pathway-level subtyping analysis scheme to understand biological mechanisms in complex disease: a case study in rheumatoid arthritis. Genomics 2018; 111:375-382. [PMID: 29481842 DOI: 10.1016/j.ygeno.2018.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 11/20/2022]
Abstract
Complex diseases have heterogeneous underlying molecular mechanisms. In order to improve the diagnosis and treatment of disease, it is vital to stratify patients into homogeneous subgroups that share a similar disease etiology. In this study, we performed gene-level subtyping analysis on two independent Rheumatoid Arthritis gene expression cohorts from different ethnic groups to discover the possible disease mechanisms associated with each subtype. Also, a novel pathway-level analysis is proposed to increase the subtyping robustness and facilitate biological interpretation. This approach could stratify RA patients into two robust and homogeneous groups with differing activation of central signal transduction pathways and pro-inflammatory cytokines in the pathogenesis of RA. Such a methodology can help understand disease mechanisms at play in different patient sub-populations and also potentially explain why some patients don't respond to anti-TNF treatment.
Collapse
|
30
|
Zhang C, Zhou G, Cai C, Li J, Chen F, Xie L, Wang W, Zhang Y, Lai X, Ma L. Human umbilical cord mesenchymal stem cells alleviate acute myocarditis by modulating endoplasmic reticulum stress and extracellular signal regulated 1/2-mediated apoptosis. Mol Med Rep 2017; 15:3515-3520. [PMID: 28440472 PMCID: PMC5436290 DOI: 10.3892/mmr.2017.6454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023] Open
Abstract
Acute myocarditis is a non-ischemic inflammatory disease of the myocardium, and there is currently no standard treatment. Mesenchymal stem cells (MSCs) can alleviate myosin‑induced myocarditis; however, the mechanism has not been clearly elucidated. In the present study, the authors investigated the ability of human umbilical cordMSCs (HuMSCs) to attenuate myocardial injury and dysfunction during the acute phase of experimental myocarditis. Male Lewis rats (aged 8 weeks) were injected with porcine myosin to induce myocarditis. Cultured HuMSCs (1x106 cells/rat) were intravenously injected 10 days following myosin injection. A total of 3 weeks following injection, this resulted in severe inflammation and significant deterioration of cardiac function. HuMSC transplantation attenuated infiltration of inflammatory cells and adverse cardiac remodeling, as well as reduced cardiomyocyte apoptosis. Furthermore, it was identified that HuMSC transplantation suppressed endoplasmic reticulum stress and extracellular signal‑regulated kinase (ERK)1/2 signaling in experimental autoimmune myocarditis (EAM). The reduced number of TUNEL‑positive apoptotic cells in myocardial sections from HuMSC‑treated EAM rats compared with control demonstrates HuMSCs' anti‑apoptotic function. Based on these data, the author suggested that treatment with HuMSCs inhibits myocardial apoptosis in EAM rats, ultimately protecting them from myocardial damage. The conclusion demonstrated that HuMSC transplantation attenuates myocardial injury and dysfunction in a rat model of acute myocarditis, potentially via regulation of ER stress, ERK1/2 signaling and induction of cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Changyi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Guichi Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Chanxin Cai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jindi Li
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Fen Chen
- Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Maternal and Child Health Care Center of Pingshan, Shenzhen, Guangdong 518000, P.R. China
| | - Lichun Xie
- Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Maternal and Child Health Care Center of Pingshan, Shenzhen, Guangdong 518000, P.R. China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yonggang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiulan Lai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Dr Xiulan Lai, Department of Paediatrics, The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Maternal and Child Health Care Center of Pingshan, Shenzhen, Guangdong 518000, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Lian Ma, Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, 6 Longxing Road, Pingshan, Shenzhen, Guangdong 518000, P.R. China, E-mail:
| |
Collapse
|
31
|
Toro-Domínguez D, Carmona-Sáez P, Alarcón-Riquelme ME. Support for phosphoinositol 3 kinase and mTOR inhibitors as treatment for lupus using in-silico drug-repurposing analysis. Arthritis Res Ther 2017; 19:54. [PMID: 28284231 PMCID: PMC5346251 DOI: 10.1186/s13075-017-1263-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/14/2017] [Indexed: 11/12/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with few treatment options. Current therapies are not fully effective and show highly variable responses. In this regard, large efforts have focused on developing more effective therapeutic strategies. Drug repurposing based on the comparison of gene expression signatures is an effective technique for the identification of new therapeutic approaches. Here we present a drug-repurposing exploratory analysis using gene expression signatures from SLE patients to discover potential new drug candidates and target genes. Methods We collected a compendium of gene expression signatures comprising peripheral blood cells and different separate blood cell types from SLE patients. The Lincscloud database was mined to link SLE signatures with drugs, gene knock-down, and knock-in expression signatures. The derived dataset was analyzed in order to identify compounds, genes, and pathways that were significantly correlated with SLE gene expression signatures. Results We obtained a list of drugs that showed an inverse correlation with SLE gene expression signatures as well as a set of potential target genes and their associated biological pathways. The list includes drugs never or little studied in the context of SLE treatment, as well as recently studied compounds. Conclusion Our exploratory analysis provides evidence that phosphoinositol 3 kinase and mammalian target of rapamycin (mTOR) inhibitors could be potential therapeutic options in SLE worth further future testing. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1263-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Toro-Domínguez
- Area of Medical Genomics, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), Avda. de la Ilustración 114, PTS-18016, Granada, Spain.,Bioinformatics Unit, Pfizer-University of Granada-Andalusian Government Centre of Genomics and Oncological Research (GENYO), Avda. de la Ilustración 114, PTS-18016, Granada, Spain
| | - Pedro Carmona-Sáez
- Area of Medical Genomics, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), Avda. de la Ilustración 114, PTS-18016, Granada, Spain. .,Bioinformatics Unit, Pfizer-University of Granada-Andalusian Government Centre of Genomics and Oncological Research (GENYO), Avda. de la Ilustración 114, PTS-18016, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- Area of Medical Genomics, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), Avda. de la Ilustración 114, PTS-18016, Granada, Spain. .,Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institute, Stockholm, 17177, Sweden.
| |
Collapse
|
32
|
Keränen T, Hömmö T, Moilanen E, Korhonen R. β 2-receptor agonists salbutamol and terbutaline attenuated cytokine production by suppressing ERK pathway through cAMP in macrophages. Cytokine 2017; 94:1-7. [PMID: 28162907 DOI: 10.1016/j.cyto.2016.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
β2-receptor agonists are used in the treatment of inflammatory obstructive lung diseases asthma and COPD as a symptomatic remedy, but they have been suggested to possess anti-inflammatory properties, also. β2-receptor activation is considered to lead to the activation of ERK pathway through G-protein- and cAMP-independent mechanisms. In this study, we investigated the effects of β2-receptor agonists salbutamol and terbutaline on the production of inflammatory factors in macrophages. We found that β2-receptor agonists inhibited LPS-induced ERK phosphorylation and the production of MCP-1. A chemical cAMP analog 8-Br-cAMP also inhibited ERK phosphorylation and TNF and MCP-1 release. As expected, MAPK/ERK kinase (MEK)1/2 inhibitor PD0325901 inhibited ERK phosphorylation and suppressed both TNF and MCP-1 production. In conclusion, we suggest that β2-receptor agonists salbutamol and terbutaline inhibit inflammatory gene expression partly by a mechanism dependent on cAMP leading to the inhibition of ERK signaling in macrophages. Observed anti-inflammatory effects of β2-receptor agonists may contribute to the clinical effects of these drugs.
Collapse
Affiliation(s)
- Tiina Keränen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland
| | - Tuija Hömmö
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine, and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
33
|
Li R, Cai L, Tang WJ, Lei C, Hu CM, Yu F. Apoptotic Effect of Geniposide on Fibroblast-Like Synoviocytes in Rats with Adjuvant-Induced Arthritis via Inhibiting ERK Signal Pathway In Vitro. Inflammation 2016; 39:30-38. [PMID: 26233239 DOI: 10.1007/s10753-015-0219-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stimulating fibroblast-like synoviocyte (FLS) apoptosis in rheumatoid arthritis (RA) is a promising strategy for clinical treatment. Previous studies have confirmed that geniposide shows a certain anti-arthritic effect in vivo. However, whether geniposide can induce RA FLS apoptosis and the underlying mechanisms has not been elucidated. Herein, adjuvant-induced arthritis (AIA) in rat was induced and FLS was isolated from synovial tissues by tissue explant cultivation method. MTT assay, Hoechst staining, and flow cytometric apoptosis assay were applied to evaluate apoptotic effect of geniposide on AIA FLS. Bcl-2, Bax, and caspase 3 messenger RNA (mRNA) levels, and extracellular-signal-regulated kinases (ERKs) and phosphorylated ERK protein levels were examined by real-time PCR and western blot, respectively. We found that geniposide dose-dependently inhibited AIA FLS proliferation in vitro. AIA FLS treated with geniposide displayed typical apoptotic morphological characteristics including nuclear shrinkage and chromatin condensation. Flow cytometric apoptosis assay indicated that geniposide significantly increased the apoptosis rate of AIA FLS. Additionally, geniposide treatment on AIA FLS decreased Bcl-2 mRNA level and increased Bax and caspase 3 mRNA levels, accompanied by reduced protein levels of phosphorylated-ERK1/2, without affecting total ERK1/2. In conclusion, geniposide effectively induces AIA FLS apoptosis through regulating the apoptosis-related gene expressions and inhibiting ERK signal pathway.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Chao Lei
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Cheng-Mu Hu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| | - Fang Yu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, China
| |
Collapse
|
34
|
Muley MM, Krustev E, McDougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther 2015; 22:88-101. [PMID: 26663896 DOI: 10.1111/cns.12486] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
While acute inflammation is a natural physiological response to tissue injury or infection, chronic inflammation is maladaptive and engenders a considerable amount of adverse pain. The chemical mediators responsible for tissue inflammation act on nociceptive nerve endings to lower neuronal excitation threshold and sensitize afferent firing rate leading to the development of allodynia and hyperalgesia, respectively. Animal models have aided in our understanding of the pathophysiological mechanisms responsible for the generation of chronic inflammatory pain and allowed us to identify and validate numerous analgesic drug candidates. Here we review some of the commonly used models of skin, joint, and gut inflammatory pain along with their relative benefits and limitations. In addition, we describe and discuss several behavioral and electrophysiological approaches used to assess the inflammatory pain in these preclinical models. Despite significant advances having been made in this area, a gap still exists between fundamental research and the implementation of these findings into a clinical setting. As such we need to characterize inherent pathophysiological pathways and develop new endpoints in these animal models to improve their predictive value of human inflammatory diseases in order to design safer and more effective analgesics.
Collapse
Affiliation(s)
- Milind M Muley
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Eugene Krustev
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
35
|
Quercetin reduced inflammation and increased antioxidant defense in rat adjuvant arthritis. Arch Biochem Biophys 2015; 583:150-7. [DOI: 10.1016/j.abb.2015.08.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
|
36
|
Strippoli R, Loureiro J, Moreno V, Benedicto I, Pérez Lozano ML, Barreiro O, Pellinen T, Minguet S, Foronda M, Osteso MT, Calvo E, Vázquez J, López Cabrera M, del Pozo MA. Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis. EMBO Mol Med 2015; 7:102-23. [PMID: 25550395 PMCID: PMC4309670 DOI: 10.15252/emmm.201404127] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial–mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1−/− mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1−/− mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-β activity in matrices derived from Cav1−/− cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1−/− mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | - Jesús Loureiro
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Vanessa Moreno
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ignacio Benedicto
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - María Luisa Pérez Lozano
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Olga Barreiro
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Teijo Pellinen
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Susana Minguet
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Miguel Foronda
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Maria Teresa Osteso
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Enrique Calvo
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel López Cabrera
- Molecular Biology Unit, Hospital Universitario de la Princesa Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Miguel Angel del Pozo
- Department of Vascular biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
37
|
MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. J Mol Cell Cardiol 2014; 77:86-101. [PMID: 25257914 DOI: 10.1016/j.yjmcc.2014.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
Abstract
The cell-permeant peptide inhibitor of MAPKAP kinase 2 (MK2), MMI-0100, inhibits MK2 and downstream fibrosis and inflammation. Recent studies have demonstrated that MMI-0100 reduces intimal hyperplasia in a mouse vein graft model, pulmonary fibrosis in a murine bleomycin-induced model and development of adhesions in conjunction with abdominal surgery. MK2 is critical to the pathogenesis of ischemic heart injury as MK2(-/-) mice are resistant to ischemic remodeling. Therefore, we tested the hypothesis that inhibiting MK2 with MMI-0100 would protect the heart after acute myocardial infarction (AMI) in vivo. AMI was induced by placing a permanent LAD coronary ligation. When MMI-0100 peptide was given 30 min after permanent LAD coronary artery ligation, the resulting fibrosis was reduced/prevented ~50% at a 2 week time point, with a corresponding improvement in cardiac function and decrease in left ventricular dilation. In cultured cardiomyocytes and fibroblasts, MMI-0100 inhibited MK2 to reduce cardiomyocyte caspase 3/7 activity, while enhancing primary cardiac fibroblast caspase 3/7 activity, which may explain MMI-0100's salvage of cardiac function and anti-fibrotic effects in vivo. These findings suggest that therapeutic inhibition of MK2 after acute MI, using rationally-designed cell-permeant peptides, inhibits cardiac fibrosis and maintains cardiac function by mechanisms that involve inhibiting cardiomyocyte apoptosis, while enhancing primary cardiac fibroblast cell death.
Collapse
|
38
|
Feng J, Wu Y, Yang Y, Jiang W, Hu S, Li Y, Yang Y. Humulus scandens Exhibits Immunosuppressive Effects in Vitro and in Vivo by Suppressing CD4+ T Cell Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:921-34. [DOI: 10.1142/s0192415x1450058x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4+ T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinjin Feng
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yang Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Weiqi Jiang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shaoping Hu
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yifu Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
39
|
Jacques P, Lambrecht S, Verheugen E, Pauwels E, Kollias G, Armaka M, Verhoye M, Van der Linden A, Achten R, Lories RJ, Elewaut D. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis 2014; 73:437-45. [PMID: 23921997 DOI: 10.1136/annrheumdis-2013-203643] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Spondyloarthritides (SpA) are characterised by both peripheral and axial arthritis. The hallmarks of peripheral SpA are the development of enthesitis, most typically of the Achilles tendon and plantar fascia, and new bone formation. This study was undertaken to unravel the mechanisms leading towards enthesitis and new bone formation in preclinical models of SpA. RESULTS First, we demonstrated that TNF(ΔARE) mice show typical inflammatory features highly reminiscent of SpA. The first signs of inflammation were found at the entheses. Importantly, enthesitis occurred equally in the presence or absence of mature T and B cells, underscoring the importance of stromal cells. Hind limb unloading in TNF(ΔARE) mice significantly suppressed inflammation of the Achilles tendon compared with weight bearing controls. Erk1/2 signalling plays a crucial role in mechanotransduction-associated inflammation. Furthermore, new bone formation is strongly promoted at entheseal sites by biomechanical stress and correlates with the degree of inflammation. CONCLUSIONS These findings provide a formal proof of the concept that mechanical strain drives both entheseal inflammation and new bone formation in SpA.
Collapse
Affiliation(s)
- Peggy Jacques
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital, , Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Alghasham A, Rasheed Z. Therapeutic targets for rheumatoid arthritis: Progress and promises. Autoimmunity 2014; 47:77-94. [PMID: 24437572 DOI: 10.3109/08916934.2013.873413] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent therapeutic advancements in understanding of molecular and cellular mechanisms of rheumatoid arthritis (RA) have highlighted the strategies that aim to inhibit the harmful effects of up-regulated cytokines or other inflammatory mediators and to inhibit their associated signaling events. The utility of cytokine as therapeutic targets in RA has been unequivocally demonstrated by the success of tumor necrosis factor (TNF)-α blockade in clinical practice. Partial and non-responses to TNF-α blocking agents, however, together with the increasing clinical drive to remission induction, requires that further therapeutic targets be identified. Numerous proinflammatory mediators with their associated cell signaling events have now been demonstrated in RA, including interleukin (IL)-1 and IL-12 superfamilies. Continued efforts are ongoing to target IL-6, IL-15 and IL-17 in clinical trials with promising data emerging. In the present review, we focus on IL-7, IL-18, IL-32 and IL-10 family of cytokines (IL-19, IL-20 and IL-22) as they are implicated in contributing to the pathogenesis of RA, which could be targeted and offer new therapeutic options for RA therapy. Recent evidences also suggest that multiligand receptor for advanced glycation end products (RAGE), several adipokines and various components of immune system play a critical role in the pathophysiology of RA; therefore we have also highlighted them as therapeutic targets for RA therapy. Components of subcellular pathways, involve in nuclear transcription factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway have also been discussed and offer several novel potential therapeutic opportunities for RA.
Collapse
|
41
|
Julovi SM, Shen K, Mckelvey K, Minhas N, March L, Jackson CJ. Activated protein C inhibits proliferation and tumor necrosis factor α-stimulated activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in rheumatoid synovial fibroblasts. Mol Med 2013; 19:324-31. [PMID: 24096826 DOI: 10.2119/molmed.2013.00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/19/2013] [Indexed: 11/06/2022] Open
Abstract
Synovial fibroblast proliferation is a hallmark of the invasive pannus in the rheumatoid joint. Activated protein C (APC) is a natural anticoagulant that exerts antiinflammatory and cyto-protective effects in various diseases via endothelial protein C receptor (EPCR) and proteinase-activated receptor (PAR)-mediated pathways. In this study, we investigated the effect and the underlying cellular signaling mechanisms of APC on proliferation of human rheumatoid synovial fibroblasts (RSFs). We found that APC stimulated proliferation of mouse dermal fibroblasts (MDFs) and normal human dermal fibroblasts (HDFs) by up to 60%, but robustly downregulated proliferation of RSFs. APC induced the phosphorylation of extracellular signal-regulated protein kinase (ERK) and enhanced expression of p21 and p27 in a dose-dependent manner in RSFs. The latter effect was inhibited by pre-treatment with the ERK inhibitors PD98059 and U0126 but not by p38 inhibitor SB203580. In addition, APC significantly downregulated tumor necrosis factor (TNF)α-stimulated cell proliferation and activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in RSFs. These results provide the first evidence that APC selectively inhibits proliferation and the inflammatory signaling pathways of RSFs. Thus, APC may reduce synovial hyperplasia and pannus invasion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sohel M Julovi
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia.,Department of Surgery, Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kaitlin Shen
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kelly Mckelvey
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Nikita Minhas
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
42
|
Abstract
Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.
Collapse
|
43
|
Rogers JL, Serafin DS, Timoshchenko RG, Tarrant TK. Cellular targeting in autoimmunity. Curr Allergy Asthma Rep 2013; 12:495-510. [PMID: 23054625 DOI: 10.1007/s11882-012-0307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many biologic agents that were first approved for the treatment of malignancies are now being actively investigated and used in a variety of autoimmune diseases such as rheumatoid arthritis (RA), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, systemic lupus erythematosus (SLE), and Sjogren's syndrome. The relatively recent advance of selective immune targeting has significantly changed the management of autoimmune disorders and in part can be attributed to the progress made in understanding effector cell function and their signaling pathways. In this review, we will discuss the recent FDA-approved biologic therapies that directly target immune cells as well as the most promising investigational drugs affecting immune cell function and signaling for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jennifer L Rogers
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. Transl Res 2013; 161:89-98. [PMID: 22749778 DOI: 10.1016/j.trsl.2012.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/15/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
Abstract
Recent evidence indicates that the antimalarial agent artesunate (ART) has immunomodulatory properties that may be useful for treating rheumatoid arthritis (RA). However, the effects of ART on the RA animal model have not been described. The current study aimed to evaluate the antiarthritic effect of ART and explore the potential mechanism on type II collagen-induced arthritis (CIA) in rats. From the day of arthritis onset, rats were treated daily by gavage with leflunomide (Lef) or ART at a dosage of 10 mg/kg/d or 5 mg/kg/d, respectively, for 16 days. The severity of arthritis and levels of pro- and anti-inflammatory cytokines in site were measured. The expression and activity of metalloproteinase (MMP)-2 and MMP-9 were determined. The activation of nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was investigated in rats with CIA and in Raw264.7 cells. Our results showed that ART treatment significantly attenuated inflammation symptoms and prevented cartilage and bone destruction. ART decreased expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interleukin-17α. Both expression and activity of MMP-9 were efficiently inhibited by ART. ART significantly inhibited the degradation of IκB and activation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in rats with CIA and in lipopolysaccharide-stimulated Raw264.7 cells. The present study demonstrated that ART ameliorated rat CIA. The antiarthritic effect might be achieved by inhibiting the action of proinflammatory cytokines and the activity of MMP-9 via suppression of nuclear factor kappa B and mitogen-activated protein kinase signaling pathway. These results show that ART may be used as an adjuvant therapy for patients with RA.
Collapse
|
46
|
Zhang X, Ma H, Huang J, Dai Y. Characterization of the Phosphoproteome in SLE Patients. PLoS One 2012; 7:e53129. [PMID: 23285258 PMCID: PMC3532163 DOI: 10.1371/journal.pone.0053129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is a complex regulatory event that is involved in the signaling networks that affect virtually every cellular process. The protein phosphorylation may be a novel source for discovering biomarkers and drug targets. However, a systematic analysis of the phosphoproteome in patients with SLE has not been performed. To clarify the pathogenesis of systemic lupus erythematosus (SLE), we compared phosphoprotein expression in PBMCs from SLE patients and normal subjects using proteomics analyses. Phosphopeptides were enriched using TiO₂ from PBMCs isolated from 15 SLE patients and 15 healthy subjects and then analyzed by automated LC-MS/MS analysis. Phosphorylation sites were identified and quantitated by MASCOT and MaxQuant. A total of 1035 phosphorylation sites corresponding to 618 NCBI-annotated genes were identified in SLE patients compared with normal subjects. Differentially expressed proteins, peptides and phosphorylation sites were then subjected to bioinformatics analyses. Gene ontology(GO) and pathway analyses showed that nucleic acid metabolism, cellular component organization, transport and multicellular organismal development pathways made up the largest proportions of the differentially expressed genes. Pathway analyses showed that the mitogen-activated protein kinase (MAPK) signaling pathway and actin cytoskeleton regulators made up the largest proportions of the metabolic pathways. Network analysis showed that rous sarcoma oncogene (SRC), v-rel reticuloendotheliosis viral oncogene homolog A (RELA), histone deacetylase (HDA1C) and protein kinase C, delta (PRKCD) play important roles in the stability of the network. These data suggest that aberrant protein phosphorylation may contribute to SLE pathogenesis.
Collapse
Affiliation(s)
- Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianrong Huang
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
- * E-mail:
| |
Collapse
|
47
|
Prasadam I, Mao X, Shi W, Crawford R, Xiao Y. Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med (Berl) 2012; 91:369-80. [DOI: 10.1007/s00109-012-0953-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/06/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
|
48
|
Effect of locally administered Syk siRNA on allergen-induced arthritis and asthma. Mol Immunol 2012; 53:52-9. [PMID: 22796951 DOI: 10.1016/j.molimm.2012.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022]
Abstract
New approaches for the treatment of inflammatory disorders such as rheumatic arthritis (RA) and inflammatory lung disease (asthma) are needed because a significant population of patients do not experience sustained relief with currently available therapies. The tyrosine kinase Syk plays a crucial role in inflammatory signaling pathways and has gained much attention as a potential target for treatment of inflammatory disorders. We have shown that our Syk siRNA injected directly into limb joints of arthritic mice, diminishes joint swelling and reduces levels of Syk kinase and inflammatory cytokines in joint tissue. Further, our Syk siRNA, administered via nasal instillation, inhibits recruitment of inflammatory cells to the bronchoalveolar fluid of allergen-sensitized mice. We propose that targeting Syk via localized application of Syk siRNA provides an opportunity for specific knockdown of Syk kinase with minimal potential for systemic effects.
Collapse
|
49
|
Abstract
Treatment of rheumatoid arthritis (RA) has dramatically changed during the last 15 years. A limited number of conventional disease-modifying antirheumatic drugs (DMARD) in combination with non-steroid anti-inflammatory drugs (NSAID) and corticosteroids are facing a variety of biologics that are increasingly being used. Because of the high costs of biologics as well as the necessity for subcutaneous or intravenous administration, there is currently a growing interest in new and potent oral compounds such as the small molecules. Inflammatory pathways and mechanisms in signal transduction have been characterized in detail. Instead of neutralizing the action of a proinflammatory cytokine by antagonizing its biologic effect by an antibody, these small molecules interfere with the intracellular pathways of the inflammatory cascade. Intracellular kinases are among these enzymes which are crucially involved in intracellular signal transduction. Kinase inhibitors have been successfully used within the last few years in the treatment of various hematological malignancies, such as imatinib in patients with chronic myeloid leukemia. More recently, the Janus kinase (JAK) inhibitor tofacitinib has been evaluated as a potential new treatment option in RA and is awaiting approval. While an overview about JAK inhibition will be given elsewhere, other inhibitors such as spleen tyrosine kinase (Syk) inhibitor, mitogen-activated protein kinase (MAPK) inhibitor and Bruton's tyrosine kinase (Btk) inhibitor are currently in preclinical and clinical development.
Collapse
Affiliation(s)
- A Rubbert-Roth
- Med. Klinik I, Universität zu Köln, Joseph-Stelzmann Str. 9, 50924, Köln, Deutschland.
| |
Collapse
|
50
|
Design and synthesis of orally available MEK inhibitors with potent in vivo antitumor efficacy. Bioorg Med Chem Lett 2012; 22:2411-4. [DOI: 10.1016/j.bmcl.2012.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 11/17/2022]
|