1
|
Wei S, Cheng RJ, Li S, Lu C, Zhang Q, Wu Q, Zhao X, Tian X, Zeng X, Liu Y. MSC-microvesicles protect cartilage from degradation in early rheumatoid arthritis via immunoregulation. J Nanobiotechnology 2024; 22:673. [PMID: 39497131 PMCID: PMC11536868 DOI: 10.1186/s12951-024-02922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE As research into preclinical rheumatoid arthritis (pre-RA) has advanced, a growing body of evidence suggests that abnormalities in RA-affected joint cartilage precede the onset of arthritis. Thus, early prevention and treatment strategies are imperative. In this study, we aimed to explore the protective effects of mesenchymal stem cell (MSC)-derived microvesicles (MVs) on cartilage degradation in a collagen-induced arthritis (CIA) mouse model. METHODS A CIA mouse model was established to observe early pathological changes in cartilage (days 21-25) through histological and radiological examinations. On day 22, MSCs-MVs were intravenously injected into the mice with CIA. Radiological, histological, and flow cytometric examinations were conducted to observe inflammation and cartilage changes in these mice compared to the mice with CIA and the control mice. In vitro, chondrocytes were cultured with inflammatory factors such as IL-1β and TNFα to simulate inflammatory damage to cartilage. After the addition of MVs, changes in inflammatory levels and collagen expression were measured via Western blotting, immunofluorescence, enzyme-linked immunosorbent assays (ELISAs), and quantitative PCR to determine the role of MVs in maintaining chondrocytes. RESULTS MSC-MVs expressed vesicular membrane proteins (CD63 and Annexin V) and surface markers characteristic of MSCs (CD44, CD73, CD90, and CD105). In the early stages of CIA in mice, a notable decrease in collagen content was observed in the joint cartilage. In mice with CIA, injection of MSCs-MVs resulted in a significant reduction in the peripheral blood levels of IL-1β, TNFα, and IL-6, along with a decrease in the ratio of proinflammatory T and B cells. Additionally, MSC-MVs downregulated the expression of IL-1β, TNFα, MMP-13, and ADAMTS-5 in cartilage while maintaining the stability of type I and type II collagen. These MVs also attenuated the destruction of cartilage, which was evident on imaging. In vitro experiments demonstrated that MSC-MVs effectively suppressed the secretion of the inflammatory factors IL-1β, TNFα, and IL-6 in stimulated peripheral blood mononuclear cells (PBMCs). CONCLUSIONS MSCs-MVs can inhibit the decomposition of the inflammation-induced cartilage matrix by regulating immune cell inflammatory factors to attenuate cartilage destruction. MSC-MVs are promising effective treatments for the early stages of RA.
Collapse
Affiliation(s)
- Shixiong Wei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College. National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital. Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Sujia Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiuhong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueting Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College. National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital. Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College. National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology. State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital. Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
He Y, Aoun M, Xu Z, Holmdahl R. Shift in perspective: autoimmunity protecting against rheumatoid arthritis. Ann Rheum Dis 2024; 83:550-555. [PMID: 38413169 DOI: 10.1136/ard-2023-225237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
A hallmark of rheumatoid arthritis (RA) is the increased levels of autoantibodies preceding the onset and contributing to the classification of the disease. These autoantibodies, mainly anti-citrullinated protein antibody (ACPA) and rheumatoid factor, have been assumed to be pathogenic and many attempts have been made to link them to the development of bone erosion, pain and arthritis. We and others have recently discovered that most cloned ACPA protect against experimental arthritis in the mouse. In addition, we have identified suppressor B cells in healthy individuals, selected in response to collagen type II, and these cells decrease in numbers in RA. These findings provide a new angle on how to explain the development of RA and maybe also other complex autoimmune diseases preceded by an increased autoimmune response.
Collapse
Affiliation(s)
- Yibo He
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Mike Aoun
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Zhongwei Xu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| |
Collapse
|
3
|
Nandakumar KS, Fang Q, Wingbro Ågren I, Bejmo ZF. Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15883. [PMID: 37958864 PMCID: PMC10648236 DOI: 10.3390/ijms242115883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Isabella Wingbro Ågren
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Zoe Fuwen Bejmo
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| |
Collapse
|
4
|
Jurczak A, Sandor K, Bersellini Farinotti A, Krock E, Hunt MA, Agalave NM, Barbier J, Simon N, Wang Z, Rudjito R, Vazquez-Mora JA, Martinez-Martinez A, Raoof R, Eijkelkamp N, Grönwall C, Klareskog L, Jimenéz-Andrade JM, Marchand F, Svensson CI. Insights into FcγR involvement in pain-like behavior induced by an RA-derived anti-modified protein autoantibody. Brain Behav Immun 2023; 113:212-227. [PMID: 37437817 DOI: 10.1016/j.bbi.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Joint pain is one of the most debilitating symptoms of rheumatoid arthritis (RA) and patients frequently rate improvements in pain management as their priority. RA is hallmarked by the presence of anti-modified protein autoantibodies (AMPA) against post-translationally modified citrullinated, carbamylated and acetylated proteins. It has been suggested that autoantibody-mediated processes represent distinct mechanisms contributing to pain in RA. In this study, we investigated the pronociceptive properties of monoclonal AMPA 1325:01B09 (B09 mAb) derived from the plasma cell of an RA patient. We found that B09 mAb induces pain-like behavior in mice that is not associated with any visual, histological or transcriptional signs of inflammation in the joints, and not alleviated by non-steroidal anti-inflammatory drugs (NSAIDs). Instead, we found that B09 mAb is retained in dorsal root ganglia (DRG) and alters the expression of several satellite glia cell (SGC), neuron and macrophage-related factors in DRGs. Using mice that lack activating FcγRs, we uncovered that FcγRs are critical for the development of B09-induced pain-like behavior, and partially drive the transcriptional changes in the DRGs. Finally, we observed that B09 mAb binds SGC in vitro and in combination with external stimuli like ATP enhances transcriptional changes and protein release of pronociceptive factors from SGCs. We propose that certain RA antibodies bind epitopes in the DRG, here on SGCs, form immune complexes and activate resident macrophages via FcγR cross-linking. Our work supports the growing notion that autoantibodies can alter nociceptor signaling via mechanisms that are at large independent of local inflammatory processes in the joint.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Alex Bersellini Farinotti
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Emerson Krock
- The Alan Edwards Centre for Research on Pain, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Zhenggang Wang
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden
| | - Juan Antonio Vazquez-Mora
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Juan Miguel Jimenéz-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand 38-63001, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solnavägen 9, 171 65, Sweden.
| |
Collapse
|
5
|
Xu Z, Xu B, Lundström SL, Moreno-Giró À, Zhao D, Martin M, Lönnblom E, Li Q, Krämer A, Ge C, Cheng L, Liang B, Tong D, Stawikowska R, Blom AM, Fields GB, Zubarev RA, Holmdahl R. A subset of type-II collagen-binding antibodies prevents experimental arthritis by inhibiting FCGR3 signaling in neutrophils. Nat Commun 2023; 14:5949. [PMID: 37741824 PMCID: PMC10517938 DOI: 10.1038/s41467-023-41561-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Rheumatoid arthritis (RA) involves several classes of pathogenic autoantibodies, some of which react with type-II collagen (COL2) in articular cartilage. We previously described a subset of COL2 antibodies targeting the F4 epitope (ERGLKGHRGFT) that could be regulatory. Here, using phage display, we developed recombinant antibodies against this epitope and examined the underlying mechanism of action. One of these antibodies, R69-4, protected against cartilage antibody- and collagen-induced arthritis in mice, but not autoimmune disease models independent of arthritogenic autoantibodies. R69-4 was further shown to cross-react with a large range of proteins within the inflamed synovial fluid, such as the complement protein C1q. Complexed R69-4 inhibited neutrophil FCGR3 signaling, thereby impairing downstream IL-1β secretion and neutrophil self-orchestrated recruitment. Likewise, human isotypes of R69-4 protected against arthritis with comparable efficiency. We conclude that R69-4 abrogates autoantibody-mediated arthritis mainly by hindering FCGR3 signaling, highlighting its potential clinical utility in acute RA.
Collapse
Affiliation(s)
- Zhongwei Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bingze Xu
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Àlex Moreno-Giró
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Redoxis AB, Lund, Sweden
| | - Danxia Zhao
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Myriam Martin
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Erik Lönnblom
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Qixing Li
- Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China
| | - Alexander Krämer
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Changrong Ge
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lei Cheng
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Bibo Liang
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Center for Medical Immunopharmacology Research, Southern Medical University, Guangzhou, China
| | - Dongmei Tong
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Roma Stawikowska
- Institute for Human Health & Disease Intervention and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
6
|
Gatto M, Bjursten S, Jonsson CA, Agelii ML, Jonell C, McGrath S, Lönnblom E, Sareila O, Holmdahl R, Rudin A, Levin M, Gjertsson I. Early Increase of Circulating Transitional B Cells and Autoantibodies to Joint-Related Proteins in Patients With Metastatic Melanoma Developing Checkpoint Inhibitor-Induced Inflammatory Arthritis. Arthritis Rheumatol 2022; 75:856-863. [PMID: 36409578 DOI: 10.1002/art.42406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate potential associations between B cell-related immunologic changes and development of inflammatory arthritis (IA) after treatment with immune checkpoint inhibitors (ICIs). METHODS Patients who developed ICI-induced IA (ICI-IA) and patients who did not develop immune-related adverse events (non-IRAE) after receiving ICIs to treat metastatic melanoma were consecutively recruited. Blood samples were collected at the time of ICI-IA occurrence and at different time points during treatment. Peripheral blood B cell subsets during ICI treatment were analyzed by flow cytometry. Rheumatoid factor, anti-citrullinated protein antibodies, and antibodies against joint-related proteins were measured. RESULTS Proportions of CD19+ B cells were higher in patients with ICI-IA (n = 7) compared to patients with non-IRAE (n = 15) (median 11.7% [interquartile range (IQR) 9.7-16.2%] versus 8.1% [IQR 5.7-11.0%]; P = 0.03). The proportion and absolute numbers of transitional CD19+CD10+CD24high CD38high B cells were increased in patients with ICI-IA compared to non-IRAE patients (median 8.1% [IQR 4.9-12.1%] versus 3.6% [IQR 1.9-4.9%]; median 10.7 cells/μl [IQR 8.9-19.6] versus 4.4 cells/μl [IQR 2.3-6.6]; P < 0.01 for both). In addition, higher levels of transitional B cells were associated with development of ICI-IA (odds ratio 2.25 [95% confidence interval 1.03-4.9], P = 0.04). Transitional B cells increased before the onset of overt ICI-IA and decreased between the active and quiescent stages of ICI-IA (P = 0.02). Autoantibodies to type II collagen epitopes were detected in up to 43% of ICI-IA patients compared to none of the non-IRAE patients (P = 0.02). CONCLUSION Development of ICI-IA is accompanied by an increase in transitional B cells and by production of autoantibodies to joint-related proteins. Monitoring of B cell-driven abnormalities upon ICI treatment may help earlier recognition of ICI-IA.
Collapse
Affiliation(s)
- Mariele Gatto
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Department of Medicine, Unit of Rheumatology, University of Padova, Italy
| | - Sara Bjursten
- Department of Oncology, Sahlgrenska University Hospital, and Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Leu Agelii
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Jonell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Lönnblom
- Department of Medical Biochemistry and Biophysics, Section for Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Outi Sareila
- Department of Medical Biochemistry and Biophysics, Section for Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Section for Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Wallenberg Laboratory for Cardiovascular Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Bauza‐Mayol G, Quintela M, Brozovich A, Hopson M, Shaikh S, Cabrera F, Shi A, Niclot FB, Paradiso F, Combellack E, Jovic T, Rees P, Tasciotti E, Francis LW, Mcculloch P, Taraballi F. Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo. Adv Healthc Mater 2022; 11:e2101127. [PMID: 34662505 PMCID: PMC11469755 DOI: 10.1002/adhm.202101127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Focal chondral lesions of the knee are the most frequent type of trauma in younger patients and are associated with a high risk of developing early posttraumatic osteoarthritis. The only current clinical solutions include microfracture, osteochondral grafting, and autologous chondrocyte implantation. Cartilage tissue engineering based on biomimetic scaffolds has become an appealing strategy to repair cartilage defects. Here, a chondrogenic collagen-chondroitin sulfate scaffold is tested in an orthotopic Lapine in vivo model to understand the beneficial effects of the immunomodulatory biomaterial on the full chondral defect. Using a combination of noninvasive imaging techniques, histological and whole transcriptome analysis, the scaffolds are shown to enhance the formation of cartilaginous tissue and suppression of host cartilage degeneration, while also supporting tissue integration and increased tissue regeneration over a 12 weeks recovery period. The results presented suggest that biomimetic materials could be a clinical solution for cartilage tissue repair, due to their ability to modulate the immune environment in favor of regenerative processes and suppression of cartilage degeneration.
Collapse
Affiliation(s)
- Guillermo Bauza‐Mayol
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Marcos Quintela
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Ava Brozovich
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Texas A&M College of MedicineBryanTX77807USA
| | - Michael Hopson
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Shazad Shaikh
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Fernando Cabrera
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Aaron Shi
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Federica Banche Niclot
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Polytechnic of TurinDepartment of Applied Science and TechnologyCorso Duca degli Abruzzi 24Torino10129Italy
| | - Francesca Paradiso
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Emman Combellack
- Reconstructive Surgery and Regenerative Medicine Research GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Tom Jovic
- Reconstructive Surgery and Regenerative Medicine Research GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Paul Rees
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | | | - Lewis W. Francis
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
| | - Patrick Mcculloch
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Francesca Taraballi
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| |
Collapse
|
8
|
Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021; 26:molecules26082391. [PMID: 33924083 PMCID: PMC8074261 DOI: 10.3390/molecules26082391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
Collapse
|
9
|
Djuretić J, Dimitrijević M, Stojanović M, Stevuljević JK, Hamblin MR, Micov A, Stepanović-Petrović R, Leposavić G. Infrared radiation from cage bedding moderates rat inflammatory and autoimmune responses in collagen-induced arthritis. Sci Rep 2021; 11:2882. [PMID: 33536461 PMCID: PMC7858598 DOI: 10.1038/s41598-021-81999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Collapse
Affiliation(s)
- Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Jelena Kotur Stevuljević
- Department of Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
10
|
Li Y, Tong D, Liang P, Lönnblom E, Viljanen J, Xu B, Nandakumar KS, Holmdahl R. Cartilage-binding antibodies initiate joint inflammation and promote chronic erosive arthritis. Arthritis Res Ther 2020; 22:120. [PMID: 32448385 PMCID: PMC7245816 DOI: 10.1186/s13075-020-02169-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antibodies binding to cartilage proteins are present in the blood and synovial fluid of early rheumatoid arthritis patients. In order to develop animal models mimicking the human disease, we have characterized the arthritogenic capacity of monoclonal antibodies directed towards different joint proteins in the cartilage. METHODS Purified antibodies specific to unmodified or citrullinated collagen type II (CII), collagen type XI (CXI), and cartilage oligomeric matrix protein (COMP) were produced as culture supernatant, affinity purified, pooled as antibody cocktails (Cab3 and Cab4), and injected intravenously into mice to induce arthritis. An adjuvant (lipopolysaccharide or mannan) was subsequently injected intraperitoneally on either day 5 or day 60 to enhance arthritis. Antibody binding and complement activation on the cartilage surface were analyzed by immunohistochemical methods. Bone erosions and joint deformations were analyzed by histological assessments, enzyme-linked immunosorbent assays, and micro-CT. Luminex was used to detect CII-triple helical epitope-specific antibody responses. RESULTS The new cartilage antibody cocktails induced an earlier and more severe disease than anti-CII antibody cocktail. Many of the mouse strains used developed severe arthritis with 3 antibodies, binding to collagen II, collagen XI, and cartilage oligomeric matrix protein (the Cab3 cocktail). Two new models of arthritis including Cab3-induced LPS-enhanced arthritis (lpsCAIA) and Cab3-induced mannan-enhanced arthritis (mCAIA) were established, causing severe bone erosions and bone loss, as well as epitope spreading of the B cell response. Cab4, with addition of an antibody to citrullinated collagen II, induced arthritis more efficiently in moderately susceptible C57BL/6 J mice. CONCLUSIONS The new mouse model for RA induced with cartilage antibodies allows studies of chronic development of arthritis and epitope spreading of the autoimmune response and bone erosion.
Collapse
Affiliation(s)
- Yanpeng Li
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dongmei Tong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Peibin Liang
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Erik Lönnblom
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Johan Viljanen
- Department of Chemistry Biomedical Center, Uppsala University, Box 576, SE-75123, Uppsala, Sweden
| | - Bingze Xu
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rikard Holmdahl
- SMU-KI United Medical Inflammation Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177, Stockholm, Sweden.
| |
Collapse
|
11
|
Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators Inflamm 2020; 2020:3830212. [PMID: 32256192 PMCID: PMC7103059 DOI: 10.1155/2020/3830212] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune syndrome associated with several genetic, epigenetic, and environmental factors affecting the articular joints contributing to cartilage and bone damage. Although etiology of this disease is not clear, several immune pathways, involving immune (T cells, B cells, dendritic cells, macrophages, and neutrophils) and nonimmune (fibroblasts and chondrocytes) cells, participate in the secretion of many proinflammatory cytokines, chemokines, proteases (MMPs, ADAMTS), and other matrix lysing enzymes that could disturb the immune balance leading to cartilage and bone damage. The presence of autoantibodies preceding the clinical onset of arthritis and the induction of bone erosion early in the disease course clearly suggest that initiation events damaging the cartilage and bone start very early during the autoimmune phase of the arthritis development. During this process, several signaling molecules (RANKL-RANK, NF-κB, MAPK, NFATc1, and Src kinase) are activated in the osteoclasts, cells responsible for bone resorption. Hence, comprehensive knowledge on pathogenesis is a prerequisite for prevention and development of targeted clinical treatment for RA patients that can restore the immune balance improving clinical therapy.
Collapse
|
12
|
Bersellini Farinotti A, Wigerblad G, Nascimento D, Bas DB, Morado Urbina C, Nandakumar KS, Sandor K, Xu B, Abdelmoaty S, Hunt MA, Ängeby Möller K, Baharpoor A, Sinclair J, Jardemark K, Lanner JT, Khmaladze I, Borm LE, Zhang L, Wermeling F, Cragg MS, Lengqvist J, Chabot-Doré AJ, Diatchenko L, Belfer I, Collin M, Kultima K, Heyman B, Jimenez-Andrade JM, Codeluppi S, Holmdahl R, Svensson CI. Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons. J Exp Med 2019; 216:1904-1924. [PMID: 31196979 PMCID: PMC6683987 DOI: 10.1084/jem.20181657] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/metabolism
- Arthralgia/drug therapy
- Arthralgia/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoantibodies/immunology
- Autoantibodies/therapeutic use
- Behavior, Animal/drug effects
- Cartilage/immunology
- Cartilage Oligomeric Matrix Protein/immunology
- Collagen Type II/immunology
- Disease Models, Animal
- Female
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Neurons/metabolism
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
Collapse
Affiliation(s)
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Nascimento
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Duygu B Bas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bingze Xu
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sally Abdelmoaty
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A Hunt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Azar Baharpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon Sinclair
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ia Khmaladze
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lars E Borm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lu Zhang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wermeling
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Johan Lengqvist
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Quebec, Canada
| | - Inna Belfer
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kim Kultima
- Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Juan Miguel Jimenez-Andrade
- Department of Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Simone Codeluppi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
14
|
Collagen Autoantibodies and Their Relationship to CCP Antibodies and Rheumatoid Factor in the Progression of Early Rheumatoid Arthritis. Antibodies (Basel) 2017; 6:antib6020006. [PMID: 31548522 PMCID: PMC6698868 DOI: 10.3390/antib6020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/23/2022] Open
Abstract
Serum autoantibodies to cyclic citrullinated peptides (anti-CCP) and rheumatoid factor (RF) are important markers for diagnosis and prognosis of rheumatoid arthritis (RA), but their autoantigens are not cartilage-specific. Autoantibodies to joint-specific type II collagen (CII) also occur in RA, and monoclonal antibodies of similar specificity induce collagen antibody-induced arthritis in animals, but their role in RA is uncertain. We utilized an enzyme-linked immunosorbent assay (ELISA) with the CB10 peptide of CII to compare the frequency of autoantibodies with those of anti-CCP and RF in stored sera from a prospective study of 82 patients with early RA to examine the outcome, defined as remission (n = 23), persisting non-erosive arthritis (n = 27), or erosions (n = 32). Initial frequencies of anti-CB10, anti-CCP and RF were 76%, 54%, and 57% in RA, and 4%, 0%, and 9% in 136 controls. The frequency of anti-CB10 was unrelated to outcome, but anti-CCP and RF increased with increasing severity, and the number of autoantibodies mirrored the severity. We suggest RA is an immune complex-mediated arthritis in which the three antibodies interact, with anti-CII inducing localized cartilage damage and inflammation resulting in citrullination of joint proteins, neoepitope formation, and a strong anti-CCP response in genetically-susceptible subjects, all amplified and modified by RF.
Collapse
|
15
|
Le NPL, Bowden TA, Struwe WB, Crispin M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1655-68. [PMID: 27105835 PMCID: PMC4922387 DOI: 10.1016/j.bbagen.2016.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
Abstract
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ngoc Phuong Lan Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
16
|
Tengvall S, Eneljung T, Jirholt P, Turesson O, Wing K, Holmdahl R, Kihlberg J, Stern A, Mårtensson IL, Henningsson L, Gustafsson K, Gjertsson I. Gene Therapy Induces Antigen-Specific Tolerance in Experimental Collagen-Induced Arthritis. PLoS One 2016; 11:e0154630. [PMID: 27159398 PMCID: PMC4861286 DOI: 10.1371/journal.pone.0154630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/16/2016] [Indexed: 12/22/2022] Open
Abstract
Here, we investigate induction of immunological tolerance by lentiviral based gene therapy in a mouse model of rheumatoid arthritis, collagen II-induced arthritis (CIA). Targeting the expression of the collagen type II (CII) to antigen presenting cells (APCs) induced antigen-specific tolerance, where only 5% of the mice developed arthritis as compared with 95% of the control mice. In the CII-tolerized mice, the proportion of Tregs as well as mRNA expression of SOCS1 (suppressors of cytokine signaling 1) increased at day 3 after CII immunization. Transfer of B cells or non-B cell APC, as well as T cells, from tolerized to naïve mice all mediated a certain degree of tolerance. Thus, sustainable tolerance is established very early during the course of arthritis and is mediated by both B and non-B cells as APCs. This novel approach for inducing tolerance to disease specific antigens can be used for studying tolerance mechanisms, not only in CIA but also in other autoimmune diseases.
Collapse
Affiliation(s)
- Sara Tengvall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Tove Eneljung
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Jirholt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Olof Turesson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Kajsa Wing
- Medical Inflammation Research, Dept of medical Biochemistry and biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Dept of medical Biochemistry and biophysics, Karolinska Institutet, Stockholm, Sweden
- Southern Medical University, Guangzhou, PR China
| | - Jan Kihlberg
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Anna Stern
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Louise Henningsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Kenth Gustafsson
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, United Kingdom
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Gerlag DM, Norris JM, Tak PP. Towards prevention of autoantibody-positive rheumatoid arthritis: from lifestyle modification to preventive treatment. Rheumatology (Oxford) 2015; 55:607-14. [PMID: 26374913 PMCID: PMC4795536 DOI: 10.1093/rheumatology/kev347] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/02/2023] Open
Abstract
Recent advances in research into the earliest phases of RA have provided additional insights into the processes leading from the healthy to the diseased state. These insights have opened the way for the development of preventive strategies for RA, which represents a significant paradigm shift from treatment to prevention and will have major implications for patients as well as society. It would be a huge step forward if clinical signs and symptoms, disability, impaired quality of life and the need for chronic immunosuppressive treatment could be prevented. RA can be seen as a prototypic autoimmune disease, and discoveries about the preclinical diseased state for RA could potentially facilitate research into prevention of other immune-mediated inflammatory diseases such as type 1 diabetes, SLE and multiple sclerosis. This review focuses on the current knowledge of factors contributing to the development of RA and discusses the opportunities for intervention.
Collapse
Affiliation(s)
| | - Jill M Norris
- Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Paul P Tak
- Department of Rheumatology, University of Ghent, Ghent, Belgium, Department of Medicine, University of Cambridge, Cambridge and Research and Development, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
19
|
|
20
|
Lindh I, Snir O, Lönnblom E, Uysal H, Andersson I, Nandakumar KS, Vierboom M, 't Hart B, Malmström V, Holmdahl R. Type II collagen antibody response is enriched in the synovial fluid of rheumatoid joints and directed to the same major epitopes as in collagen induced arthritis in primates and mice. Arthritis Res Ther 2014; 16:R143. [PMID: 25005029 PMCID: PMC4226996 DOI: 10.1186/ar4605] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/11/2014] [Indexed: 01/17/2023] Open
Abstract
Introduction Antibodies towards type II collagen (CII) are detected in patients with rheumatoid arthritis (RA) and in non-human primates and rodents with collagen induced arthritis (CIA). We have previously shown that antibodies specific for several CII-epitopes are pathogenic using monoclonal antibodies from arthritic mice, although the role of different anti-CII epitopes has not been investigated in detail in other species. We therefore performed an inter-species comparative study of the autoantibody response to CII in patients with RA versus monkeys and mice with CIA. Methods Analysis of the full epitope repertoire along the disease course of CIA was performed using a library of CII triple-helical peptides. The antibody responses to the major CII epitopes were analyzed in sera and synovial fluid from RA patients, and in sera from rhesus monkeys (Macaca mulatta), common marmosets (Callithrix jacchus) and mice. Results Many CII epitopes including the major C1, U1, and J1 were associated with established CIA and arginine residues played an important role in the anti-CII antibody interactions. The major epitopes were also recognized in RA patients, both in sera and even more pronounced in synovial fluid: 77% of the patients had antibodies to the U1 epitope. The anti-CII immune response was not restricted to the anti-citrulline protein antibodies (ACPA) positive RA group. Conclusion CII conformational dependent antibody responses are common in RA and are likely to originate from rheumatoid joints but did not show a correlation with ACPA response. Importantly, the fine specificity of the anti-CII response is similar with CIA in monkeys and rodents where the recognized epitopes are conserved and have a major pathogenic role. Thus, anti-CII antibodies may both contribute to, as well as be the consequence of, local joint inflammation.
Collapse
|
21
|
Haag S, Schneider N, Mason DE, Tuncel J, Andersson IE, Peters EC, Burkhardt H, Holmdahl R. Identification of New Citrulline-Specific Autoantibodies, Which Bind to Human Arthritic Cartilage, by Mass Spectrometric Analysis of Citrullinated Type II Collagen. Arthritis Rheumatol 2014; 66:1440-9. [DOI: 10.1002/art.38383] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/23/2014] [Indexed: 02/01/2023]
Affiliation(s)
| | - Nadine Schneider
- University Hospital Frankfurt and Goethe University; Frankfurt am Main Germany
| | - Daniel E. Mason
- Genomics Institute of the Novartis Research Foundation; San Diego California
| | | | | | - Eric C. Peters
- Genomics Institute of the Novartis Research Foundation; San Diego California
| | - Harald Burkhardt
- University Hospital Frankfurt and Goethe University; Frankfurt am Main Germany
| | | |
Collapse
|
22
|
Holmdahl R. Studies of Preclinical Rheumatoid Arthritis Synovial Histology-A Comparison of Animal Models: Comment on the Article by de Hair et al. Arthritis Rheumatol 2014; 66:1682-3. [DOI: 10.1002/art.38406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation - the three stages of rheumatoid arthritis. Eur J Immunol 2014; 44:1593-9. [PMID: 24737176 DOI: 10.1002/eji.201444486] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 12/28/2022]
Abstract
Extensive genome-wide association studies have recently shed some light on the causes of chronic autoimmune diseases and have confirmed a central role of the adaptive immune system. Moreover, better diagnostics using disease-associated autoantibodies have been developed, and treatment has improved through the development of biologicals with precise molecular targets. Here, we use rheumatoid arthritis (RA) as a prototype for chronic autoimmune disease to propose that the pathogenesis of autoimmune diseases could be divided into three discrete stages. First, yet unknown environmental challenges seem to activate innate immunity thereby providing an adjuvant signal for the induction of adaptive immune responses that lead to the production of autoantibodies and determine the subsequent disease development. Second, a joint-specific inflammatory reaction occurs. This inflammatory reaction might be clinically diagnosed as the earliest signs of the disease. Third, inflammation is converted to a chronic process leading to tissue destruction and remodeling. In this review, we discuss the stages involved in RA pathogenesis and the experimental approaches, mainly involving animal models that can be used to investigate each disease stage. Although we focus on RA, it is possible that a similar stepwise development of disease also occurs in other chronic autoimmune settings such as multiple sclerosis (MS), type 1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Medical Inflammation Research, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Terato K, Do CT, Cutler D, Waritani T, Shionoya H. Preventing intense false positive and negative reactions attributed to the principle of ELISA to re-investigate antibody studies in autoimmune diseases. J Immunol Methods 2014; 407:15-25. [DOI: 10.1016/j.jim.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/17/2014] [Indexed: 01/14/2023]
|
25
|
Kessel C, Nandakumar KS, Peters FB, Gauba V, Schultz PG, Holmdahl R. A single functional group substitution in c5a breaks B cell and T cell tolerance and protects against experimental arthritis. Arthritis Rheumatol 2014; 66:610-21. [PMID: 24574221 DOI: 10.1002/art.38237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/15/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A deficiency in C5 protects against arthritis development. However, there is currently no approach successfully translating these findings into arthritis therapy, as by targeting the key component, C5a. The aim of this study was to develop a vaccination strategy targeting C5a as therapy for patients with rheumatoid arthritis. METHODS An anti-C5a vaccine was generated by incorporating the unnatural amino acid p-nitrophenylalanine (4NPA) into selected sites in the murine C5a molecule. C5a-4NPA variants were screened for their immunogenicity in mice on different arthritis-susceptible class II major histocompatibility complex (MHC) backgrounds. A candidate vaccine was tested for its impact on disease in a murine model of collagen-induced arthritis (CIA). Immunity toward endogenous C5a as well as type II collagen was monitored and characterized. RESULTS Replacing a single tyrosine residue in position 35 (Y(35) ) with 4NPA allowed the generation of an anti-C5a vaccine, which partly protected mice against the development of CIA while strongly ameliorating the severity of clinical disease. Although differing in just 3 atoms from wild-type C5a (wtC5a), C5aY(35) 4NPA induced loss of T cell and B cell tolerance toward the endogenous protein in mice expressing class II MHC H-2(q) molecules. Despite differential B cell epitope recognition, antibodies induced by both wtC5a and C5aY(35) 4NPA neutralized C5a. Thus, anti-wtC5a IgG titers during arthritis priming were potentially of critical importance for disease protection, because high titers of C5a-neutralizing antibodies after disease onset were unable to reverse the course of arthritis. CONCLUSION The results of this study suggest that the most effective anti-C5a treatment in arthritis can be accomplished using a preventive vaccination strategy, and that treatment using conventional biologic or small molecule strategies targeting the C5a/C5aR axis may miss the optimal window for therapeutic intervention during the subclinical priming phase of the disease.
Collapse
|
26
|
Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-008-0080-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
|
28
|
Antigen-specific gene therapy after immunisation reduces the severity of collagen-induced arthritis. Clin Dev Immunol 2013; 2013:345092. [PMID: 24371448 PMCID: PMC3858880 DOI: 10.1155/2013/345092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/25/2013] [Indexed: 12/02/2022]
Abstract
Reestablishment of tolerance induction in rheumatoid arthritis (RA) would be an optimal treatment with few, if any, side effects. However, to develop such a treatment further insights in the immunological mechanisms governing tolerance are needed. We have developed a model of antigen-specific tolerance in collagen type II (CII) induced arthritis (CIA) using lentivirus-based gene therapy. The immunodominant epitope of CII was inserted into a lentivirus vector to achieve expression on the MHC class II molecule and the lentiviral particles were subsequently intravenously injected at different time points during CIA. Injection of lentiviral particles in early phases of CIA, that is, at day 7 or day 26 after CII immunisation, partially prevented development of arthritis, decreased the serum levels of CII-specific IgG antibodies, and enhanced the suppressive function of CII-specific T regulatory cells. When lentiviral particles were injected during manifest arthritis, that is, at day 31 after CII immunisation, the severity of arthritis progression was ameliorated, the levels of CII-specific IgG antibodies decreased and the proportion of T regulatory cells increased. Thus, antigen-specific gene therapy is effective when administered throughout the inflammatory course of arthritis and offers a good model for investigation of the basic mechanisms during tolerance in CIA.
Collapse
|
29
|
Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants. Vaccine 2013; 31:3519-27. [PMID: 23742996 DOI: 10.1016/j.vaccine.2013.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 02/01/2023]
Abstract
PNiPAAm is a thermo-responsive polymer with an adjuvant activity. To identify the minimal chemical structure present within PNiPAAm responsible for its adjuvant property, three different constituent polymers with specific functional groups were synthesized through free radical reaction and tested their adjuvant potential along with PNiPAAm. Among them, polymer with isopropyl attached to an amide showed maximal adjuvant activity in rodents followed by polymer with amide or ketone functional groups. However, secondary amine containing polymer did not show any adjuvant activity. In addition, to improve the adjuvant properties of PNiPAAm, we incorporated an affinity ligand, boronate. At first, we synthesized and characterized the dual responsive copolymers PNiPAAm-co-VPBA and PNiPAAm-co-VPBA-co-DMAEMA. Biocompatibility of these copolymers was confirmed both in vitro and in vivo. Mice injected with these copolymers mixed with collagen (CII) developed significant levels of anti-CII antibodies comprising of all the major IgG subclasses and an increased T cell activation. At the injection site, massive infiltration of immune cells was observed. However, only PNiPAAm-co-VPBA-co-DMAEMA-CII induced arthritis in mice after injection of 0.5M fructose confirming the importance of effective release of CII from the polymer for its adjuvant activity. Thus, a fine balance of hydrophobicity and hydrophilicity promotes adjuvant properties and continuous release of antigen, in this case CII, from polymer is essential for its adjuvant activity.
Collapse
|
30
|
Croxford AM, Whittingham S, McNaughton D, Nandakumar KS, Holmdahl R, Rowley MJ. Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation. ACTA ACUST UNITED AC 2013; 65:650-9. [DOI: 10.1002/art.37805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022]
|
31
|
|
32
|
Bas DB, Su J, Sandor K, Agalave NM, Lundberg J, Codeluppi S, Baharpoor A, Nandakumar KS, Holmdahl R, Svensson CI. Collagen antibody-induced arthritis evokes persistent pain with spinal glial involvement and transient prostaglandin dependency. ACTA ACUST UNITED AC 2012; 64:3886-96. [DOI: 10.1002/art.37686] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 08/23/2012] [Indexed: 12/30/2022]
|
33
|
Batsalova T, Lindh I, Bäcklund J, Dzhambazov B, Holmdahl R. Comparative analysis of collagen type II-specific immune responses during development of collagen-induced arthritis in two B10 mouse strains. Arthritis Res Ther 2012; 14:R237. [PMID: 23116329 PMCID: PMC3674594 DOI: 10.1186/ar4080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/22/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction Immune responses against collagen type II (CII) are crucial for the development of collagen-induced arthritis (CIA). The aim of the present study was to evaluate and compare the CII-directed T cell and antibody specificity at different time points in the course of CIA using two mouse strains on the B10 genetic background - B10.Q, expressing Aq MHC class II molecules, and B10.DR4.Ncf1*/*, expressing human rheumatoid arthritis-associated MHC II DR4 molecules (DRA*0101/DRB*0401). Methods B10.Q and B10.DR4.Ncf1*/* mice were immunized with CII emulsified in adjuvant and development of CIA was assessed. T cells from draining lymph nodes were restimulated in vitro with CII peptides and interferon-gamma (IFN-γ) levels in culture supernatants were evaluated by ELISA. CII-specific antibody levels in serum samples were measured by ELISA. Results At four different CIA time points we analyzed T cell specificity to the immunodominant CII epitope 259-273 (CII259-273) and several posttranslationally modified forms of CII259-273 as well as antibody responses to three B cell immunodominant epitopes on CII (C1, U1, J1). Our data show that CII-specific T and B cell responses increase dramatically after disease onset in both strains and are sustained during the disease course. Concerning anti-CII antibody fine specificity, during all investigated stages of CIA the B10.Q mice responded predominantly to the C1 epitope, whereas the B10.DR4.Ncf1*/* mice also recognized the U1 epitope. In the established disease phase, T cell reactivity toward the galactosylated CII259-273 peptide was similar between the DR4- and the Aq-expressing strains whereas the response to the non-modified CII peptide was dramatically enhanced in the DR4 mice compared with the B10.Q. In addition, we show that the difference in the transgenic DR4-restricted T cell specificity to CII259-273 is not dependent on the degree of glycosylation of the collagen used for immunization. Conclusions The present study provides important evaluation of CII-specific immune responses at different phases during CIA development as well as a comparative analysis between two CIA mouse models. We indicate significant differences in CII T cell and antibody specificities between the two strains and highlight a need for improved humanized B10.DR4 mouse model for rheumatoid arthritis.
Collapse
|
34
|
|
35
|
Mullazehi M, Wick MC, Klareskog L, van Vollenhoven R, Rönnelid J. Anti-type II collagen antibodies are associated with early radiographic destruction in rheumatoid arthritis. Arthritis Res Ther 2012; 14:R100. [PMID: 22548748 PMCID: PMC3446477 DOI: 10.1186/ar3825] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/01/2012] [Accepted: 05/01/2012] [Indexed: 01/06/2023] Open
Abstract
Introduction We have previously reported that high levels of antibodies specific for native human type II collagen (anti-CII) at the time of RA diagnosis were associated with concurrent but not later signs of inflammation. This was associated with CII/anti-CII immune complex (IC)-induced production of pro-inflammatory cytokines in vitro. In contrast, anti-cyclic citrullinated peptide antibodies (anti-CCP) were associated both with late inflammation and late radiological destruction in the same RA cohort. We therefore hypothesized that anti-CII are also associated with early erosions. Methods Two-hundred-and-fifty-six patients from an early RA cohort were included. Baseline levels of anti-CII, anti-CCP and anti-mutated citrullinated vimentin were analyzed with ELISA, and rheumatoid factor levels were determined by nephelometry. Radiographs of hands and feet at baseline, after one and after two years were quantified using the 32-joints Larsen erosion score. Results Levels of anti-CII were bimodally distributed in the RA cohort, with a small (3.1%, 8/256) group of very high outliers with a median level 87 times higher than the median for the healthy control group. Using a cut-off discriminating the outlier group that was associated with anti-CII IC-induced production of proinflammatory cytokines in vitro, baseline anti-CII antibodies were significantly (p = 0.0486) associated with increased radiographic damage at the time of diagnosis. Anti-CII-positive patient had also significantly increased HAQ score (p = 0.0303), CRP (p = 0.0026) and ESR (p = 0.0396) at the time of diagnosis but not during follow-up. The median age among anti-CII-positive subjects was 12 years higher than among the anti-CII-negative patients. Conclusion In contrary to anti-CCP, anti-CII-positive patients with RA have increased joint destruction and HAQ score at baseline. Anti-CII thus characterizes an early inflammatory/destructive phenotype, in contrast to the late appearance of an inflammatory/destructive phenotype in anti-CCP positive RA patients. The anti-CII phenotype might account for part of the elderly acute onset RA phenotype with rather good prognosis.
Collapse
Affiliation(s)
- Mohammed Mullazehi
- Clinical Immunology, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5, Uppsala University, Uppsala, SE-75185, Sweden
| | | | | | | | | |
Collapse
|
36
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
37
|
Queiroz-Junior CM, Madeira MFM, Coelho FM, Costa VV, Bessoni RLC, Sousa LFDC, Garlet GP, Souza DDGD, Teixeira MM, Silva TAD. Experimental arthritis triggers periodontal disease in mice: involvement of TNF-α and the oral Microbiota. THE JOURNAL OF IMMUNOLOGY 2011; 187:3821-30. [PMID: 21890656 DOI: 10.4049/jimmunol.1101195] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rheumatoid arthritis (RA) and periodontal disease (PD) are prevalent chronic inflammatory disorders that affect bone structures. Individuals with RA are more likely to experience PD, but how disease in joints could induce PD remains unknown. This study aimed to experimentally mimic clinical parameters of RA-induced PD and to provide mechanistic findings to explain this association. Chronic Ag-induced arthritis (AIA) was triggered by injection of methylated BSA in the knee joint of immunized mice. Anti-TNF-α was used to assess the role of this cytokine. Intra-articular challenge induced infiltration of cells, synovial hyperplasia, bone resorption, proteoglycan loss, and increased expression of cytokines exclusively in challenged joints. Simultaneously, AIA resulted in severe alveolar bone loss, migration of osteoclasts, and release of proinflammatory cytokines in maxillae. Anti-TNF-α therapy prevented the development of both AIA and PD. AIA did not modify bacterial counts in the oral cavity. PD, but not AIA, induced by injection of Ag in immunized mice was decreased by local treatment with antiseptic, which decreased the oral microbiota. AIA was associated with an increase in serum C-reactive protein levels and the expression of the transcription factors RORγ and Foxp3 in cervical lymph nodes. There were higher titers of anti-collagen I IgG, and splenocytes were more responsive to collagen I in AIA mice. In conclusion, AIA-induced PD was dependent on TNF-α and the oral microbiota. Moreover, PD was associated with changes in expression of lymphocyte transcription factors, presence of anti-collagen Abs, and increased reactivity to autoantigens.
Collapse
Affiliation(s)
- Celso Martins Queiroz-Junior
- Departamento de Clínica, Patologia e Cirurgia Odontológicas, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Conigliaro P, Benson RA, Patakas A, Kelly SM, Valesini G, Holmdahl R, Brewer JM, McInnes IB, Paul Garside. Characterization of the anticollagen antibody response in a new model of chronic polyarthritis. ACTA ACUST UNITED AC 2011; 63:2299-308. [DOI: 10.1002/art.30413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Croxford AM, Nandakumar KS, Holmdahl R, Tobin MJ, McNaughton D, Rowley MJ. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066004. [PMID: 21721805 DOI: 10.1117/1.3585680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm(-1) at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.
Collapse
Affiliation(s)
- Allyson M Croxford
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Jochems C, Islander U, Erlandsson M, Engdahl C, Lagerquist M, Ohlsson C, Nandakumar KS, Holmdahl R, Carlsten H. Effects of oestradiol and raloxifene on the induction and effector phases of experimental postmenopausal arthritis and secondary osteoporosis. Clin Exp Immunol 2011; 165:121-9. [PMID: 21501150 DOI: 10.1111/j.1365-2249.2011.04397.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Oestradiol and the selective oestrogen receptor modulator (SERM) raloxifene have been shown to ameliorate collagen-induced arthritis (CIA) in rats and in mice. One aim was to investigate if raloxifene exerts its anti-arthritic and anti-osteoporotic effects during the induction or effector phase of arthritis. A second aim was to analyse if raloxifene activates the oestrogen response element (ERE) to produce its immune-modulator effects. CIA or collagen-antibody-induced arthritis (CAIA) was induced in ovariectomized DBA/1-mice. CIA was used for evaluation of treatment during the induction, and CAIA for the effector phase of arthritis and osteoporosis development. Raloxifene, oestradiol or vehicle was administered 5 days/week. The clinical disease was evaluated continuously. Bone marrow density (BMD) was analysed with peripheral quantitative computer tomography, paws were collected for histological examination, and sera were analysed for markers of bone and cartilage turnover and proinflammatory cytokines. Transgenic luciferase (Luc)-ERE mice were immunized with collagen (CII), and after 10 days injected once with raloxifene, oestradiol or vehicle before termination. Spleens were analysed for luciferase activity to measure ERE activation. Treatment with oestradiol or raloxifene during the induction phase of CIA failed to affect arthritis. Raloxifene did not hamper disease activity in CAIA, whereas oestradiol delayed the onset and ameliorated the severity. Both raloxifene and oestradiol preserved BMD in CAIA. CII-immunization increased the oestradiol-induced ERE activation in spleen, and raloxifene activated the ERE at about 25% the intensity of oestradiol. Further experiments are needed to elucidate the exact mechanisms behind this finding.
Collapse
Affiliation(s)
- C Jochems
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Croxford AM, Crombie D, McNaughton D, Holmdahl R, Nandakumar KS, Rowley MJ. Specific antibody protection of the extracellular cartilage matrix against collagen antibody-induced damage. ACTA ACUST UNITED AC 2010; 62:3374-84. [PMID: 20662051 DOI: 10.1002/art.27671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The type II collagen (CII)-specific monoclonal antibodies (mAb) M2139 and CIIC1 induce arthritis in vivo and degrade bovine cartilage explants in vitro, whereas mAb CIIF4 is nonarthritogenic and prevents arthritis development when given in combination with M2139 and CIIC1. To determine the nature of the protective capacity of CIIF4 antibody, we examined the effects of adding CIIF4 to cartilage explants cultured in vitro with M2139 and CIIC1. METHODS Bovine cartilage explants were cultured in the presence of M2139 and CIIC1, with or without CIIF4. Histologic changes were examined, and chemical changes to collagens and proteoglycans were assessed by Fourier transform infrared microspectroscopy (FTIRM). Fresh cartilage and cartilage that had been freeze-thawed to kill chondrocytes cultured with or without the addition of GM6001, a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), were compared using FTIRM analysis. RESULTS M2139 and CIIC1 caused progressive degradation of the cartilage surface and loss of CII, even in the absence of viable chondrocytes. CIIF4 did not cause cartilage damage, and when given with the arthritogenic mAb, it prevented their damage and permitted matrix regeneration, a process that required viable chondrocytes. Inhibition of MMP activity reduced cartilage damage but did not mimic the effects of CIIF4. CONCLUSION CII-reactive antibodies can cause cartilage damage or can be protective in vivo and in vitro, depending on their epitope specificity. Since CII antibodies of similar specificity also occur in rheumatoid arthritis in humans, more detailed studies should unravel the regulatory mechanisms operating at the effector level of arthritis pathogenesis.
Collapse
|
42
|
O'Daly JA, Gleason JP, Peña G, Colorado I. Purified proteins from Leishmania amastigotes-induced delayed type hypersensitivity reactions and remission of collagen-induced arthritis in animal models. Arch Dermatol Res 2010; 302:567-81. [PMID: 20063004 DOI: 10.1007/s00403-009-1026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/10/2009] [Accepted: 12/29/2009] [Indexed: 12/20/2022]
Abstract
A treatment preparation composed of purified Leishmania (L) antigenic fractions (AS210) induced linear delayed type hypersensitivity (DTH) reactions over a 1-40 microg dose range, in guinea pigs. When a DBA-1 mouse collagen induced arthritis (CIA) model was used to compare AS210 treatment against: a polyvalent vaccine (AS110-1), a monovalent vaccine (AS110-2) and placebo, the AS210 treated mice had the least amount of forepaw inflammation and the lowest mean arthritis scores (MAS). When MAS for day(s) 1-40 were analyzed using one way ANOVA, statistically significant (P < 0.05) differences were seen for the following study groups: PBS versus Dexamethasone and PBS versus AS210. Subsequently, the ANOVA analysis results were corroborated by the Mann-Whitney test: analysis of the first group (P < 0.001) and analysis of the second group (P < 0.001). Comparison between dexamethasone and AS210 at different time intervals by Mann-Whitney test were as follows: day 0-day 5 both treatments had equal values (P = 1.00), from day-7 to 20 AS210 treatment had lower MAS values than dexamethasone (P = 0.037), and from day-21 to 30, AS210 MAS were similar to dexamethasone values (P = 0.319). No statistical difference was observed between AS110-1, AS110-2, and placebo groups.
Collapse
|
43
|
Uysal H, Nandakumar KS, Kessel C, Haag S, Carlsen S, Burkhardt H, Holmdahl R. Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol Rev 2010; 233:9-33. [DOI: 10.1111/j.0105-2896.2009.00853.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Nandakumar KS. Pathogenic antibody recognition of cartilage. Cell Tissue Res 2009; 339:213-20. [DOI: 10.1007/s00441-009-0816-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/05/2009] [Indexed: 12/16/2022]
|
45
|
Ria F, Penitente R, De Santis M, Nicolò C, Di Sante G, Orsini M, Arzani D, Fattorossi A, Battaglia A, Ferraccioli GF. Collagen-specific T-cell repertoire in blood and synovial fluid varies with disease activity in early rheumatoid arthritis. Arthritis Res Ther 2008; 10:R135. [PMID: 19014626 PMCID: PMC2656238 DOI: 10.1186/ar2553] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 10/28/2008] [Accepted: 11/17/2008] [Indexed: 12/20/2022] Open
Abstract
Introduction Type II collagen is a DR4/DR1 restricted target of self-reactive T cells that sustain rheumatoid arthritis. The aim of the present study was to analyze the T-cell receptor repertoire at the onset of and at different phases in rheumatoid arthritis. Methods We used the CDR3 BV-BJ spectratyping to study the response to human collagen peptide 261–273 in 12 patients with DR4+ rheumatoid arthritis (six at the onset of disease and six during the course of disease) and in five healthy DR4+ relatives. Results The collagen-specific T-cell repertoire is quite restricted at the onset of disease, involving approximately 10 rearrangements. Within the studied collagen-specific rearrangements, nearly 75% is shared among patients. Although the size of the repertoire used by control individuals is comparable to that of patients, it is characterized by different T-cell receptors. Part of the antigen-specific T-cell repertoire is spontaneously enriched in synovial fluid. The specific T-cell repertoire in the periphery was modulated by therapy and decreased with the remission of the disease. Failure of immunoscopy to detect this repertoire was not due to suppression of collagen-driven proliferation in vitro by CD4+ CD25+ T cells. Clinical relapse of the disease was associated with the appearance of the original collagen-specific T cells. Conclusions The collagen-specific T-cell receptor repertoire in peripheral blood and synovial fluid is restricted to a limited number of rearrangements in rheumatoid arthritis. The majority of the repertoire is shared between patients with early rheumatoid arthritis and it is modulated by therapy.
Collapse
Affiliation(s)
- Francesco Ria
- Institute of General Pathology, Catholic University, Largo F Vito, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2008; 18:429-41. [PMID: 18521704 DOI: 10.1007/s10165-008-0080-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 04/07/2008] [Indexed: 11/24/2022]
Abstract
This review examines evidence that rheumatoid arthritis (RA) depends on autoimmunity to articular collagen, and mechanisms whereby autoantibodies to type II collagen contribute to disease development. Three major autoantigenic reactants have been identified in RA; the corresponding autoantibodies are rheumatoid factor (RF), antibodies to citrullinated peptide antigens (ACPA), citrullinated peptides (anti-CCP), and anti-type II collagen (anti-CII). Both RF and ACPA are well-validated and predictive markers of severe erosive RA, but cannot be linked to pathogenesis. By contrast, in various animal species immunized with CII there occurs an erosive inflammatory arthritis resembling that seen in human RA, together with antibodies to CII with an epitope specificity similar to that in RA. We discuss the well-known role of immune complexes in the induction of inflammation within the joint, and present recent data showing, additionally, that antibodies to CII cause direct damage to cartilage in vitro. The close resemblances between human RA and collagen-induced arthritis in animals suggest that autoimmunity, and particularly autoantibodies to CII, are important for both the initiation and perpetuation of RA in a dual manner: as contributors to the inflammation associated with immune complex deposition, and as agents with direct degradative effects on cartilage integrity and its repair.
Collapse
Affiliation(s)
- Merrill J Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia.
| | | | | |
Collapse
|
47
|
Therapeutic cleavage of IgG: new avenues for treating inflammation. Trends Immunol 2008; 29:173-8. [DOI: 10.1016/j.it.2008.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 01/19/2023]
|