1
|
Domínguez-Luis MJ, Castro-Hernández J, Santos-Concepción S, Díaz-Martín A, Arce-Franco M, Pérez-González N, Díaz M, Castrillo A, Salido E, Machado JD, Gumá M, Corr M, Díaz-González F. Modulation of the K/BxN arthritis mouse model and the effector functions of human fibroblast-like synoviocytes by liver X receptors. Eur J Immunol 2024; 54:e2451136. [PMID: 39148175 DOI: 10.1002/eji.202451136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The role of liver X receptors (LXR) in rheumatoid arthritis (RA) remains controversial. We studied the effect of LXR agonists on fibroblast-like synoviocytes (FLS) from RA patients and the K/BxN arthritis model in LXRα and β double-deficient (Nr1h2/3-/-) mice. Two synthetic LXR agonists, GW3965 and T0901317, were used to activate LXRs and investigate their effects on cell growth, proliferation and matrix metalloproteinases, and chemokine production in cultured FLS from RA patients. The murine model K/BxN serum transfer of inflammatory arthritis in Nr1h2/3-/- animals was used to investigate the role of LXRs on joint inflammation in vivo. LXR agonists inhibited the FLS proliferative capacity in response to TNF, the chemokine-induced migration, the collagenase activity in FLS supernatant and FLS CXCL12 production. In the K/BxN mouse model, Nr1h2/3-/- animals showed aggravated arthritis, histological inflammation, and joint destruction, as well as an increase in synovial metalloproteases and expression of proinflammatory mediators such as IL-1β and CCL2 in joints compared with wild type animals. Taken together, these data underscore the importance of LXRs in modulating the joint inflammatory response and highlight them as potential therapeutic targets in RA.
Collapse
MESH Headings
- Animals
- Humans
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Mice
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Fibroblasts/metabolism
- Mice, Knockout
- Disease Models, Animal
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cells, Cultured
- Male
- Cell Proliferation
- Female
- Mice, Inbred C57BL
- Benzylamines/pharmacology
Collapse
Affiliation(s)
| | - Javier Castro-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ana Díaz-Martín
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | - Mayte Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Mercedes Díaz
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Salido
- Departamento de Anatomía Patológica, Universidad de La Laguna, La Laguna, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Mónica Gumá
- Department of Medicine, University of California, San Diego, California, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, California, USA
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
- Departamento de Medicina Interna, Dermatología, Universidad de La Laguna, La Laguna, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
2
|
Ma S, Ming Y, Wu J, Cui G. Cellular metabolism regulates the differentiation and function of T-cell subsets. Cell Mol Immunol 2024; 21:419-435. [PMID: 38565887 PMCID: PMC11061161 DOI: 10.1038/s41423-024-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
T cells are an important component of adaptive immunity and protect the host from infectious diseases and cancers. However, uncontrolled T cell immunity may cause autoimmune disorders. In both situations, antigen-specific T cells undergo clonal expansion upon the engagement and activation of antigens. Cellular metabolism is reprogrammed to meet the increase in bioenergetic and biosynthetic demands associated with effector T cell expansion. Metabolites not only serve as building blocks or energy sources to fuel cell growth and expansion but also regulate a broad spectrum of cellular signals that instruct the differentiation of multiple T cell subsets. The realm of immunometabolism research is undergoing swift advancements. Encapsulating all the recent progress within this concise review in not possible. Instead, our objective is to provide a succinct introduction to this swiftly progressing research, concentrating on the metabolic intricacies of three pivotal nutrient classes-lipids, glucose, and amino acids-in T cells. We shed light on recent investigations elucidating the roles of these three groups of metabolites in mediating the metabolic and immune functions of T cells. Moreover, we delve into the prospect of "editing" metabolic pathways within T cells using pharmacological or genetic approaches, with the aim of synergizing this approach with existing immunotherapies and enhancing the efficacy of antitumor and antiinfection immune responses.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Yanan Ming
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China
| | - Jingxia Wu
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| | - Guoliang Cui
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230601, China.
| |
Collapse
|
3
|
de la Aleja AG, Herrero C, Torres-Torresano M, Schiaffino MT, Del Castillo A, Alonso B, Vega MA, Puig-Kröger A, Castrillo A, Corbí ÁL. Inhibition of LXR controls the polarization of human inflammatory macrophages through upregulation of MAFB. Cell Mol Life Sci 2023; 80:96. [PMID: 36930354 PMCID: PMC10020776 DOI: 10.1007/s00018-023-04745-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Monocyte-derived macrophages contribute to pathogenesis in inflammatory diseases and their effector functions greatly depend on the prevailing extracellular milieu. Whereas M-CSF primes macrophages for acquisition of an anti-inflammatory profile, GM-CSF drives the generation of T cell-stimulatory and pro-inflammatory macrophages. Liver X Receptors (LXRα and LXRβ) are nuclear receptors that control cholesterol metabolism and regulate differentiation of tissue-resident macrophages. Macrophages from rheumatoid arthritis and other inflammatory pathologies exhibit an enriched LXR pathway, and recent reports have shown that LXR activation raises pro-inflammatory effects and impairs the acquisition of the anti-Inflammatory profile of M-CSF-dependent monocyte-derived macrophages (M-MØ). We now report that LXR inhibition prompts the acquisition of an anti-inflammatory gene and functional profile of macrophages generated within a pathological environment (synovial fluid from Rheumatoid Arthritis patients) as well as during the GM-CSF-dependent differentiation of human monocyte-derived macrophages (GM-MØ). Mechanistically, inhibition of LXR results in macrophages with higher expression of the v-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (MAFB) transcription factor, which governs the macrophage anti-inflammatory profile, as well as over-expression of MAFB-regulated genes. Indeed, gene silencing experiments on human macrophages evidenced that MAFB is required for the LXR inhibitor to enhance the anti-inflammatory nature of human macrophages. As a whole, our results demonstrate that LXR inhibition prompts the acquisition of an anti-inflammatory transcriptional and functional profile of human macrophages in a MAFB-dependent manner, and propose the use of LXR antagonists as potential therapeutic alternatives in macrophage re-programming strategies during inflammatory responses.
Collapse
Affiliation(s)
- Arturo González de la Aleja
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Mónica Torres-Torresano
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Teresa Schiaffino
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Del Castillo
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Miguel A Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Amaya Puig-Kröger
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto Investigaciones Biomédicas "Alberto Sols" (IIBM), Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Ángel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
4
|
González de la Aleja A, Herrero C, Torres-Torresano M, de la Rosa JV, Alonso B, Capa-Sardón E, Muller IB, Jansen G, Puig-Kröger A, Vega MA, Castrillo A, Corbí ÁL. Activation of LXR Nuclear Receptors Impairs the Anti-Inflammatory Gene and Functional Profile of M-CSF-Dependent Human Monocyte-Derived Macrophages. Front Immunol 2022; 13:835478. [PMID: 35280993 PMCID: PMC8907538 DOI: 10.3389/fimmu.2022.835478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Liver X Receptors (LXR) control cholesterol metabolism and exert anti-inflammatory actions but their contribution to human macrophage polarization remains unclear. The LXR pathway is enriched in pro-inflammatory macrophages from rheumatoid arthritis as well as in tumors-associated macrophages from human tumors. We now report that LXR activation inhibits the anti-inflammatory gene and functional profile of M-CSF-dependent human macrophages, and prompts the acquisition of a pro-inflammatory gene signature, with both effects being blocked by an LXR inverse agonist. Mechanistically, the LXR-stimulated macrophage polarization shift correlates with diminished expression of MAFB and MAF, which govern the macrophage anti-inflammatory profile, and with enhanced release of activin A. Indeed, LXR activation impaired macrophage polarization in response to tumor-derived ascitic fluids, as well as the expression of MAF- and MAFB-dependent genes. Our results demonstrate that LXR activation limits the anti-inflammatory human macrophage polarization and prompts the acquisition of an inflammatory transcriptional and functional profile.
Collapse
Affiliation(s)
- Arturo González de la Aleja
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mónica Torres-Torresano
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan Vladimir de la Rosa
- Unidad de Biomedicina (Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC)), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Capa-Sardón
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ittai B. Muller
- Department of Clinical Chemistry, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Location VUmc, Amsterdam, Netherlands
| | - Amaya Puig-Kröger
- Unidad de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Miguel A. Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina (Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC)), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
- Instituto Investigaciones Biomédicas “Alberto Sols” (IIBM), and Centro Mixto Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (Consejo Superior de Investigaciones Científicas (ICSIC)-UAM), Madrid, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
5
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
6
|
Xie Y, Feng SL, Mai CT, Zheng YF, Wang H, Liu ZQ, Zhou H, Liu L. Suppression of up-regulated LXRα by silybin ameliorates experimental rheumatoid arthritis and abnormal lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153339. [PMID: 33038868 DOI: 10.1016/j.phymed.2020.153339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As dysregulation of immunometabolism plays a key role in the immunological diseases, dyslipidemia frequently observed in rheumatoid arthritis (RA) patients (60%) is associated with the disease activity and has been considered as the potential target of anti-inflammatory strategy. However, targeting of metabolic events to develop novel anti-inflammatory therapeutics are far from clear as well as the mechanism of dyslipidemia in RA. PURPOSE To explore the therapeutic potential and mechanisms of silybin again RA through the regulation of lipid metabolism. METHODS Adjuvant-induced arthritis (AIA) rat model was used to examine the effects of silybin on modulating dysregulated lipid metabolism and arthritis. Metabolomics, docking technology, and biochemical methods such as western blots, qRT-PCR, immunofluorescence staining were performed to understanding the underlying mechanisms. Moreover, knock-down of LXRα and LXRα agonist were used on LO2 cell lines to understand the action of silybin. RESULTS We are the first to demonstrate that silybin can ameliorate dyslipidemia and arthritis in AIA rats. Overexpression of LXRα and several key lipogenic enzymes regulated by LXRα, including lipoprotein lipase (LPL), cholesterol 7α and 27α hydroxylase (CYP7A, CYP27A), adipocyte fatty acid-binding protein (aP2/FABP4) and fatty acid translocase (CD36/FAT), were observed in AIA rats, which mostly accounted for dyslipidemia during arthritis development. Metabolomics, docking technology, and biochemical results indicated that anti-arthritis effects of silybin related to suppressing the up-regulated LXRα and abnormal lipid metabolism. Notably, activation of LXRα could potentiate cell inflammatory process induced by LPS through the regulation of NF-κB pathway, however, suppression of LXRα agonism by siRNA or silybin reduced the nuclear translocation of NF-κB as well as the induction of downstream cytokines, indicating LXRα agonism is the important factor for the arthritis development and could be a potential target. CONCLUSION The up-regulation of LXRα can activate lipogenesis enzymes to worsen the inflammatory process in AIA rats as well as the development of dyslipidemia, therefore, rectifying lipid disorder via suppression of LXRα agonism pertains the capacity of drug target, which enables to discover and develop new drugs to treat rheumatoid arthritis with dyslipidaemia.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR.
| | - Sen-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR
| | - Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR
| | - Yan-Fang Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR
| | - Hui Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR.
| |
Collapse
|
7
|
Bilotta MT, Petillo S, Santoni A, Cippitelli M. Liver X Receptors: Regulators of Cholesterol Metabolism, Inflammation, Autoimmunity, and Cancer. Front Immunol 2020; 11:584303. [PMID: 33224146 PMCID: PMC7670053 DOI: 10.3389/fimmu.2020.584303] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
The interplay between cellular stress and immune response can be variable and sometimes contradictory. The mechanisms by which stress-activated pathways regulate the inflammatory response to a pathogen, in autoimmunity or during cancer progression remain unclear in many aspects, despite our recent knowledge of the signalling and transcriptional pathways involved in these diseases. In this context, over the last decade many studies demonstrated that cholesterol metabolism is an important checkpoint for immune homeostasis and cancer progression. Indeed, cholesterol is actively metabolized and can regulate, through its mobilization and/or production of active derivatives, many aspects of immunity and inflammation. Moreover, accumulation of cholesterol has been described in cancer cells, indicating metabolic addiction. The nuclear receptors liver-X-receptors (LXRs) are important regulators of intracellular cholesterol and lipids homeostasis. They have also key regulatory roles in immune response, as they can regulate inflammation, innate and adaptive immunity. Moreover, activation of LXRs has been reported to affect the proliferation and survival of different cancer cell types that show altered metabolic pathways and accumulation of cholesterol. In this minireview we will give an overview of the recent understandings about the mechanisms through which LXRs regulate inflammation, autoimmunity, and cancer, and the therapeutic potential for future treatment of these diseases through modulation of cholesterol metabolism.
Collapse
Affiliation(s)
| | - Sara Petillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Gao L, Li B, Wang J, Shen D, Yang M, Sun R, Tung H, Xu M, Ren S, Zhang M, Yang D, Lu B, Wang H, Liu Y, Xie W. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol Commun 2020; 4:1664-1679. [PMID: 33163836 PMCID: PMC7603537 DOI: 10.1002/hep4.1584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory disease of the liver. Liver X receptors (LXRs), including the α and β isoforms, are previously known for their anti-inflammatory activities. The goal of this study is to determine whether and how LXR plays a role in AIH. LXRα gain-of-function and loss-of-function mouse models were used, in conjunction with the concanavalin A (ConA) model of T-cell mediated hepatitis. We first showed that the hepatic expression of LXRα was decreased in the ConA model of hepatitis and in human patients with AIH. In the ConA model, we were surprised to find that activation of LXRα in the constitutively activated VP-LXRα whole-body knock-in (LXRα-KI) mice exacerbated ConA-induced AIH, whereas the LXRα-/- mice showed attenuated ConA-induced AIH. Interestingly, hepatocyte-specific activation of LXRα in the fatty acid binding protein-VP-LXRα transgenic mice did not exacerbate ConA-induced hepatitis. Mechanistically, the sensitizing effect of the LXRα-KI allele was invariant natural killer T (iNKT)-cell dependent, because the sensitizing effect was abolished when the LXRα-KI allele was bred into the NKT-deficient CD1d-/- background. In addition, LXRα-enhanced ConA-induced hepatitis was dependent on interferon gamma. In contrast, adoptive transfer of hepatic iNKT cells isolated from LXRα-KI mice was sufficient to sensitize CD1d-/- mice to ConA-induced AIH. Conclusion: Activation of LXRα sensitizes mice to ConA-induced AIH in iNKT and interferon gamma-dependent manner. Our results suggest that LXRα plays an important role in the development of AIH.
Collapse
Affiliation(s)
- Li Gao
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Bin Li
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of Orthopedic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of PharmacologyBasic Medical School of Wuhan UniversityWuhanChina
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Danhua Shen
- Department of PathologyPeking University People’s HospitalBeijingChina
| | - Min Yang
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Runzi Sun
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Hung‐Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Binfeng Lu
- Department of ImmunologyUniversity of PittsburghPittsburghPAUSA
| | - Hui Wang
- Department of PharmacologyBasic Medical School of Wuhan UniversityWuhanChina
| | - Yulan Liu
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
- Department of Pharmacology & Chemical BiologyUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
9
|
Duc D, Vigne S, Pot C. Oxysterols in Autoimmunity. Int J Mol Sci 2019; 20:ijms20184522. [PMID: 31547302 PMCID: PMC6770630 DOI: 10.3390/ijms20184522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. Studies from the last few decades have demonstrated that oxysterols are not only active metabolites but are further involved in the modulation of immune responses. Liver X Receptors (LXRs), nuclear receptors for oxysterols, are important for cholesterol homeostasis and regulation of inflammatory response but are still poorly characterized during autoimmune diseases. Here we review the current knowledge about the role of oxysterols during autoimmune conditions and focus on the implication of LXR-dependent and LXR-independent pathways. We further highlight the importance of these pathways in particular during central nervous system (CNS) autoimmunity and inflammatory bowel diseases (IBD) in both experimental models and human studies. Finally, we discuss our vision about future applications and research on oxysterols related to autoimmunity.
Collapse
Affiliation(s)
- Donovan Duc
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Caroline Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Division of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
10
|
The Liver X Receptor Is Upregulated in Monocyte-Derived Macrophages and Modulates Inflammatory Cytokines Based on LXR α Polymorphism. Mediators Inflamm 2019; 2019:6217548. [PMID: 30944547 PMCID: PMC6421810 DOI: 10.1155/2019/6217548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/08/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Liver X receptors (LXRs) have emerged as important regulators of inflammatory gene expression. Previously, we had reported that an LXRα gene promoter polymorphism (-1830 T > C) is associated with systemic lupus erythematosus (SLE). Therefore, we assessed cytokine expression in relation to LXRα polymorphism in monocyte-derived macrophages from patients with SLE. Macrophages were obtained after 72 hours of culture of human monocytes supplemented with phorbol 12-myristate 13-acetate. Cells were transfected with LXRα promoter constructs. Additionally, peripheral blood mononuclear cell- (PBMC-) derived macrophages from the patients were evaluated for proinflammatory cytokines in relation to the genotypes of LXRα -1830 T > C. The expression of LXRα was increased in macrophages; levels of proinflammatory cytokines were decreased with LXRα expression. Production of proinflammatory cytokines varied depending on LXRα -1830 T > C genotype. In particular, expression of LXRα was decreased and that of proinflammatory cytokines was increased for LXRα -1830 TC genotype compared to that for TT genotype. The data were consistent in PBMC-derived macrophages from patients with SLE. Increased proinflammatory cytokines is related to TLR7 and TLR9 expression. These data suggest that the expression levels of LXRα, according to LXRα -1830 T > C genotype, may contribute to the inflammatory response by induction of inflammatory cytokines in SLE.
Collapse
|
11
|
Safi S, Frommholz D, Reimann S, Götz W, Bourauel C, Neumann A, Hoerauf A, Illges H, Safi A, Jäger A, Hübner MP, Gölz L. Comparative study on serum‐induced arthritis in the temporomandibular and limb joint of mice. Int J Rheum Dis 2019; 22:636-645. [DOI: 10.1111/1756-185x.13486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/15/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Sema Safi
- Department of Orthodontics University Hospital of Bonn Bonn Germany
| | - David Frommholz
- Department of Natural Sciences, Immunology and Cell Biology University of Applied Sciences Bonn‐Rhein‐Sieg Rheinbach Germany
| | | | - Werner Götz
- Department of Orthodontics University Hospital of Bonn Bonn Germany
| | | | - Anna‐Lena Neumann
- Institute for Medical Microbiology, Immunology, and Parasitology University Hospital of Bonn Bonn Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology, and Parasitology University Hospital of Bonn Bonn Germany
| | - Harald Illges
- Department of Natural Sciences, Immunology and Cell Biology University of Applied Sciences Bonn‐Rhein‐Sieg Rheinbach Germany
| | - Ali‐Farid Safi
- Department for Oral and Craniomaxillofacial Plastic Surgery University of Cologne Cologne Germany
| | - Andreas Jäger
- Department of Orthodontics University Hospital of Bonn Bonn Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology, and Parasitology University Hospital of Bonn Bonn Germany
| | - Lina Gölz
- Department of Orthodontics University Hospital of Bonn Bonn Germany
| |
Collapse
|
12
|
Vigne S, Chalmin F, Duc D, Clottu AS, Apetoh L, Lobaccaro JMA, Christen I, Zhang J, Pot C. IL-27-Induced Type 1 Regulatory T-Cells Produce Oxysterols that Constrain IL-10 Production. Front Immunol 2017; 8:1184. [PMID: 28993775 PMCID: PMC5622150 DOI: 10.3389/fimmu.2017.01184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The behaviors of lymphocytes, including CD4+ T helper cells, are controlled on many levels by internal metabolic properties. Lipid metabolites have recently been ascribed a novel function as immune response modulators and perturbation of steroids pathways modulates inflammation and potentially promotes a variety of diseases. However, the impact of lipid metabolism on autoimmune disease development and lymphocyte biology is still largely unraveled. In this line, oxysterols, oxidized forms of cholesterol, have pleiotropic roles on the immune response aside from their involvements in lipid metabolism. The oxysterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC) regulate antiviral immunity and immune cell chemotaxis. However, their physiological effects on adaptive immune response in particular on various subset CD4+ T lymphocytes are largely unknown. Here, we assessed oxysterol levels in subset of CD4+ T cells and demonstrated that 25-OHC and transcript levels of its synthesizing enzyme, cholesterol 25-hydroxylase, were specifically increased in IL-27-induced type 1 regulatory T (TR1) cells. We further showed that 25-OHC acts as a negative regulator of TR1 cells in particular of IL-10 secretion via liver X receptor signaling. Not only do these findings unravel molecular mechanisms accounting for IL-27 signaling but also they highlight oxysterols as pro-inflammatory mediators that dampens regulatory T cell responses and thus unleash a pro-inflammatory response.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Fanny Chalmin
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Donovan Duc
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Aurélie S Clottu
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Lionel Apetoh
- Faculté de Médecine, University of Bourgogne, INSERM U866, Centre Georges François Leclerc, Dijon, France
| | - Jean-Marc A Lobaccaro
- GReD, Université Clermont Auvergne, CNRS, INSERM, CRNH Auvergne, Clermont-Ferrand, France
| | - Isabelle Christen
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Juan Zhang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Pérez‐Baos S, Barrasa JI, Gratal P, Larrañaga‐Vera A, Prieto‐Potin I, Herrero‐Beaumont G, Largo R. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis. Br J Pharmacol 2017; 174:3018-3031. [PMID: 28646516 PMCID: PMC5573422 DOI: 10.1111/bph.13932] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/06/2017] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. EXPERIMENTAL APPROACH CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg-1 ·day-1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. KEY RESULTS Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. CONCLUSIONS AND IMPLICATIONS Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients.
Collapse
Affiliation(s)
- S Pérez‐Baos
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - J I Barrasa
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
| | - P Gratal
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - A Larrañaga‐Vera
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - I Prieto‐Potin
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - G Herrero‐Beaumont
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| | - R Largo
- Bone and Joint Research Unit, Rheumatology DepartmentIIS‐Fundación Jiménez Díaz UAMMadridSpain
- Thematic Network on Aging and Frailty (RETICEF)MadridSpain
| |
Collapse
|
14
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
15
|
Differentiated all-trans retinoic acid response of naive CD4+CD25- cells isolated from rats with collagen-induced arthritis and healthy ones under in vitro conditions. Cent Eur J Immunol 2017; 42:39-53. [PMID: 28680330 PMCID: PMC5470613 DOI: 10.5114/ceji.2017.67317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/28/2016] [Indexed: 11/23/2022] Open
Abstract
Aim o the study To compare the potential of CD4+CD25– cells, isolated from both healthy rats and rats with CIA (Collagen-Induced Arthritis), for differentiation into regulatory T cells in the presence of all-trans retinoic acid in order to learn more about the activation mechanisms and therapeutic potential of regulatory T cells. Material and methods Sorted CD4+CD25– cells were cultured in vitro with/without ATRA, and then the frequency of regulatory T cells and their ability to secrete IL-10 by CD4+ FOXP3+ cells was examined. Gene expression of the foxp3, rarα, rarβ, rxrβ, and ppar β/δ and protein expression of the Rarα, Rarβ, and Rxrβ in cells after stimulation with ATRA were also investigated. Results CD4+CD25– cells isolated from healthy animals or from animals with CIA are characterised by different potential of the differentiation into CD4+CD25+ FOXP3+ cells. Retinoic acid receptor Rxrβ is present in the CD4+CD25– cells isolated from rats with CIA. Conclusions We showed that although ATRA did not increase the frequency of Treg in culture, it significantly increased expression of rarβ and rxrβ only in lymphocytes taken from diseased animals and foxp3 expression only in healthy animals. Moreover, after ATRA stimulation, the frequency of Treg-produced IL-10 tended to be lower in diseased animals than in the healthy group. The results imply that the potential of naïve cell CD4 lymphocytes to differentiate into Tregs and their putative suppressive function is dependent on the donor’s health status.
Collapse
|
16
|
Activation of LXR attenuates collagen-induced arthritis via suppressing BLyS production. Clin Immunol 2015; 161:339-47. [PMID: 26431776 DOI: 10.1016/j.clim.2015.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023]
Abstract
B-lymphocyte stimulator (BLyS) plays a critical role in the pathogenesis and progression of rheumatoid arthritis (RA). Liver X receptor (LXR), a nuclear receptor, has an important anti-inflammatory effect. However, it is unclear whether the BLyS expression is regulated by LXR. In this study, we found that treatment with LXR agonist in collagen-induced arthritis (CIA) mice significantly attenuated arthritis progression, and markedly decreased BLyS production in serum and splenocytes as well as the production of serum IFNγ and TGFβ. Activation of LXR in B lymphocytes dramatically suppressed the basal and IFNγ/TGFβ-induced BLyS expression. Moreover, LXR agonist prominently suppressed the binding of NF-κB to BLyS promoter region, and decreased the promoter's transcriptional activity. Additionally, activation of LXR obviously repressed IFNγ-induced STAT1 activation and TGFβ-induced SMAD3 activation. These results indicated that downregulation of BLyS may be a novel mechanism by which LXR ameliorates RA, and LXR/BLyS pathway may serve as a novel target for the treatment of RA.
Collapse
|
17
|
Nomura S, Endo-Umeda K, Aoyama A, Makishima M, Hashimoto Y, Ishikawa M. Styrylphenylphthalimides as Novel Transrepression-Selective Liver X Receptor (LXR) Modulators. ACS Med Chem Lett 2015; 6:902-7. [PMID: 26288691 DOI: 10.1021/acsmedchemlett.5b00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Anti-inflammatory effects of liver X receptor (LXR) ligands are thought to be largely due to LXR-mediated transrepression, whereas side effects are caused by activation of LXR-responsive gene expression (transactivation). Therefore, selective LXR modulators that preferentially exhibit transrepression activity should exhibit anti-inflammatory properties with fewer side effects. Here, we synthesized a series of styrylphenylphthalimide analogues and evaluated their structure-activity relationships focusing on LXRs-transactivating-agonistic/antagonistic activities and transrepressional activity. Among the compounds examined, 17l showed potent LXR-transrepressional activity with high selectivity over transactivating activity and did not show characteristic side effects of LXR-transactivating agonists in cells. This representative compound, 17l, was confirmed to have LXR-dependent transrepressional activity and to bind directly to LXRβ. Compound 17l should be useful not only as a chemical tool for studying the biological functions of LXRs transrepression but also as a candidate for a safer agent to treat inflammatory diseases.
Collapse
Affiliation(s)
- Sayaka Nomura
- Institute
of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kaori Endo-Umeda
- Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Atsushi Aoyama
- Institute
of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Makoto Makishima
- Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yuichi Hashimoto
- Institute
of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Minoru Ishikawa
- Institute
of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
18
|
Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lütjohann D, Mulder M, Hendriks JJ. Plant sterols: Friend or foe in CNS disorders? Prog Lipid Res 2015; 58:26-39. [DOI: 10.1016/j.plipres.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
|
19
|
Muñoz LE, Berens C, Lauber K, Gaipl US, Herrmann M. Apoptotic cell clearance and its role in the origin and resolution of chronic inflammation. Front Immunol 2015; 6:139. [PMID: 25859248 PMCID: PMC4373391 DOI: 10.3389/fimmu.2015.00139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Luis Enrique Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Jena , Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University of Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
20
|
Abstract
LXR (liver X receptor) is a ligand-activated transcription factor and plays an important role in regulation of lipid homoeostasis and inflammation. Several studies indicate that LXR inhibits IFN-γ (interferon γ)-induced biological responses; however, the influence of LXR on IFN-γ expression has not been fully elucidated. In the present study, we investigated the effects of LXR activation on IFN-γ expression at different levels. At the molecular level, we surprisingly observed that LXR ligand (T0901317) induced macrophage and T-cell IFN-γ protein expression which was associated with increased mRNA and secreted protein levels in culture medium. In contrast, selective inhibition of LXRα and/or LXRβ expression by siRNA reduced IFN-γ expression. Promoter analysis defined the multiple LXREs (LXR-responsive elements) in the proximal region of the IFN-γ promoter. EMSAs and ChIP indicated that LXR activation enhanced the binding of LXR protein to these LXREs. In vivo, T0901317 increased wild-type mouse serum IFN-γ levels and IFN-γ expression in the lung and lymph nodes. Functionally, we observed that administration of T0901317 to wild-type mice increased rates of survival and being tumour-free, and inhibited tumour growth when the animals were inoculated with LLC1 carcinoma. In contrast, these protective effects were substantially attenuated in IFN-γ-knockout (IFN-γ-/-) mice, suggesting that the induction of IFN-γ production plays a critical role in T0901317-inhibited tumour growth. Taken together, the results of the present study show that IFN-γ is another molecular target of LXR activation, and it suggests a new mechanism by which LXR inhibits tumour growth.
Collapse
|
21
|
Beyer C, Huang J, Beer J, Zhang Y, Palumbo-Zerr K, Zerr P, Distler A, Dees C, Maier C, Munoz L, Krönke G, Uderhardt S, Distler O, Jones S, Rose-John S, Oravecz T, Schett G, Distler JHW. Activation of liver X receptors inhibits experimental fibrosis by interfering with interleukin-6 release from macrophages. Ann Rheum Dis 2014; 74:1317-24. [PMID: 24618263 DOI: 10.1136/annrheumdis-2013-204401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/16/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To investigate the role of liver X receptors (LXRs) in experimental skin fibrosis and evaluate their potential as novel antifibrotic targets. METHODS We studied the role of LXRs in bleomycin-induced skin fibrosis, in the model of sclerodermatous graft-versus-host disease (sclGvHD) and in tight skin-1 (Tsk-1) mice, reflecting different subtypes of fibrotic disease. We examined both LXR isoforms using LXRα-, LXRβ- and LXR-α/β-double-knockout mice. Finally, we investigated the effects of LXRs on fibroblasts and macrophages to establish the antifibrotic mode of action of LXRs. RESULTS LXR activation by the agonist T0901317 had antifibrotic effects in bleomycin-induced skin fibrosis, in the sclGvHD model and in Tsk-1 mice. The antifibrotic activity of LXRs was particularly prominent in the inflammation-driven bleomycin and sclGvHD models. LXRα-, LXRβ- and LXRα/β-double-knockout mice showed a similar response to bleomycin as wildtype animals. Low levels of the LXR target gene ABCA-1 in the skin of bleomycin-challenged and control mice suggested a low baseline activation of the antifibrotic LXR signalling, which, however, could be specifically activated by T0901317. Fibroblasts were not the direct target cells of LXRs agonists, but LXR activation inhibited fibrosis by interfering with infiltration of macrophages and their release of the pro-fibrotic interleukin-6. CONCLUSIONS We identified LXRs as novel targets for antifibrotic therapies, a yet unknown aspect of these nuclear receptors. Our data suggest that LXR activation might be particularly effective in patients with inflammatory disease subtypes. Activation of LXRs interfered with the release of interleukin-6 from macrophages and, thus, inhibited fibroblast activation and collagen release.
Collapse
Affiliation(s)
- Christian Beyer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Beer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yun Zhang
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Palumbo-Zerr
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pawel Zerr
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Maier
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Louis Munoz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Uderhardt
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Simon Jones
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tamas Oravecz
- Lexicon Pharmaceuticals Inc., The Woodlands, Texas, USA
| | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
22
|
Kappus MS, Murphy AJ, Abramowicz S, Ntonga V, Welch CL, Tall AR, Westerterp M. Activation of liver X receptor decreases atherosclerosis in Ldlr⁻/⁻ mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol 2013; 34:279-84. [PMID: 24311381 DOI: 10.1161/atvbaha.113.302781] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver X receptor (LXR) activators decrease atherosclerosis in mice. LXR activators (1) directly upregulate genes involved in reverse cholesterol transport and (2) exert anti-inflammatory effects mediated by transrepression of nuclear factor-κB target genes. We investigated whether myeloid cell deficiency of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), principal targets of LXR that promote macrophage cholesterol efflux and initiate reverse cholesterol transport, would abolish the beneficial effects of LXR activation on atherosclerosis. APPROACH AND RESULTS LXR activator T0901317 substantially reduced inflammatory gene expression in macrophages lacking ABCA1/G1. Ldlr(-/-) mice were transplanted with Abca1(-/-)Abcg1(-/-) or wild-type bone marrow (BM) and fed a Western-type diet for 6 weeks with or without T0901317 supplementation. Abca1/g1 BM deficiency increased atherosclerotic lesion complexity and inflammatory cell infiltration into the adventitia and myocardium. T0901317 markedly decreased lesion area, complexity, and inflammatory cell infiltration in the Abca1(-/-)Abcg1(-/-) BM-transplanted mice. To investigate whether this was because of macrophage Abca1/g1 deficiency, Ldlr(-/-) mice were transplanted with LysmCreAbca1(fl/fl)Abcg1(fl/fl) or Abca1(fl/fl)Abcg1(fl/fl) BM and fed Western-type diet with or without the more specific LXR agonist GW3965 for 12 weeks. GW3965 decreased lesion size in both groups, and the decrease was more prominent in the LysmCreAbca1(fl/fl)Abcg1(fl/fl) group. CONCLUSIONS The results suggest that anti-inflammatory effects of LXR activators are of key importance to their antiatherosclerotic effects in vivo independent of cholesterol efflux pathways mediated by macrophage ABCA1/G1. This has implications for the development of LXR activators that lack adverse effects on lipogenic genes while maintaining the ability to transrepress inflammatory genes.
Collapse
Affiliation(s)
- Mojdeh S Kappus
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.S.K., A.J.M., S.A., V.N., C.L.W., A.R.T., M.W.); Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY (M.S.K.); and Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (M.W.)
| | | | | | | | | | | | | |
Collapse
|
23
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
24
|
Higham A, Lea S, Plumb J, Maschera B, Simpson K, Ray D, Singh D. The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res 2013; 14:106. [PMID: 24118845 PMCID: PMC3852990 DOI: 10.1186/1465-9921-14-106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is a need for novel anti-inflammatory therapies to treat COPD. The liver X receptor (LXR) is a nuclear hormone receptor with anti-inflammatory properties. METHODS We investigated LXR gene and protein expression levels in alveolar macrophages and whole lung tissue from COPD patients and controls, the effect of LXR activation on the suppression of inflammatory mediators from LPS stimulated COPD alveolar macrophages, and the effect of LXR activation on the induction of genes associated with alternative macrophage polarisation. RESULTS The levels of LXR mRNA were significantly increased in whole lung tissue extracts in COPD patients and smokers compared to non-smokers. The expression of LXR protein was significantly increased in small airway epithelium and alveolar epithelium in COPD patients compared to controls. No differences in LXR mRNA and protein levels were observed in alveolar macrophages between patient groups. The LXR agonist GW3965 significantly induced the expression of the LXR dependent genes ABCA1 and ABCG1 in alveolar macrophage cultures. In LPS stimulated alveolar macrophages, GW3965 suppressed the production of CXCL10 and CCL5, whilst stimulating IL-10 production. CONCLUSIONS GW3965 did not significantly suppress the production of TNFα, IL-1β, or CXCL8. Our major finding is that LXR activation has anti-inflammatory effects on CXC10, CCL5 and IL-10 production from alveolar macrophages.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Simon Lea
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Jonathan Plumb
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Barbara Maschera
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Karen Simpson
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - David Ray
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Dave Singh
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
25
|
Steffensen KR, Jakobsson T, Gustafsson JÅ. Targeting liver X receptors in inflammation. Expert Opin Ther Targets 2013; 17:977-90. [PMID: 23738533 DOI: 10.1517/14728222.2013.806490] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The two oxysterol receptors, 'liver X receptors (LXRs)' LXRα and LXRβ, are amongst the emerging newer drug targets within the nuclear receptor family and targeting LXRs represents novel strategies needed for prevention and treatment of diseases where current therapeutics is inadequate. AREAS COVERED This review discusses the current understanding of LXR biology with an emphasis on the molecular aspects of LXR signalling establishing their potential as drug targets. Recent advances of their transcriptional mechanisms in inflammatory pathways and their physiological roles in inflammation and immunity are described. EXPERT OPINION The new discoveries of LXR-regulated inflammatory pathways have ignited new promises for LXRs as drug targets. The broad physiological roles of LXRs involve a high risk of unwanted side effects. Recent insights into LXR biology of the brain indicate a highly important role in neuronal development and a clinical trial testing an LXR agonist reported adverse neurological side effects. This suggests that drug development must focus on limiting the range of LXR signalling - possibly achieved through subtype, tissue specific, promoter specific or pathway specific activation of LXRs where a successful candidate drug must be carefully studied for its effect in the central nervous system.
Collapse
Affiliation(s)
- Knut R Steffensen
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, S-14183 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Asquith DL, Ballantine LE, Nijjar JS, Makdasy MK, Patel S, Wright PB, Reilly JH, Kerr S, Kurowska-Stolarska M, Gracie JA, McInnes IB. The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release. Ann Rheum Dis 2013; 72:2024-31. [PMID: 23434566 DOI: 10.1136/annrheumdis-2012-202872] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Macrophages are central to the inflammatory processes driving rheumatoid arthritis (RA) synovitis. The molecular pathways that are induced in synovial macrophages and thereby promote RA disease pathology remain poorly understood. METHODS We used microarray to characterise the transcriptome of synovial fluid (SF) macrophages compared with matched peripheral blood monocytes from patients with RA (n=8). RESULTS Using in silico pathway mapping, we found that pathways downstream of the cholesterol activated liver X receptors (LXRs) and those associated with Toll-like receptor (TLR) signalling were upregulated in SF macrophages. Macrophage differentiation and tumour necrosis factor α promoted the expression of LXRα. Furthermore, in functional studies we demonstrated that activation of LXRs significantly augmented TLR-driven cytokine and chemokine secretion. CONCLUSIONS The LXR pathway is the most upregulated pathway in RA synovial macrophages and activation of LXRs by ligands present within SF augments TLR-driven cytokine secretion. Since the natural agonists of LXRs arise from cholesterol metabolism, this provides a novel mechanism that can promote RA synovitis.
Collapse
Affiliation(s)
- Darren Lee Asquith
- Department of Immunology, Infection and Inflammation, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, , Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brenner M, Linge CP, Li W, Gulko PS. Increased synovial expression of nuclear receptors correlates with protection in pristane-induced arthritis: a possible novel genetically regulated homeostatic mechanism. ACTA ACUST UNITED AC 2013; 63:2918-29. [PMID: 21702016 DOI: 10.1002/art.30507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To use microarray analyses of gene expression to characterize the synovial molecular pathways regulated by the arthritis regulatory locus Cia25 and to determine how it operates to control disease severity and joint damage. METHODS Synovial tissues from DA rats and DA.ACI(Cia25) rats obtained 21 days after induction of pristane-induced arthritis were used for RNA extraction and hybridization to Illumina RatRef-12 Expression BeadChips (22,228 genes). Genes with a P value≤0.01 and a fold difference in expression≥1.5 between DA rats and DA.ACI(Cia25) rats were considered significant. RESULTS Interleukin-1β (IL-1β) (7.4-fold), IL-6 (67-fold), Ccl2, Cxcl10, Mmp3, Mmp14, and innate immunity genes were expressed at increased levels in DA rats and at significantly lower levels in DA.ACI(Cia25) congenic rats. DA.ACI(Cia25) rats had increased expression of 10 nuclear receptor (NR) genes, including those known to interfere with NF-κB activity and cytokine expression, such as Lxra, Pparg, and Rxrg. DA.ACI(Cia25) rats also had increased expression of NR targets, suggesting increased NR activity. While Vdr was not differentially expressed, a Vdr expression signature was detected in congenic rats, along with up-regulation of mediators of vitamin D synthesis. CONCLUSION This is the first description of the association between increased synovial levels of NRs and arthritis protection. The expression of NRs was inversely correlated with the expression of key mediators of arthritis, suggesting reciprocally opposing effects either via NF-κB or at the genomic level in the synovial tissue. We consider that the NR signature may have an important role in maintaining synovial homeostasis and an inflammation-free tissue. These processes are regulated by the Cia25 gene and suggest a new function for this gene.
Collapse
Affiliation(s)
- Max Brenner
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, Feinstein Institute for Medical Research and Elmezzi Graduate School of Molecular Medicine, Manhasset, New York 11030, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Liver X receptors (LXRs) belong to the nuclear receptor superfamily of ligand-dependent transcription factors. LXRs are activated by oxysterols, metabolites of cholesterol, and therefore act as intracellular sensors of this lipid. There are two LXR genes (α and β) that display distinct tissue/cell expression profiles. LXRs interact with regulatory sequences in target genes as heterodimers with retinoid X receptor. Such direct targets of LXR actions include important genes implicated in the control of lipid homeostasis, particularly reverse cholesterol transport. In addition, LXRs attenuate the transcription of genes associated with the inflammatory response indirectly by transrepression. In this review, we describe recent evidence that both highlights the key roles of LXRs in atherosclerosis and inflammation and provides novel insights into the mechanisms underlying their actions. In addition, we discuss the major limitations of LXRs as therapeutic targets for the treatment of atherosclerosis and how these are being addressed.
Collapse
|
29
|
Yoon CH, Kwon YJ, Lee SW, Park YB, Lee SK, Park MC. Activation of Liver X Receptors Suppresses Inflammatory Gene Expressions and Transcriptional Corepressor Clearance in Rheumatoid Arthritis Fibroblast Like Synoviocytes. J Clin Immunol 2012; 33:190-9. [DOI: 10.1007/s10875-012-9799-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/10/2012] [Indexed: 12/20/2022]
|
30
|
Laragione T, Gulko PS. Liver X receptor regulates rheumatoid arthritis fibroblast-like synoviocyte invasiveness, matrix metalloproteinase 2 activation, interleukin-6 and CXCL10. Mol Med 2012; 18:1009-17. [PMID: 22634718 DOI: 10.2119/molmed.2012.00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/15/2012] [Indexed: 01/07/2023] Open
Abstract
Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β-induced and IL-6-induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA.
Collapse
Affiliation(s)
- Teresina Laragione
- Laboratory of Experimental Rheumatology, Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York 11030, United States of America
| | | |
Collapse
|
31
|
Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012; 33:394-404. [PMID: 22541735 DOI: 10.1016/j.tips.2012.03.013] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/05/2012] [Accepted: 03/26/2012] [Indexed: 01/12/2023]
Abstract
Nuclear receptors (NRs) are master regulators of transcriptional programs that integrate the homeostatic control of almost all biological processes. Their direct mode of ligand regulation and genome interaction is at the core of modern pharmacology. The two liver X receptors LXRα and LXRβ are among the emerging newer drug targets within the NR family. LXRs are best known as nuclear oxysterol receptors and physiological regulators of lipid and cholesterol metabolism that also act in an anti-inflammatory way. Because LXRs control diverse pathways in development, reproduction, metabolism, immunity and inflammation, they have potential as therapeutic targets for diseases as diverse as lipid disorders, atherosclerosis, chronic inflammation, autoimmunity, cancer and neurodegenerative diseases. Recent insights into LXR signaling suggest future targeting strategies aiming at increasing LXR subtype and pathway selectivity. This review discusses the current status of our understanding of LXR biology and pharmacology, with an emphasis on the molecular aspects of LXR signaling that constitute the potential of LXRs as drug targets.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Dushkin MI. Macrophage/foam cell is an attribute of inflammation: Mechanisms of formation and functional role. BIOCHEMISTRY (MOSCOW) 2012; 77:327-38. [DOI: 10.1134/s0006297912040025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Abstract
Liver X receptors (LXRs) are members of the superfamily of metabolic nuclear receptors, which play central roles in the regulation of cholesterol absorption, efflux, transportation and excretion and many other processes correlating with lipid metabolism. LXRs can also regulate inflammation in vitro and in vivo. Accumulating evidence demonstrates that LXR are involved in the metabolism and inflammation in human diseases. Nonalcoholic fatty liver disease (NAFLD) is classically associated with lipid metabolic disorders and inflammatory responses, especially in the nonalcoholic steatohepatitis (NASH) phase. The effects of LXRs on cholesterol metabolism and inflammation make them attractive as a potential target for the treatment of NAFLD. Since the ability to synthesize triglycerides may be protective in obesity and fatty liver, the hepatic lipogenesis by LXRs should not rule out the possibility of the use of LXRs in NAFLD.
Collapse
Affiliation(s)
- Yuan Liu
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai Institute of Digestive Disease and Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | | | | |
Collapse
|
34
|
Pehkonen P, Welter-Stahl L, Diwo J, Ryynänen J, Wienecke-Baldacchino A, Heikkinen S, Treuter E, Steffensen KR, Carlberg C. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 2012; 13:50. [PMID: 22292898 PMCID: PMC3295715 DOI: 10.1186/1471-2164-13-50] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/31/2012] [Indexed: 12/15/2022] Open
Abstract
Background The liver X receptors (LXRs) are oxysterol sensing nuclear receptors with multiple effects on metabolism and immune cells. However, the complete genome-wide cistrome of LXR in cells of human origin has not yet been provided. Results We performed ChIP-seq in phorbol myristate acetate-differentiated THP-1 cells (macrophage-type) after stimulation with the potent synthetic LXR ligand T0901317 (T09). Microarray gene expression analysis was performed in the same cellular model. We identified 1357 genome-wide LXR locations (FDR < 1%), of which 526 were observed after T09 treatment. De novo analysis of LXR binding sequences identified a DR4-type element as the major motif. On mRNA level T09 up-regulated 1258 genes and repressed 455 genes. Our results show that LXR actions are focused on 112 genomic regions that contain up to 11 T09 target genes per region under the control of highly stringent LXR binding sites with individual constellations for each region. We could confirm that LXR controls lipid metabolism and transport and observed a strong association with apoptosis-related functions. Conclusions This first report on genome-wide binding of LXR in a human cell line provides new insights into the transcriptional network of LXR and its target genes with their link to physiological processes, such as apoptosis. The gene expression microarray and sequence data have been submitted collectively to the NCBI Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo under accession number GSE28319.
Collapse
Affiliation(s)
- Petri Pehkonen
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FIN-70210 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heller JJ, Qiu J, Zhou L. Nuclear receptors take center stage in Th17 cell-mediated autoimmunity. J Clin Invest 2011; 121:519-21. [PMID: 21266768 DOI: 10.1172/jci45939] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Liver X receptors (LXRs) are nuclear receptors involved in cholesterol homeostasis. Notably, they are also expressed by T cells and are involved in regulating T cell proliferation and differentiation. In this issue of the JCI, Cui et al. have elucidated the molecular mechanism underlying the effects of LXR activation on a subset of T cells known as Th17 cells in mice and humans. Specifically, they showed that LXR-induced Srebp-1 inhibits Il17 transcription by binding to the Il17 promoter through interaction with the aryl hydrocarbon receptor (Ahr), a transcription factor known to enhance Th17 cell responses.
Collapse
Affiliation(s)
- Jennifer J Heller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
36
|
Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, Sheng H, Xi B, Zhang JZ, Zang YQ. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 2011; 121:658-70. [PMID: 21266776 DOI: 10.1172/jci42974] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/10/2010] [Indexed: 12/31/2022] Open
Abstract
Th17 cells are a subset of CD4+ T cells with an important role in clearing certain bacterial and fungal pathogens. However, they have also been implicated in autoimmune diseases such as multiple sclerosis. Exposure of naive CD4+ T cells to IL-6 and TGF-β leads to Th17 cell differentiation through a process in which many proteins have been implicated. We report here that ectopic expression of liver X receptor (LXR) inhibits Th17 polarization of mouse CD4+ T cells, while LXR deficiency promotes Th17 differentiation in vitro. LXR activation in mice ameliorated disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, whereas LXR deficiency exacerbated disease. Further analysis revealed that Srebp-1, which is encoded by an LXR target gene, mediated the suppression of Th17 differentiation by binding to the E-box element on the Il17 promoter, physically interacting with aryl hydrocarbon receptor (Ahr) and inhibiting Ahr-controlled Il17 transcription. The putative active site (PAS) domain of Ahr and the N-terminal acidic region of Srebp-1 were essential for this interaction. Additional analyses suggested that similar LXR-dependent mechanisms were operational during human Th17 differentiation in vitro. This study reports what we believe to be a novel signaling pathway underlying LXR-mediated regulation of Th17 cell differentiation and autoimmunity.
Collapse
Affiliation(s)
- Guoliang Cui
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Graduate School of CAS, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nunomura S, Makishima M, Ra C. Liver X receptors and immune regulation. Biomol Concepts 2010; 1:381-7. [PMID: 25962011 DOI: 10.1515/bmc.2010.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies suggest that homeostasis of lipid metabolism is crucial for the function of various immune cells. Oxygenated derivatives of cholesterol (oxysterols) are well-known regulators of lipid metabolism and have diverse functions, such as inhibition of cholesterol synthesis, efflux of intracellular cholesterol, synthesis of cholesterol esters, and activation of liver X receptors (LXRs). In this review, we introduce novel roles of the oxysterol receptors LXRs in the immune system, including regulation of inflammatory responses, T cell expansion, immunoglobulin production, and antitumor responses. We also discuss lipid-mediated signaling as a potential target for treatment of immune diseases.
Collapse
|