1
|
Khot S, Tackley G, Choy E. How to Distinguish Non-Inflammatory from Inflammatory Pain in RA? Curr Rheumatol Rep 2024; 26:403-413. [PMID: 39120749 PMCID: PMC11527911 DOI: 10.1007/s11926-024-01159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE OF THE REVIEW Managing non-inflammatory pain in rheumatoid arthritis (RA) can be a huge burden for the rheumatologist. Pain that persists despite optimal RA treatment is extremely challenging for patient and physician alike. Here, we outline the latest research relevant to distinguishing non-inflammatory from inflammatory RA pain and review the current understanding of its neurobiology and management. RECENT FINDINGS Nociplastic pain is a recently introduced term by the international pain community. Its definition encompasses the non-inflammatory pain of RA and describes pain that is not driven by inflamed joints or compromised nerves, but that is instead driven by a functional reorganisation of the central nervous system (CNS). Insights from all areas of nociplastic pain research, including fibromyalgia, support a personalised pain management approach for non-inflammatory pain of RA, with evidence-based guidelines favouring use of non-pharmacological interventions. Future developments include novel CNS targeting pharmacotherapeutic approaches to treat nociplastic pain.
Collapse
Affiliation(s)
- Sharmila Khot
- Department of Anaesthesia, Intensive Care and Pain Medicine, Cardiff and Vale University Health Board, Cardiff CF14 4XW and Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, UK.
| | - George Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff, Wales, CF24 4HQ, UK
| | - Ernest Choy
- Head of Rheumatology and Translational Research at the Division of Infection and Immunity and Director of the Cardiff Regional Experimental Arthritis Treatment and Evaluation (CREATE) Centre at Cardiff University School of Medicine, Cardiff, Wales, UK, CF14 4YS
| |
Collapse
|
2
|
Schaible HG, König C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem 2024; 168:3644-3662. [PMID: 36520021 DOI: 10.1111/jnc.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2X7-) cathepsin S/CX3CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1β, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
3
|
Saha P, Yarra SS, Arruri V, Mohan U, Kumar A. Exploring the role of miRNA in diabetic neuropathy: from diagnostics to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03422-y. [PMID: 39249503 DOI: 10.1007/s00210-024-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Diabetic neuropathy (DN) is one of the major microvascular complications of diabetes mellitus affecting 50% of the diabetic population marred by various unmet clinical needs. There is a need to explore newer pathological mechanisms for designing futuristic regimens for the management of DN. There is a need for post-transcriptional regulation of gene expression by non-coding RNAs (ncRNAs) to finetune different cellular mechanisms with significant biological relevance. MicroRNAs (miRNAs) are a class of small ncRNAs (~ 20 to 24 nucleotide length) that are known to regulate the activity of ~ 50% protein-coding genes through repression of their target mRNAs. Differential expression of these miRNAs is associated with the pathophysiology of diabetic neuropathy via regulating various pathways such as neuronal hyperexcitability, inflammation, axonal growth, regeneration, and oxidative stress. Of note, the circulating and extracellular vesicular miRNAs serve as potential biomarkers underscoring their diagnostic potential. Recent pieces of evidence highlight the potential of miRNAs in modulating the initiation and progression of DN and the possibility of developing miRNAs as treatment options for DN. In this review, we have elaborated on the role of different miRNAs as potential biomarkers and emphasized their druggable aspects for promising future therapies for the clinical management of DN.
Collapse
Affiliation(s)
- Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India
| | - Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, USA
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Maniktala Main Road, Kolkata, West Bengal, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, Punjab, 160062, India.
| |
Collapse
|
4
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
6
|
Malange KF, Navia-Pelaez JM, Dias EV, Lemes JBP, Choi SH, Dos Santos GG, Yaksh TL, Corr M. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. FRONTIERS IN PAIN RESEARCH 2022; 3:1018800. [PMID: 36387416 PMCID: PMC9644179 DOI: 10.3389/fpain.2022.1018800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Millions of people suffer from arthritis worldwide, consistently struggling with daily activities due to debilitating pain evoked by this disease. Perhaps the most intensively investigated type of inflammatory arthritis is rheumatoid arthritis (RA), where, despite considerable advances in research and clinical management, gaps regarding the neuroimmune interactions that guide inflammation and chronic pain in this disease remain to be clarified. The pain and inflammation associated with arthritis are not isolated to the joints, and inflammatory mechanisms induced by different immune and glial cells in other tissues may affect the development of chronic pain that results from the disease. This review aims to provide an overview of the state-of-the-art research on the roles that innate immune, and glial cells play in the onset and maintenance of arthritis-associated pain, reviewing nociceptive pathways from the joint through the dorsal root ganglion, spinal circuits, and different structures in the brain. We will focus on the cellular mechanisms related to neuroinflammation and pain, and treatments targeting these mechanisms from the periphery and the CNS. A comprehensive understanding of the role these cells play in peripheral inflammation and initiation of pain and the central pathways in the spinal cord and brain will facilitate identifying new targets and pathways to aide in developing therapeutic strategies to treat joint pain associated with RA.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | | | - Elayne Vieira Dias
- Department of Neurology, University of California, San Francisco, CA, United States
| | | | - Soo-Ho Choi
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
7
|
Silva R, Malcangio M. Fractalkine/CX 3CR 1 Pathway in Neuropathic Pain: An Update. FRONTIERS IN PAIN RESEARCH 2022; 2:684684. [PMID: 35295489 PMCID: PMC8915718 DOI: 10.3389/fpain.2021.684684] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023] Open
Abstract
Injuries to the nervous system can result in a debilitating neuropathic pain state that is often resistant to treatment with available analgesics, which are commonly associated with several side-effects. Growing pre-clinical and clinical evidence over the last two decades indicates that immune cell-mediated mechanisms both in the periphery and in the Central Nervous System (CNS) play significant roles in the establishment and maintenance of neuropathic pain. Specifically, following peripheral nerve injury, microglia, which are CNS resident immune cells, respond to the activity of the first pain synapse in the dorsal horn of spinal cord and also to neuronal activity in higher centres in the brain. This microglial response leads to the production and release of several proinflammatory mediators which contribute to neuronal sensitisation under neuropathic pain states. In this review, we collect evidence demonstrating the critical role played by the Fractalkine/CX3CR1 signalling pathway in neuron-to-microglia communication in neuropathic pain states and explore how strategies that include components of this pathway offer opportunities for innovative targets for neuropathic pain.
Collapse
Affiliation(s)
- Rita Silva
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Solis-Castro OO, Wong N, Boissonade FM. Chemokines and Pain in the Trigeminal System. FRONTIERS IN PAIN RESEARCH 2021; 2:689314. [PMID: 35295531 PMCID: PMC8915704 DOI: 10.3389/fpain.2021.689314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chemotactic cytokines or chemokines are a large family of secreted proteins able to induce chemotaxis. Chemokines are categorized according to their primary amino acid sequence, and in particular their cysteine residues that form disulphide bonds to maintain the structure: CC, CXC, CX3C, and XC, in which X represents variable amino acids. Among their many roles, chemokines are known to be key players in pain modulation in the peripheral and central nervous systems. Thus, they are promising candidates for novel therapeutics that could replace current, often ineffective treatments. The spinal and trigeminal systems are intrinsically different beyond their anatomical location, and it has been suggested that there are also differences in their sensory mechanisms. Hence, understanding the different mechanisms involved in pain modulation for each system could aid in developing appropriate pharmacological alternatives. Here, we aim to describe the current landscape of chemokines that have been studied specifically with regard to trigeminal pain. Searching PubMed and Google Scholar, we identified 30 reports describing chemokines in animal models of trigeminal pain, and 15 reports describing chemokines involved in human pain associated with the trigeminal system. This review highlights the chemokines studied to date at different levels of the trigeminal system, their cellular localization and, where available, their role in a variety of animal pain models.
Collapse
Affiliation(s)
- Oscar O. Solis-Castro
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Wong
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Fiona M. Boissonade
| |
Collapse
|
9
|
Abstract
It is consistently reported that in inflammatory arthritis (IA), pain may continue despite well-controlled inflammation, most likely due to interactions between joint pathology and pain pathway alterations. Nervous system alterations have been described, but much remains to be understood about neuronal and central non-neuronal changes in IA. Using a rat model of IA induced by intra-articular complete Freund's adjuvant injection, this study includes a thorough characterization of joint pathology and objectives to identify peripheral innervation changes and alterations in the spinal dorsal horn (DH) that could alter DH excitatory balancing. Male and female rats displayed long-lasting pain-related behavior, but, in agreement with our previous studies, other pathological alterations emerged only at later times. Cartilage vascularization, thinning, and decreased proteoglycan content were not detectable in the ipsilateral cartilage until 4 weeks after complete Freund's adjuvant. Sympathetic and peptidergic nociceptive fibers invaded the ipsilateral cartilage alongside blood vessels, complex innervation changes were observed in the surrounding skin, and ipsilateral nerve growth factor protein expression was increased. In the DH, we examined innervation by peptidergic and nonpeptidergic nociceptors, inhibitory terminal density, the KCl cotransporter KCC2, microgliosis, and astrocytosis. Here, we detected the presence of microgliosis and, interestingly, an apparent loss of inhibitory terminals and decreased expression of KCC2. In conclusion, we found evidence of anatomical, inflammatory, and neuronal alterations in the peripheral and central nervous systems in a model of IA. Together, these suggest that there may be a shift in the balance between incoming and outgoing excitation, and modulatory inhibitory tone in the DH.
Collapse
|
10
|
Kwok CHT, Kohro Y, Mousseau M, O'Brien MS, Matyas JR, McDougall JJ, Trang T. Role of Primary Afferents in Arthritis Induced Spinal Microglial Reactivity. Front Immunol 2021; 12:626884. [PMID: 33897685 PMCID: PMC8058457 DOI: 10.3389/fimmu.2021.626884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/18/2021] [Indexed: 11/18/2022] Open
Abstract
Increased afferent input resulting from painful injury augments the activity of central nociceptive circuits via both neuron-neuron and neuron-glia interactions. Microglia, resident immune cells of the central nervous system (CNS), play a crucial role in the pathogenesis of chronic pain. This study provides a framework for understanding how peripheral joint injury signals the CNS to engage spinal microglial responses. During the first week of monosodium iodoacetate (MIA)-induced knee joint injury in male rats, inflammatory and neuropathic pain were characterized by increased firing of peripheral joint afferents. This increased peripheral afferent activity was accompanied by increased Iba1 immunoreactivity within the spinal dorsal horn indicating microglial activation. Pharmacological silencing of C and A afferents with co-injections of QX-314 and bupivacaine, capsaicin, or flagellin prevented the development of mechanical allodynia and spinal microglial activity after MIA injection. Elevated levels of ATP in the cerebrospinal fluid (CSF) and increased expression of the ATP transporter vesicular nucleotide transporter (VNUT) in the ipsilateral spinal dorsal horn were also observed after MIA injections. Selective silencing of primary joint afferents subsequently inhibited ATP release into the CSF. Furthermore, increased spinal microglial reactivity, and alleviation of MIA-induced arthralgia with co-administration of QX-314 with bupivacaine were recapitulated in female rats. Our results demonstrate that early peripheral joint injury activates joint nociceptors, which triggers a central spinal microglial response. Elevation of ATP in the CSF, and spinal expression of VNUT suggest ATP signaling may modulate communication between sensory neurons and spinal microglia at 2 weeks of joint degeneration.
Collapse
Affiliation(s)
- Charlie H T Kwok
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Yuta Kohro
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael Mousseau
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Melissa S O'Brien
- Departments of Pharmacology and Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - John R Matyas
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Jason J McDougall
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tuan Trang
- Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Pain Mechanism in Rheumatoid Arthritis: From Cytokines to Central Sensitization. Mediators Inflamm 2020; 2020:2076328. [PMID: 33005097 PMCID: PMC7503123 DOI: 10.1155/2020/2076328] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Pain is the most common symptom in patients with rheumatoid arthritis (RA). Although in recent years, through the implementation of targeted treatment and the introduction of disease-modifying antirheumatic drugs (DMARDs), the treatment of RA patients has made a significant progress, a large proportion of patients still feel pain. Finding appropriate treatment to alleviate the pain is very important for RA patients. Current research showed that, in addition to inflammation, RA pain involves peripheral sensitization and abnormalities in the central nervous system (CNS) pain regulatory mechanisms. This review summarized the literature on pain mechanisms of RA published in recent years. A better understanding of pain mechanisms will help to develop new analgesic targets and deploy new and existing therapies.
Collapse
|
12
|
Montague-Cardoso K, Malcangio M. Cathepsin S as a potential therapeutic target for chronic pain. MEDICINE IN DRUG DISCOVERY 2020; 7:100047. [PMID: 32904424 PMCID: PMC7453913 DOI: 10.1016/j.medidd.2020.100047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023] Open
Abstract
Chronic pain is a distressing yet poorly-treated condition that can arise as a result of diseases and injuries to the nervous system. The development of more efficacious therapies for chronic pain is essential and requires advances in our understanding of its underlying mechanisms. Clinical and preclinical evidence has demonstrated that immune responses play a crucial role in chronic pain. The lysosomal cysteine protease cathepsin S (CatS) plays a key role in such immune response. Here we discuss the preclinical evidence for the mechanistic importance of extracellular CatS in chronic pain focussing on studies utilising drugs and other pharmacological tools that target CatS activity. We also consider the use of CatS inhibitors as potential novel antihyperalgesics, highlighting that the route and timing of delivery would need to be tailored to the initial cause of pain in order to ensure the most effective use of such drugs. Cathepsin S plays a key extracellular role in the underlying mechanisms of chronic pain Pharmacological tools provide crucial evidence for this role and the therapeutic potential of targeting Cathepsin S The route of delivery and timing of cathepsin S inhibitor administration should be tailored to specific causes of chronic pain
Collapse
Affiliation(s)
- Karli Montague-Cardoso
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL
| |
Collapse
|
13
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
14
|
Casanova-Vallve N, Constantin-Teodosiu D, Filer A, Hardy RS, Greenhaff PL, Chapman V. Skeletal muscle dysregulation in rheumatoid arthritis: Metabolic and molecular markers in a rodent model and patients. PLoS One 2020; 15:e0235702. [PMID: 32634159 PMCID: PMC7340297 DOI: 10.1371/journal.pone.0235702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is accompanied by pain, inflammation and muscle weakness. Skeletal muscle inflammation and inactivity are independently associated with muscle insulin resistance and atrophy. Our objective was to identify early molecular and biochemical markers in muscle from a rodent model of RA relative to control and subsequently identify commonality in muscle gene expression between this model and muscle from RA patients. Pain behaviour and locomotor activity were measured in a collagen-induced arthritis (CIA) model of RA (n = 9) and control (n = 9) rats. Energy substrates and metabolites, total alkaline-soluble protein:DNA ratio and mRNA abundance of 46 targeted genes were also determined in Extensor digitorum longus muscle. Expression of targeted mRNAs was quantified in Vastus Lateralis muscle from RA patients (n = 7) and healthy age-matched control volunteers (n = 6). CIA rats exhibited pain behaviour (p<0.01) and reduced activity (p<0.05) compared to controls. Muscle glycogen content was less (p<0.05) and muscle lactate content greater (p<0.01) in CIA rats. The bioinformatics analysis of muscle mRNA abundance differences from the control, predicted the activation of muscle protein metabolism and inhibition of muscle carbohydrate and fatty acid metabolism in CIA rats. Compared to age-matched control volunteers, RA patients exhibited altered muscle mRNA expression of 8 of the transcripts included as targets in the CIA model of RA. In conclusion, muscle energy metabolism and metabolic gene expression were altered in the CIA model, which was partly corroborated by targeted muscle mRNA measurements in RA patients. This research highlights the negative impact of RA on skeletal muscle metabolic homeostasis.
Collapse
Affiliation(s)
- Nuria Casanova-Vallve
- Division of Physiology, Pharmacology and Neuroscience, School of Life Science, University of Nottingham, Nottingham, England, United Kingdom
- Centre for Sports, Exercise and Osteoarthritis Research Versus Arthritis, University of Nottingham, Nottingham, England, United Kingdom
| | - Dumitru Constantin-Teodosiu
- Division of Physiology, Pharmacology and Neuroscience, School of Life Science, University of Nottingham, Nottingham, England, United Kingdom
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, England, United Kingdom
| | - Andrew Filer
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, England, United Kingdom
| | - Rowan S. Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, England, United Kingdom
| | - Paul L. Greenhaff
- Division of Physiology, Pharmacology and Neuroscience, School of Life Science, University of Nottingham, Nottingham, England, United Kingdom
- Centre for Sports, Exercise and Osteoarthritis Research Versus Arthritis, University of Nottingham, Nottingham, England, United Kingdom
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, England, United Kingdom
| | - Victoria Chapman
- Division of Physiology, Pharmacology and Neuroscience, School of Life Science, University of Nottingham, Nottingham, England, United Kingdom
- Centre for Sports, Exercise and Osteoarthritis Research Versus Arthritis, University of Nottingham, Nottingham, England, United Kingdom
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, England, United Kingdom
| |
Collapse
|
15
|
Miller RE, Tran PB, Ishihara S, Syx D, Ren D, Miller RJ, Valdes AM, Malfait AM. Microarray analyses of the dorsal root ganglia support a role for innate neuro-immune pathways in persistent pain in experimental osteoarthritis. Osteoarthritis Cartilage 2020; 28:581-592. [PMID: 31982564 PMCID: PMC7214125 DOI: 10.1016/j.joca.2020.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Following destabilization of the medial meniscus (DMM), mice develop experimental osteoarthritis (OA) and associated pain behaviors that are dependent on the stage of disease. We aimed to describe changes in gene expression in knee-innervating dorsal root ganglia (DRG) after surgery, in order to identify molecular pathways associated with three pre-defined pain phenotypes: "post-surgical pain", "early-stage OA pain", and "persistent OA pain". DESIGN We performed DMM or sham surgery in 10-week old male C57BL/6 mice and harvested L3-L5 DRG 4, 8, and 16 weeks after surgery or from age-matched naïve mice (n = 3/group). RNA was extracted and an Affymetrix Mouse Transcriptome Array 1.0 was performed. Three pain phenotypes were defined: "post-surgical pain" (sham and DMM 4-week vs 14-week old naïve), "early OA pain" (DMM 4-week vs sham 4-week), and "persistent OA pain" (DMM 8- and 16-week vs naïve and sham 8- and 16-week). 'Top hit' genes were defined as P < 0.001. Pathway analysis (Ingenuity Pathway Analysis) was conducted using differentially expressed genes defined as P < 0.05. In addition, we performed qPCR for Ngf and immunohistochemistry for F4/80+ macrophages in the DRG. RESULTS For each phenotype, top hit genes identified a small number of differentially expressed genes, some of which have been previously associated with pain (7/67 for "post-surgical pain"; 2/14 for "early OA pain"; 8/37 for "persistent OA pain"). Overlap between groups was limited, with 8 genes differentially regulated (P < 0.05) in all three phenotypes. Pathway analysis showed that in the persistent OA pain phase many of the functions of differentially regulated genes are related to immune cell recruitment and activation. Genes previously linked to OA pain (CX3CL1, CCL2, TLR1, and NGF) were upregulated in this phenotype and contributed to activation of the neuroinflammation canonical pathway. In separate sets of mice, we confirmed that Ngf was elevated in the DRG 8 weeks after DMM (P = 0.03), and numbers of F4/80+ macrophages were increased 16 weeks after DMM (P = 0.002 vs Sham). CONCLUSION These transcriptomics findings support the idea that distinct molecular pathways discriminate early from persistent OA pain. Pathway analysis suggests neuroimmune interactions in the DRG contribute to initiation and maintenance of pain in OA.
Collapse
Affiliation(s)
- Rachel E. Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Phuong B. Tran
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| | - Delfien Syx
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago IL
| | | | - Ana M. Valdes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham UK
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical Center, Chicago IL
| |
Collapse
|
16
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
18
|
Pain-related behaviors associated with persistence of mechanical hyperalgesia after antigen-induced arthritis in rats. Pain 2020; 161:1571-1583. [DOI: 10.1097/j.pain.0000000000001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Understanding the Molecular Mechanisms Underlying the Pathogenesis of Arthritis Pain Using Animal Models. Int J Mol Sci 2020; 21:ijms21020533. [PMID: 31947680 PMCID: PMC7013391 DOI: 10.3390/ijms21020533] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Arthritis, including osteoarthritis (OA) and rheumatoid arthritis (RA), is the leading cause of years lived with disability (YLD) worldwide. Although pain is the cardinal symptom of arthritis, which is directly related to function and quality of life, the elucidation of the mechanism underlying the pathogenesis of pain in arthritis has lagged behind other areas, such as inflammation control and regulation of autoimmunity. The lack of therapeutics for optimal pain management is partially responsible for the current epidemic of opioid and narcotic abuse. Recent advances in animal experimentation and molecular biology have led to significant progress in our understanding of arthritis pain. Despite the inherent problems in the extrapolation of data gained from animal pain studies to arthritis in human patients, the critical assessment of molecular mediators and translational studies would help to define the relevance of novel therapeutic targets for the treatment of arthritis pain. This review discusses biological and molecular mechanisms underlying the pathogenesis of arthritis pain determined in animal models of OA and RA, along with the methodologies used.
Collapse
|
20
|
Oto Y, Takahashi Y, Kurosaka D, Kato F. Alterations of voluntary behavior in the course of disease progress and pharmacotherapy in mice with collagen-induced arthritis. Arthritis Res Ther 2019; 21:284. [PMID: 31831067 PMCID: PMC6909634 DOI: 10.1186/s13075-019-2071-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis and bone destruction at the joints, causing pain and motor disturbance. Despite the better control of inflammation and joint deformity afforded by modern disease-modifying anti-rheumatic drugs, many patients with RA remain dissatisfied with their treatment, primarily because of sensory-emotional distress. Pre-clinical tests that can evaluate not only the symptoms of arthritis but also the associated pain as sensory-emotional experience are urgently needed. Methods Here, we introduce two types of novel methods for evaluation of voluntary behavior in a commonly used model of RA (collagen-induced arthritis; CIA) in male mice. First, spontaneous motor activity was assessed with a running wheel placed in home cages and the number of rotations was continuously recorded in a 12:12-h light environment. Second, temperature preference was assessed by measuring the time spent in either of the floor plates with augmenting (25 to 49 °C) or fixed temperature (25 °C). We also evaluated the effects of tofacitinib on CIA-associated changes in voluntary wheel running and temperature preference. Results We detected a significant decrease in voluntary wheel running, a significant shift in the distribution of movement in the dark phase, and a significant increase in the time spent in warmer environments than the room temperature in the mice with CIA. These alterations in voluntary behavior have never been described with conventional methods. We also revealed tofacitinib-resistant significant changes in the voluntary behavior and choice of temperature despite significant mitigation of the symptoms of arthritis. Conclusions We described for the first time significant alterations of the voluntary behavior of the mice with CIA during the clinical periods, indicating that the overall physical/motivational states and its circadian variation, as well as the specific preference to a certain environmental temperature, are modified in the mice with CIA, as observed in human patients. Some of these did not parallel with the conventional arthritis scores, particularly during the pharmacotherapy suggesting that mice with CIA show not only the peripheral symptoms but also the central consequences. The use of these approaches would also help clarify the biological mechanisms underlying physician-patient discordance in the assessment of RA.
Collapse
Affiliation(s)
- Yohsuke Oto
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan. .,Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan. .,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
21
|
Ebbinghaus M, Müller S, Segond von Banchet G, Eitner A, Wank I, Hess A, Hilger I, Kamradt T, Schaible HG. Contribution of Inflammation and Bone Destruction to Pain in Arthritis: A Study in Murine Glucose-6-Phosphate Isomerase-Induced Arthritis. Arthritis Rheumatol 2019; 71:2016-2026. [PMID: 31332965 DOI: 10.1002/art.41051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Arthritis is often characterized by inflammation and bone destruction. This study was undertaken to investigate the contribution of inflammation and bone destruction to pain. METHODS Inflammation, bone resorption, pain-related behaviors, and molecular markers (activating transcription factor 3 [ATF-3], p-CREB, and transient receptor potential vanilloid channel 1) in sensory neurons were measured in murine glucose-6-phosphate isomerase (G6PI)-induced arthritis, a model of rheumatoid arthritis. Depletion of Treg cells before immunization changed self-limiting arthritis into nonremitting arthritis with pronounced bone destruction. Zoledronic acid (ZA) was administered to reduce bone resorption. RESULTS Compared to nondepleted mice, Treg cell-depleted mice exhibited arthritis with more severe bone destruction and higher guarding scores (P < 0.05; n = 10 mice per group) as well as more persistent thermal hyperalgesia (P < 0.05), but displayed similar mechanical hyperalgesia at the hindpaws (n = 18-26 mice per group). These pain-related behaviors, as well as an up-regulation of the neuronal injury marker ATF-3 in sensory neurons (studied in 39 mice), appeared before the clinical score (inflammation) became positive and persisted in Treg cell-depleted and nondepleted mice. In the late stage of arthritis, Treg cell-depleted mice treated with ZA showed less bone resorption (<50%; P < 0.01) and less thermal hyperalgesia (P < 0.01) than Treg cell-depleted mice without ZA treatment (n = 15 mice per group), but ZA treatment did not reduce the clinical score and local mechanical hyperalgesia. CONCLUSION Pain-related behaviors precede and outlast self-limiting arthritis. In nonremitting arthritis with enhanced bone destruction, mainly local thermal, but not local mechanical, hyperalgesia was aggravated. The up-regulation of ATF-3 indicates an early and persisting affection of sensory neurons by G6PI-induced arthritis.
Collapse
Affiliation(s)
- Matthias Ebbinghaus
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sylvia Müller
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Annett Eitner
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Isabel Wank
- Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingrid Hilger
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Kamradt
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Georg Schaible
- Jenna University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Ryabkova VA, Churilov LP, Shoenfeld Y. Neuroimmunology: What Role for Autoimmunity, Neuroinflammation, and Small Fiber Neuropathy in Fibromyalgia, Chronic Fatigue Syndrome, and Adverse Events after Human Papillomavirus Vaccination? Int J Mol Sci 2019; 20:E5164. [PMID: 31635218 PMCID: PMC6834318 DOI: 10.3390/ijms20205164] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Fibromyalgia is a disorder characterized by chronic widespread pain and non-pain symptoms, such as fatigue, dysautonomia, and cognitive and sleep disturbances. Its pathogenesis and treatment continue to be the subject of debate. We highlight the role of three mechanisms-autoimmunity, neuroinflammation, and small fiber neuropathy-in the pathogenesis of the disease. These mechanisms are shown to be closely interlinked (also on a molecular level), and the review considers the implementation of this relationship in the search for therapeutic options. We also pay attention to chronic fatigue syndrome, which overlaps with fibromyalgia, and propose a concept of "autoimmune hypothalamopathy" for its pathogenesis. Finally, we analyze the molecular mechanisms underlying the neuroinflammatory background in the development of adverse events following HPV vaccination and suggesting neuroinflammation, which could exacerbate the development of symptoms following HPV vaccination (though this is hotly debated), as a model for fibromyalgia pathogenesis.
Collapse
Affiliation(s)
- Varvara A Ryabkova
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg 199034, Russian Federation.
| | - Leonid P Churilov
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg 199034, Russian Federation.
- Saint Petersburg Research Institute of Phthisiopulmonology; Saint-Petersburg 191036, Russian Federation.
| | - Yehuda Shoenfeld
- Laboratory of the Mosaic of Autoimmunity, Saint Petersburg State University, Saint-Petersburg 199034, Russian Federation.
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University School of Medicine, Tel-Hashomer 52621, Israel.
| |
Collapse
|
23
|
Luo X, Gu Y, Tao X, Serhan CN, Ji RR. Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male But Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy. Front Pharmacol 2019; 10:745. [PMID: 31333464 PMCID: PMC6624779 DOI: 10.3389/fphar.2019.00745] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Earlier studies have demonstrated that essential fatty acid-derived specialized pro-resolving mediators (SPMs) promote the resolution of inflammation and pain. However, the potential analgesic actions of SPMs in chemotherapy-induced peripheral neuropathy (CIPN) are not known. Recent results also showed sex dimorphism in immune cell signaling in neuropathic pain. Here, we evaluated the analgesic actions of D-series resolvins (RvD1, RvD2, RvD3, RvD4, and RvD5) on a CIPN in male and female mice. Paclitaxel (PTX, 2 mg/kg), given on days 0, 2, 4, and 6, produced robust mechanical allodynia in both sexes at 2 weeks. Intrathecal injection of RvD1 and RvD2 (100 ng, i.t.) at 2 weeks reversed PTX-induced mechanical allodynia in both sexes, whereas RvD3 and RvD4 (100 ng, i.t.) had no apparent effects on either sex. Interestingly, RvD5 (100 ng, i.t.) only reduced mechanical allodynia in male mice but not in female mice. Notably, PTX-induced mechanical allodynia was fully developed in Trpv1 or Trpa1 knockout mice, showing no sex differences. Also, intrathecal RvD5 reduced mechanical allodynia in male mice lacking Trpv1 or Trpa1, whereas female mice with Trpv1 or Trpa1 deficiency had no response to RvD5. Finally, RvD5-induced male-specific analgesia was also confirmed in an inflammatory pain condition. Formalin-induced second phase pain (licking and flinching) was reduced by intrathecal RvD5 in male but not female mice. These findings identified RvD5 as the first SPM that shows sex dimorphism in pain regulation. Moreover, these results suggest that specific resolvins may be used to treat CIPN, a rising health concern in cancer survivors.
Collapse
Affiliation(s)
- Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Yun Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States.,Department of Neurobiology, Duke University Medical Center, Durham, NC, United States.,Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
24
|
Hore Z, Denk F. Neuroimmune interactions in chronic pain - An interdisciplinary perspective. Brain Behav Immun 2019; 79:56-62. [PMID: 31029795 DOI: 10.1016/j.bbi.2019.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that communication between the nervous and immune systems is involved in the development of chronic pain. At each level of the nervous system, immune cells have been reported to accompany and frequently mediate dysfunction of nociceptive circuitry; however the exact mechanisms are not fully understood. One way to speed up progress in this area is to increase interdisciplinary cross-talk. This review sets out to summarize what pain research has already learnt, or indeed might still learn, from examining peripheral and central nociceptive mechanisms using tools and perspectives from other fields like immunology, inflammation biology or the study of stress.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
25
|
Chun S, Kwon YB. The CCL2 elevation in primary afferent fibers produces zymosan-induced hyperalgesia through microglia-mediated neuronal activation in the spinal dorsal horn. Brain Res Bull 2019; 149:53-59. [DOI: 10.1016/j.brainresbull.2019.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
|
26
|
Abstract
Supplemental Digital Content is Available in the Text. Glial inhibitors only reverse mechanical hypersensitivity in male mice subjected to arthritis. No obvious arthritis-related transcriptional difference was identified between male and female spinal microglia. Recent studies have suggested a sexually dimorphic role of spinal glial cells in the maintenance of mechanical hypersensitivity in rodent models of chronic pain. We have used the collagen antibody–induced arthritis (CAIA) mouse model to examine differences between males and females in the context of spinal regulation of arthritis-induced pain. We have focused on the late phase of this model when joint inflammation has resolved, but mechanical hypersensitivity persists. Although the intensity of substance P, calcitonin gene–related peptide, and galanin immunoreactivity in the spinal cord was not different from controls, the intensity of microglia (Iba-1) and astrocyte (glial fibrillary acidic protein) markers was elevated in both males and females. Intrathecal administration of the glial inhibitors minocycline and pentoxifylline reversed mechanical thresholds in male, but not in female mice. We isolated resident microglia from the lumbar dorsal horns and observed a significantly lower number of microglial cells in females by flow cytometry analysis. However, although genome-wide RNA sequencing results pointed to several transcriptional differences between male and female microglia, no convincing differences were identified between control and CAIA groups. Taken together, these findings suggest that there are subtle sex differences in microglial expression profiles independent of arthritis. Our experiments failed to identify the underlying mRNA correlates of microglial actions in the late phase of the CAIA model. It is likely that transcriptional changes are either subtle and highly localised and therefore difficult to identify with bulk isolation techniques or that other factors, such as changes in protein expression or epigenetic modifications, are at play.
Collapse
|
27
|
|
28
|
Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019; 8:cells8030264. [PMID: 30897858 PMCID: PMC6468544 DOI: 10.3390/cells8030264] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
For a long time, cysteine cathepsins were considered primarily as proteases crucial for nonspecific bulk proteolysis in the endolysosomal system. However, this view has dramatically changed, and cathepsins are now considered key players in many important physiological processes, including in diseases like cancer, rheumatoid arthritis, and various inflammatory diseases. Cathepsins are emerging as important players in the extracellular space, and the paradigm is shifting from the degrading enzymes to the enzymes that can also specifically modify extracellular proteins. In pathological conditions, the activity of cathepsins is often dysregulated, resulting in their overexpression and secretion into the extracellular space. This is typically observed in cancer and inflammation, and cathepsins are therefore considered valuable diagnostic and therapeutic targets. In particular, the investigation of limited proteolysis by cathepsins in the extracellular space is opening numerous possibilities for future break-through discoveries. In this review, we highlight the most important findings that establish cysteine cathepsins as important players in the extracellular space and discuss their roles that reach beyond processing and degradation of extracellular matrix (ECM) components. In addition, we discuss the recent developments in cathepsin research and the new possibilities that are opening in translational medicine.
Collapse
Affiliation(s)
- Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
29
|
Liu Z, Chen S, Qiu C, Sun Y, Li W, Jiang J, Zhang JM. Fractalkine/CX3CR1 Contributes to Endometriosis-Induced Neuropathic Pain and Mechanical Hypersensitivity in Rats. Front Cell Neurosci 2018; 12:495. [PMID: 30622457 PMCID: PMC6309014 DOI: 10.3389/fncel.2018.00495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Pain is the most severe and common symptom of endometriosis. Its underlying pathogenetic mechanism is poorly understood. Nerve sensitization is a particular research challenge, due to the limitations of general endometriosis models and sampling nerve tissue from patients. The chemokine fractalkine (FKN) has been demonstrated to play a key role in various forms of neuropathic pain, while its role in endometriotic pain is unknown. Our study was designed to explore the function of FKN in the development and maintenance of peripheral hyperalgesia and central sensitization in endometriosis using a novel endometriosis animal model developed in our laboratory. After modeling, behavioral tests were carried out and the optimal time for molecular changes was obtained. We extracted ectopic tissues and L4-6 spinal cords to detect peripheral and central roles for FKN, respectively. To assess morphologic characteristics of endometriosis-like lesions-as well as expression and location of FKN/CX3CR1-we performed H&E staining, immunostaining, and western blotting analyses. Furthermore, inhibition of FKN expression in the spinal cord was achieved by intrathecal administration of an FKN-neutralizing antibody to demonstrate its function. Our results showed that implanted autologous uterine tissue around the sciatic nerve induced endometriosis-like lesions and produced mechanical hyperalgesia and allodynia. FKN was highly expressed on macrophages, whereas its receptor CX3CR1 was overexpressed in the myelin sheath of sciatic nerve fibers. Overexpressed FKN was also observed in neurons. CX3CR1/pp38-MAPK was upregulated in activated microglia in the spinal dorsal horn. Intrathecal administration of FKN-neutralizing antibody not only reversed the established mechanical hyperalgesia and allodynia, but also inhibited the expression of CX3CR1/pp38-MAPK in activated microglia, which was essential for the persistence of central sensitization. We concluded that the FKN/CX3CR1 signaling pathway might be one of the mechanisms of peripheral hyperalgesia in endometriosis, which requires further studies. Spinal FKN is important for the development and maintenance of central sensitization in endometriosis, and it may further serve as a novel therapeutic target to relieve persistent pain associated with endometriosis.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Sisi Chen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Yaqiong Sun
- Department of Obstetrics and Gynecology, Shandong Obstetrics and Gynecology Hospital, Jinan, China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
30
|
Bonfante R, Napimoga MH, Macedo CG, Abdalla HB, Pieroni V, Clemente-Napimoga JT. The P2X7 Receptor, Cathepsin S and Fractalkine in the Trigeminal Subnucleus Caudalis Signal Persistent Hypernociception in Temporomandibular Rat Joints. Neuroscience 2018; 391:120-130. [DOI: 10.1016/j.neuroscience.2018.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022]
|
31
|
Aman Y, Pitcher T, Ballard C, Malcangio M. Impaired chronic pain-like behaviour and altered opioidergic system in the TASTPM mouse model of Alzheimer's disease. Eur J Pain 2018; 23:91-106. [PMID: 29987897 PMCID: PMC6492091 DOI: 10.1002/ejp.1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chronic pain conditions, especially osteoarthritis (OA), are as common in individuals with Alzheimer's disease (AD) as in the general elderly population, which results in detrimental impact on patient's quality of life. However, alteration in perception of pain in AD coupled with deteriorating ability to communicate pain sensations often result in under-diagnosis and inappropriate management of pain. Therefore, a better understanding of mechanisms in chronic pain processing in AD is needed. Here, we explored the development and progression of OA pain and the effect of analgesics in a transgenic mouse model of AD. METHODS Unilateral OA pain was induced chemically, via an intra-articular injection of monosodium iodoacetate (MIA) in the left knee joint of AD-mice (TASTPM) and age- and gender-matched C57BL/6J (WT). Pharmacological and biochemical assessments were conducted in plasma and spinal cord tissue. RESULTS MIA resulted in hind paw mechanical hypersensitivity (allodynia), initiating on day 3, in TASTPM and WT controls. However, from 14 to 28 days, TASTPM displayed partial attenuation of allodynia and diminished spinal microglial response compared to WT controls. Naloxone, an opioid antagonist, re-established allodynia levels as observed in the WT group. Morphine, an opioid agonist, induced heightened analgesia in AD-mice whilst gabapentin was devoid of efficacy. TASTPM exhibited elevated plasma level of β-endorphin post-MIA which correlated with impaired allodynia. CONCLUSIONS These results indicate an alteration of the opioidergic system in TASTPM as possible mechanisms underlying impaired persistent pain sensitivity in AD. This work provides basis for re-evaluation of opioid analgesic use for management of pain in AD. SIGNIFICANCE This study shows attenuated pain-like behaviour in a transgenic mouse model of Alzheimer's disease due to alterations in the opioidergic system and central plasticity mechanisms of persistent pain.
Collapse
Affiliation(s)
- Y Aman
- Wolfson Centre for Age Related Diseases, King's College London, UK
| | - T Pitcher
- Wolfson Centre for Age Related Diseases, King's College London, UK
| | - C Ballard
- Wolfson Centre for Age Related Diseases, King's College London, UK.,Medical School, University of Exeter, UK
| | - M Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, UK
| |
Collapse
|
32
|
The analgesic effect and possible mechanisms by which koumine alters type II collagen-induced arthritis in rats. J Nat Med 2018; 73:217-225. [DOI: 10.1007/s11418-018-1229-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/20/2018] [Indexed: 01/28/2023]
|
33
|
The spinal NR2BR/ERK2 pathway as a target for the central sensitization of collagen-induced arthritis pain. PLoS One 2018; 13:e0201021. [PMID: 30024967 PMCID: PMC6053233 DOI: 10.1371/journal.pone.0201021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022] Open
Abstract
Objective Pain management is a huge challenge in the treatment of rheumatoid arthritis (RA), and central sensitization is reportedly involved in the development of pain. The current study was undertaken to explore the possible role of N-methyl-D-aspartate receptors (NMDARs) in the spinal mechanism of central sensitization in RA using a collagen-induced arthritis (CIA) model. Methods Mechanical hypersensitivity was assessed in C57BL/6 mice, before and after the induction of CIA via administration of chick type II collagen. Analgesic drugs, receptor antagonist, and kinase inhibitor were administrated intrathecally in the spinal cord. Protein expression and phosphorylation changes were detected via immunoblotting. Results CIA mice developed significant mechanical hypersensitivity, and spinal administration of the NMDAR antagonist D-2-amino-5-phosphonovaleric acid (D-APV) effectively attenuated peripheral pain hypersensitivity. There was specific enhancement of synaptic NR2B-containing NMDAR (NR2BR) expression in the spinal dorsal horns of the mice. Both the increased total protein expression of NR2B subunit and the enhanced total phosphorylation level of NR2B subunit at 1472 tyrosine promoted the synaptic expression of NMDAR in the mice. Intrathecal injection of tramadol suppressed synaptic NMDAR expression mainly by changing the synaptic phosphorylation state of NR2B subunit at Tyr1472. Extracellular signal-regulated protein kinases 2 (ERK2) activity synchronized with the synaptic expression of NR2BR, which was downregulated by the action of tramadol. Conclusion Specific enhancement of NR2BR in the spinal dorsal horn may be vital for central sensitization in the CIA model of RA. The NR2BR/ERK2 pathway may be a promising target for pain management in RA patients.
Collapse
|
34
|
Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proc Natl Acad Sci U S A 2017; 114:11235-11240. [PMID: 28973941 DOI: 10.1073/pnas.1706053114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.
Collapse
|
35
|
Oehler B, Kistner K, Martin C, Schiller J, Mayer R, Mohammadi M, Sauer RS, Filipovic MR, Nieto FR, Kloka J, Pflücke D, Hill K, Schaefer M, Malcangio M, Reeh PW, Brack A, Blum R, Rittner HL. Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation. Sci Rep 2017; 7:5447. [PMID: 28710476 PMCID: PMC5511297 DOI: 10.1038/s41598-017-05348-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022] Open
Abstract
Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC.
Collapse
Affiliation(s)
- Beatrice Oehler
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Katrin Kistner
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Corinna Martin
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Rafaela Mayer
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Milad Mohammadi
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Reine-Solange Sauer
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,University of Bordeaux, IBGC, UMR 5095, Bordeaux, France
| | - Francisco R Nieto
- Wolfson CARD, King's College London, Guys' Campus, London, United Kingdom.,University of Granada, Department of Pharmacology, Granada, Spain
| | - Jan Kloka
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Diana Pflücke
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Marzia Malcangio
- Wolfson CARD, King's College London, Guys' Campus, London, United Kingdom
| | - Peter W Reeh
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Brack
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
36
|
Fischer BD, Adeyemo A, O'Leary ME, Bottaro A. Animal models of rheumatoid pain: experimental systems and insights. Arthritis Res Ther 2017; 19:146. [PMID: 28666464 PMCID: PMC5493070 DOI: 10.1186/s13075-017-1361-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Severe chronic pain is one of the hallmarks and most debilitating manifestations of inflammatory arthritis. It represents a significant problem in the clinical management of patients with common chronic inflammatory joint conditions such as rheumatoid arthritis, psoriatic arthritis and spondyloarthropathies. The functional links between peripheral inflammatory signals and the establishment of the neuroadaptive mechanisms acting in nociceptors and in the central nervous system in the establishment of chronic and neuropathic pain are still poorly understood, representing an area of intense study and translational priority. Several well-established inducible and spontaneous animal models are available to study the onset, progression and chronicization of inflammatory joint disease, and have been instrumental in elucidating its immunopathogenesis. However, quantitative assessment of pain in animal models is technically and conceptually challenging, and it is only in recent years that inflammatory arthritis models have begun to be utilized systematically in experimental pain studies using behavioral and neurophysiological approaches to characterize acute and chronic pain stages. This article aims primarily to provide clinical and experimental rheumatologists with an overview of current animal models of arthritis pain, and to summarize emerging findings, challenges and unanswered questions in the field.
Collapse
Affiliation(s)
- Bradford D Fischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA
| | - Adeshina Adeyemo
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA
| | - Michael E O'Leary
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA
| | - Andrea Bottaro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 S. Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
37
|
Kramer L, Turk D, Turk B. The Future of Cysteine Cathepsins in Disease Management. Trends Pharmacol Sci 2017; 38:873-898. [PMID: 28668224 DOI: 10.1016/j.tips.2017.06.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the key role of cathepsin K in bone resorption, cysteine cathepsins have been investigated by pharmaceutical companies as drug targets. The first clinical results from targeting cathepsins by activity-based probes and substrates are paving the way for the next generation of molecular diagnostic imaging, whereas the majority of antibody-drug conjugates currently in clinical trials depend on activation by cathepsins. Finally, cathepsins have emerged as suitable vehicles for targeted drug delivery. It is therefore timely to review the future of cathepsins in drug discovery. We focus here on inflammation-associated diseases because dysregulation of the immune system accompanied by elevated cathepsin activity is a common feature of these conditions.
Collapse
Affiliation(s)
- Lovro Kramer
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
39
|
Ye L, Xiao L, Yang SY, Duan JJ, Chen Y, Cui Y, Chen Y. Cathepsin S in the spinal microglia contributes to remifentanil-induced hyperalgesia in rats. Neuroscience 2017; 344:265-275. [DOI: 10.1016/j.neuroscience.2016.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023]
|
40
|
Fusco M, Skaper SD, Coaccioli S, Varrassi G, Paladini A. Degenerative Joint Diseases and Neuroinflammation. Pain Pract 2017; 17:522-532. [DOI: 10.1111/papr.12551] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Mariella Fusco
- Scientific Information and Documentation Center; Epitech Group; Padua Italy
| | - Stephen D. Skaper
- Department of Pharmaceutical and Pharmacological Sciences; University of Padua; Padua Italy
| | - Stefano Coaccioli
- Department of Internal Medicine and Rheumatology; Santa Maria Hospital; University of Perugia; Terni Italy
| | - Giustino Varrassi
- Department of Anesthesiology and Pain Medicine; School of Dentistry; LUdeS University; La Valletta Malta
- Paolo Procacci Foundation and European League Against Pain; Rome Italy
| | | |
Collapse
|
41
|
Gazerani S, Zaringhalam J, Manaheji H, Golabi S. The Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats. Basic Clin Neurosci 2016; 7:231-40. [PMID: 27563416 PMCID: PMC4981835 DOI: 10.15412/j.bcn.03070308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Stimulation of peptidergic fibers activates microglia in the dorsal horn. Microglia activation causes fractalkine (FKN) release, a neuron-glia signal, which enhances pain. The transient vanilloid receptor 1 (TRPV1) mediates the release of neuropeptides, which can subsequently activate glia. TRPV1 and TRPV2 are generally expressed on C and Aδ fibers, respectively. Expression of both proteins is upregulated during inflammation, but expression of TRPV3 after induction of inflammation is unclear. Methods: Adult male Wistar rats were used in all experiments. Arthritis was induced in them by single subcutaneous injection of complete Freund’s adjuvant (CFA) in their right hindpaws. Resiniferatoxin (RTX) was used to eliminate peptidergic fibers. We examined the relation between FKN and TRPV3 expression by administration of anti-FKN antibody. Results: Our study findings indicated that 1) spinal TRPV3 was mostly expressed on nonpeptidergic fibers, 2) expression of spinal TRPV3 increased following inflammation, 3) elimination of peptidergic fibers decreased spinal TRPV3 expression, 4) alteration of hyperalgesia was compatible with TRPV3 changes in RTX-treated rat, and 5) anti-FKN antibody reduced spinal TRPV3 expression. Discussion: It seems that the hyperalgesia variation during different phases of CFA-induced arthritis correlates with spinal TRPV3 expression variation on peptidergic fibers. Moreover, spinal microglial activation during CFA inflammation is involved in TRPV3 expression changes via FKN signaling.
Collapse
Affiliation(s)
- Sasan Gazerani
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Golabi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Affiliation(s)
- Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan and
| | | | - Shinichi Kawai
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan and
| |
Collapse
|
43
|
|
44
|
Nieto FR, Clark AK, Grist J, Hathway GJ, Chapman V, Malcangio M. Neuron-immune mechanisms contribute to pain in early stages of arthritis. J Neuroinflammation 2016; 13:96. [PMID: 27130316 PMCID: PMC4851814 DOI: 10.1186/s12974-016-0556-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) patients frequently show weak correlations between the magnitude of pain and inflammation suggesting that mechanisms other than overt peripheral inflammation contribute to pain in RA. We assessed changes in microglial reactivity and spinal excitability and their contribution to pain-like behaviour in the early stages of collagen-induced arthritis (CIA) model. METHODS Mechanically evoked hypersensitivity, spinal nociceptive withdrawal reflexes (NWRs) and hind paw swelling were evaluated in female Lewis rats before and until 13 days following collagen immunization. In the spinal dorsal horn, microgliosis was assayed using immunohistochemistry (Iba-1/p-p38) and cyto(chemo)kine levels in the cerebrospinal fluid (CSF). Intrathecal administration of microglia-targeting drugs A-438079 (P2X7 antagonist) and LHVS (cathepsin S inhibitor) were examined upon hypersensitivity, NWRs, microgliosis and cyto(chemo)kine levels in the early phase of CIA. RESULTS The early phase of CIA was associated with mechanical allodynia and exaggerated mechanically evoked spinal NWRs, evident before hind paw swelling, and exacerbated with the development of swelling. Concomitant with the development of hypersensitivity was the presence of reactive spinal microgliosis and an increase of IL-1β levels in CSF (just detectable in plasma). Prolonged intrathecal administration of microglial inhibitors attenuated the development of mechanical allodynia, reduced microgliosis and attenuated IL-1β increments. Acute spinal application of either microglial inhibitor significantly diminished the sensitization of the spinal NWRs. CONCLUSIONS Mechanical hypersensitivity in the early phase of CIA is associated with central sensitization that is dependent upon microglial-mediated release of IL-1β in the spinal cord. Blockade of these spinal events may provide pain relief in RA patients.
Collapse
Affiliation(s)
- Francisco R Nieto
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - Anna K Clark
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - John Grist
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK
| | - Gareth J Hathway
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Victoria Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King's College London, Wolfson Wing, Hodgkin Building, Guy's Campus, London, UK.
| |
Collapse
|
45
|
Bas DB, Su J, Wigerblad G, Svensson CI. Pain in rheumatoid arthritis: models and mechanisms. Pain Manag 2016; 6:265-84. [PMID: 27086843 DOI: 10.2217/pmt.16.4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pain is one of the most challenging symptoms for patients with rheumatoid arthritis (RA). RA-related pain is frequently considered to be solely a consequence of inflammation in the joints; however, recent studies show that multiple mechanisms are involved. Indeed, RA pain may start even before the disease manifests, and frequently does not correlate with the degree of inflammation or pharmacological management. In this aspect, animal studies have the potential to provide new insights into the pathology that initiate and maintain pain in RA. The focus of this review is to describe the most commonly used animal models for studies of RA pathology, which have also been utilized in pain research, and to summarize findings providing potential clues to the mechanisms involved in the regulation of RA-induced pain.
Collapse
Affiliation(s)
- Duygu B Bas
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jie Su
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Gustaf Wigerblad
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Camilla I Svensson
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
46
|
Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat Rev Drug Discov 2015; 15:110-24. [DOI: 10.1038/nrd.2015.14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Ogbonna AC, Clark AK, Malcangio M. Development of monosodium acetate-induced osteoarthritis and inflammatory pain in ageing mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9792. [PMID: 25971876 PMCID: PMC4430498 DOI: 10.1007/s11357-015-9792-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/04/2015] [Indexed: 05/05/2023]
Abstract
Most conditions associated with ageing result from an age-related loss in the function of cells and tissues that maintain body homeostasis. In osteoarthritis (OA) patients, an inadequate response to stress or joint injury can lead to tissue destruction which can result in chronic pain. Here, we evaluated the development of monoiodoacetate (MIA)-induced OA in 3-, 15- and 22-month-old mice and assessed the pain-like behaviours and the spinal microglial changes associated with MIA administration. We observed that in aged mice, nocifensive behaviour was significantly attenuated in comparison to young adults despite similar knee joint pathology. Specifically referred mechanical allodynia associated with the MIA initial inflammatory phase (0-10 days) was significantly attenuated in 22-month-old mice. In contrast, the late phase of MIA-induced mechanical allodynia was comparable between age groups. Significant increase of microglia cell numbers was detected in 3, but not 15- and 22-month-old spinal cords. Furthermore, in the zymosan model of acute inflammation, mechanical allodynia was attenuated, and microglial response was less robust in 22 compared to 3-month-old mice. This study suggests that nocifensive responses to damaging stimuli are altered with advancing age and microglial response to peripheral damage is less robust.
Collapse
Affiliation(s)
- Andrea C. Ogbonna
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SE1 1UL UK
| | - Anna K. Clark
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SE1 1UL UK
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SE1 1UL UK
| |
Collapse
|
48
|
Nieto FR, Clark AK, Grist J, Chapman V, Malcangio M. Calcitonin gene-related peptide-expressing sensory neurons and spinal microglial reactivity contribute to pain states in collagen-induced arthritis. Arthritis Rheumatol 2015; 67:1668-77. [PMID: 25707377 PMCID: PMC4832255 DOI: 10.1002/art.39082] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/17/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To evaluate the contribution of sensory neurons in ankle joints and adjacent tissue to the development of pain in collagen-induced arthritis (CIA), and to determine the relationship between pain and the appearance of clinical signs. METHODS Mechanical and heat hypersensitivity and hind paw swelling were assessed in Lewis rats before and until 18 days following collagen immunization. We examined the effect of intrathecal administration of a calcitonin gene-related peptide (CGRP) antagonist (CGRP(8-37) ) from day 11 to day 18 postimmunization on CIA-induced hypersensitivity. During CIA development, CGRP and p-ERK immunoreactivity was quantified in lumbar dorsal root ganglia in which sensory neurons innervating the ankle joint were identified by retrograde labeling with Fluoro-Gold. Microgliosis in the lumbar dorsal horn was assessed by immunohistochemistry, and release of CGRP evoked by activity of primary afferent fibers was measured using a preparation of isolated dorsal horn with dorsal roots attached. RESULTS CIA was associated with mechanical hypersensitivity that was evident before hind paw swelling and that was exacerbated with the development of swelling. Heat hyperalgesia developed along with swelling. Concomitant with the development of mechanical hypersensitivity, joint innervating neurons exhibited enhanced CGRP expression and an activated phenotype (increased p-ERK expression), and significant microgliosis became evident in the dorsal horn; these peripheral and central changes were augmented further with disease progression. CGRP release evoked by dorsal root stimulation was higher in the dorsal horn on day 18 in rats with CIA compared to control rats. Prolonged intrathecal administration of CGRP(8-37) attenuated established mechanical hypersensitivity and reduced spinal microgliosis. CONCLUSION Sensory neuron-derived CGRP sustains mechanical hypersensitivity and spinal microglial reactivity in CIA, suggesting that central mechanisms play critical roles in chronic inflammatory pain. Blockade of these central events may provide pain relief in rheumatoid arthritis patients.
Collapse
|
49
|
McNulty AL, Leddy HA, Liedtke W, Guilak F. TRPV4 as a therapeutic target for joint diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:437-50. [PMID: 25519495 PMCID: PMC4361386 DOI: 10.1007/s00210-014-1078-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
Abstract
Biomechanical factors play a critical role in regulating the physiology as well as the pathology of multiple joint tissues and have been implicated in the pathogenesis of osteoarthritis. Therefore, the mechanisms by which cells sense and respond to mechanical signals may provide novel targets for the development of disease-modifying osteoarthritis drugs (DMOADs). Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable cation channel that serves as a sensor of mechanical or osmotic signals in several musculoskeletal tissues, including cartilage, bone, and synovium. The importance of TRPV4 in joint homeostasis is apparent in patients harboring TRPV4 mutations, which result in the development of a spectrum of skeletal dysplasias and arthropathies. In addition, the genetic knockout of Trpv4 results in the development of osteoarthritis and decreased osteoclast function. In engineered cartilage replacements, chemical activation of TRPV4 can reproduce many of the anabolic effects of mechanical loading to accelerate tissue growth and regeneration. Overall, TRPV4 plays a key role in transducing mechanical, pain, and inflammatory signals within joint tissues and thus is an attractive therapeutic target to modulate the effects of joint diseases. In pathological conditions in the joint, when the delicate balance of TRPV4 activity is altered, a variety of different tools could be utilized to directly or indirectly target TRPV4 activity.
Collapse
Affiliation(s)
- Amy L. McNulty
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Holly A. Leddy
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Wolfgang Liedtke
- Department of Neurology and Duke University Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
50
|
Repnik U, Starr AE, Overall CM, Turk B. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines. J Biol Chem 2015; 290:13800-11. [PMID: 25833952 DOI: 10.1074/jbc.m115.638395] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/24/2022] Open
Abstract
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.
Collapse
Affiliation(s)
- Urska Repnik
- From the Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Amanda E Starr
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher M Overall
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, the Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| | - Boris Turk
- From the Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia, the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, SI-1000 Ljubljana, Slovenia, and the Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|