1
|
Richter P, Cardoneanu A, Rezus C, Burlui AM, Rezus E. Non-Traditional Pro-Inflammatory and Pro-Atherosclerotic Risk Factors Related to Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms232012604. [PMID: 36293458 PMCID: PMC9604037 DOI: 10.3390/ijms232012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of high mortality in patients with systemic lupus erythematosus (SLE). The Framingham risk score and other traditional risk factors do not fully reflect the CVD risk in SLE patients. Therefore, in order to stratify these high-risk patients, additional biomarkers for subclinical CVD are needed. The mechanisms of atherogenesis in SLE are still being investigated. During the past decades, many reports recognized that inflammation plays a crucial role in the development of atherosclerosis. The aim of this report is to present novel proinflammatory and pro-atherosclerotic risk factors that are closely related to SLE inflammation and which determine an increased risk for the occurrence of early cardiovascular events.
Collapse
Affiliation(s)
- Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Ciprian Rezus
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- “Sfantul Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: (A.C.); (C.R.); Tel.: +40232301615 (A.C. & C.R.)
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
2
|
Mak A, Chan JKY. Endothelial function and endothelial progenitor cells in systemic lupus erythematosus. Nat Rev Rheumatol 2022; 18:286-300. [PMID: 35393604 DOI: 10.1038/s41584-022-00770-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
The observations that traditional cardiovascular disease (CVD) risk factors fail to fully account for the excessive cardiovascular mortality in patients with systemic lupus erythematosus (SLE) compared with the general population have prompted in-depth investigations of non-traditional, SLE-related risk factors that contribute to cardiovascular complications in patients with SLE. Of the various perturbations of vascular physiology, endothelial dysfunction, which is believed to occur in the earliest step of atherosclerosis, has been extensively investigated for its contribution to CVD risk in SLE. Endothelial progenitor cells (EPCs), which play a crucial part in vascular repair, neovascularization and maintenance of endothelial function, are quantitatively and functionally reduced in patients with SLE. Yet, the lack of a unified definition of EPCs, standardization of the quantity and functional assessment of EPCs as well as endothelial function measurement pose challenges to the translation of endothelial function measurements and EPC levels into prognostic markers for CVD in patients with SLE. This Review discusses factors that contribute to CVD in SLE, with particular focus on how endothelial function and EPCs are evaluated currently, and how EPCs are quantitatively and functionally altered in patients with SLE. Potential strategies for the use of endothelial function measurements and EPC quantification as prognostic markers of CVD in patients with SLE, and the limitations of their prognostication potential, are also discussed.
Collapse
Affiliation(s)
- Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Academic Clinical Programme in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Huang J, Kow NY, Lee HY, Fairhurst AM, Mak A. CD34+CD133+CD309+ circulating angiogenic cell level is reduced but positively related to hydroxychloroquine use in SLE patients-a case-control study and meta-regression analysis. Rheumatology (Oxford) 2021; 60:3936-3944. [PMID: 33369679 DOI: 10.1093/rheumatology/keaa875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/17/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To identify and quantify the level of CD34+CD133+CD309+ circulating angiogenic cells (CAC) and explore factors associated with the level of CAC in patients with SLE. METHODS The peripheral blood mononuclear cells of consecutive SLE patients and demographically matched healthy controls (HC) were extracted and identified, enumerated and compared for CAC levels by multi-colour flow cytometry based on the EULAR Scleroderma Trials and Research (EUSTAR) recommendation. Meta-analyses were performed by combining the current and previous case-control studies, aiming to increase the statistical power to discern the difference in CAC level between SLE patients and HC. Mixed-model meta-regression was conducted to explore potential demographic and clinical factors that were associated with CAC level. RESULTS A lower level of CAC was found in 29 SLE patients compared with 24 HC [mean (s.d.) 10.76 (13.9) vs 24.58 (25.4) cells/ml, P = 0.015]. Random-effects meta-analyses of the current and six previously published case-control studies involving 401 SLE patients and 228 HC revealed a lower CAC level compared with HC (standardized mean difference = -2.439, P = 0.001). Meta-regression analysis demonstrated that HCQ use was associated with a more discrepant CAC level between both groups (P = 0.01115). CONCLUSION SLE patients had a significantly lower CD34+CD133+CD309+ CAC level than HC, and HCQ use was associated with a more discrepant CAC level between SLE patients and HC. This study triggers further observational, interventional and mechanistic studies to address the beneficial impact of HCQ on the functionality of CAC in SLE patients.
Collapse
Affiliation(s)
- Jinghui Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nien Yee Kow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| | - Hui Yin Lee
- Institute of Molecular and Cell Biology (ICMB), Singapore
| | | | - Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| |
Collapse
|
4
|
Do Van T, Nguyen Minh T, Dao Bui Quy Q, Pham Quoc T, Nguyen Duy T, Nguyen Trung K, Nguyen Cong H, Le Thi Huong L, Bui Thi Thu H, Tran Viet T, Do Q, Can Van M, Le Viet T. Serum osteoprotegerin level in hemodialysis patients using low-flux reused dialyzer in relation to atherosclerosis. J Clin Lab Anal 2021; 35:e23886. [PMID: 34173983 PMCID: PMC8373337 DOI: 10.1002/jcla.23886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
AIMS To assess the relation of high serum OPG level and carotid atherosclerosis in maintenance hemodialysis (MHD) patients using low-flux reused dialyzer. MATERIALS AND METHODS We examined 209 MHD patients with and without carotid atherosclerosis (83 patients and 126 patients) to establish the relation between OPG and atherosclerosis. RESULTS The proportion of carotid atherosclerosis was 39.7%. The median serum OPG level was 45.3 pmol/L. Serum OPG had a good predicting value for atherosclerosis in MHD patients using low-flux reused dialyzer (AUC = 0.934, p < 0.001, cutoff value = 43.35 pmol/L, Se = 81.3%, Sp = 90.9%). CONCLUSIONS In this study, serum OPG had a good predicting value for atherosclerosis in MHD patients using low-flux reused dialyzer.
Collapse
Affiliation(s)
- Tung Do Van
- Thai Nguyen National Hospital, Thai Nguyen, Viet Nam.,Viet Nam Military Medical University, Ha Noi, Viet Nam
| | | | | | - Toan Pham Quoc
- Viet Nam Military Medical University, Ha Noi, Viet Nam.,Military Hospital 103, Ha Noi, Viet Nam
| | - Toan Nguyen Duy
- Viet Nam Military Medical University, Ha Noi, Viet Nam.,Military Hospital 103, Ha Noi, Viet Nam
| | - Kien Nguyen Trung
- Viet Nam Military Medical University, Ha Noi, Viet Nam.,Military Hospital 103, Ha Noi, Viet Nam
| | | | | | | | - Tien Tran Viet
- Viet Nam Military Medical University, Ha Noi, Viet Nam.,Military Hospital 103, Ha Noi, Viet Nam
| | - Quyet Do
- Viet Nam Military Medical University, Ha Noi, Viet Nam
| | - Mao Can Van
- Viet Nam Military Medical University, Ha Noi, Viet Nam
| | - Thang Le Viet
- Viet Nam Military Medical University, Ha Noi, Viet Nam.,Military Hospital 103, Ha Noi, Viet Nam
| |
Collapse
|
5
|
Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021; 10:973. [PMID: 34204425 PMCID: PMC8234808 DOI: 10.3390/antiox10060973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
One of the major sources of reactive oxygen species (ROS) generated within stem cells is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (NOXs), which are critical determinants of the redox state beside antioxidant defense mechanisms. This balance is involved in another one that regulates stem cell fate: indeed, self-renewal, proliferation, and differentiation are decisive steps for stem cells during embryo development, adult tissue renovation, and cell therapy application. Ex vivo culture-expanded stem cells are being investigated for tissue repair and immune modulation, but events such as aging, senescence, and oxidative stress reduce their ex vivo proliferation, which is crucial for their clinical applications. Here, we review the role of NOX-derived ROS in stem cell biology and functions, focusing on positive and negative effects triggered by the activity of different NOX isoforms. We report recent findings on downstream molecular targets of NOX-ROS signaling that can modulate stem cell homeostasis and lineage commitment and discuss the implications in ex vivo expansion and in vivo engraftment, function, and longevity. This review highlights the role of NOX as a pivotal regulator of several stem cell populations, and we conclude that these aspects have important implications in the clinical utility of stem cells, but further studies on the effects of pharmacological modulation of NOX in human stem cells are imperative.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
6
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
8
|
Rochette L, Meloux A, Rigal E, Zeller M, Malka G, Cottin Y, Vergely C. The Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics. Calcif Tissue Int 2019; 105:239-251. [PMID: 31197415 DOI: 10.1007/s00223-019-00573-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) and cardiovascular diseases (CVD) are both important causes of mortality and morbidity in aging patients. There are common mechanisms underlying the regulation of bone remodeling and the development of smooth muscle calcification; a temporal relationship exists between osteoporosis and the imbalance of mineral metabolism in the vessels. Vascular calcification appears regulated by mechanisms that include both inductive and inhibitory processes. Multiple factors are implicated in both bone and vascular metabolism. Among these factors, the superfamily of tumor necrosis factor (TNF) receptors including osteoprotegerin (OPG) and its ligands has been established. OPG is a soluble decoy receptor for receptor activator of nuclear factor-kB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). OPG binds to RANKL and TRAIL, and inhibits the association with their receptors, which have been labeled as the receptor activator of NF-kB (RANK). Sustained release of OPG from vascular endothelial cells (ECs) has been demonstrated in response to inflammatory proteins and cytokines, suggesting that OPG/RANKL/RANK system plays a modulatory role in vascular injury and inflammation. For the development of potential therapeutic strategies targeting vascular calcification, critical consideration of the implications for bone metabolism must be taken into account to prevent potentially detrimental effects to bone metabolism.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France.
| | - Alexandre Meloux
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Gabriel Malka
- Institut de formation en Biotechnologie et Ingénierie Biomédicale (IFR2B), Université Mohammed VI Polytechnique, 43 150, Ben-Guerir, Morocco
| | - Yves Cottin
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
- Service de Cardiologie-CHU-Dijon, Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| |
Collapse
|
9
|
The Potential Use of Metformin, Dipyridamole, N-Acetylcysteine and Statins as Adjunctive Therapy for Systemic Lupus Erythematosus. Cells 2019; 8:cells8040323. [PMID: 30959892 PMCID: PMC6523351 DOI: 10.3390/cells8040323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune condition that can potentially affect every single organ during the course of the disease, leading to increased morbidity and mortality, and reduced health-related quality of life. While curative treatment is currently non-existent for SLE, therapeutic agents such as glucocorticoids, mycophenolate, azathioprine, cyclosporine, cyclophosphamide and various biologics are the mainstay of treatment based on their immunomodulatory and immunosuppressive properties. As a result of global immunosuppression, the side-effect profile of the current therapeutic approach is unfavourable, with adverse effects including myelosuppression, infection and malignancies. Hydroxychloroquine, one of the very few Food and Drug Administration (FDA)-approved medications for the treatment of SLE, has been shown to offer a number of therapeutic benefits to SLE patients independent of its immunomodulatory effect. As such, it is worth exploring drugs similar to hydroxychloroquine that confer additional clinical benefits unrelated to immunosuppressive mechanisms. Indeed, apart from hydroxychloroquine, a number of studies have explored the use of a few conventionally non-immunosuppressive drugs that are potentially useful in the management of SLE. In this review, non-immunosuppressive therapeutic agents, namely metformin, dipyridamole, N-acetylcysteine and statins, will be critically discussed with regard to their mechanisms of action and efficacy pertaining to their potential therapeutic role in SLE.
Collapse
|
10
|
Alehagen U, Alexander J, Aaseth J, Larsson A. Decrease in inflammatory biomarker concentration by intervention with selenium and coenzyme Q10: a subanalysis of osteopontin, osteoprotergerin, TNFr1, TNFr2 and TWEAK. JOURNAL OF INFLAMMATION-LONDON 2019; 16:5. [PMID: 30923464 PMCID: PMC6421641 DOI: 10.1186/s12950-019-0210-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023]
Abstract
Background Inflammation is central to the pathogenesis of many diseases. Supplementation with selenium and coenzyme Q10 has been shown to reduce cardiovascular mortality, and increase cardiac function in elderly persons with a low intake of selenium. There are indications that one of the mechanisms of this positive effect is a decrease in inflammation. Methods Osteopontin, osteoprotegerin, sTNF receptor 1, sTNF receptor 2 and the tumor necrosis factor-like weak inducer of apoptosis called TWEAK, were determined in plasma after 6 months and 42 months in 219 community-living elderly persons, of whom 119 received supplements of selenium (200 μg/day) and coenzyme Q10 (200 mg/day), and 101 received a placebo. Repeated measures of variance were used to evaluate the levels, and the results were validated through ANCOVA analyses with adjustments for important covariates. Results Significantly lower concentrations of four of the five biomarkers for inflammation were observed as a result of the intervention with the supplements. Only TWEAK did not show significant differences. Conclusion In this sub-analysis of the intervention with selenium and coenzyme Q10 or placebo in an elderly community-living population, biomarkers for inflammation were evaluated. A significantly lower concentration in four of the five biomarkers tested could be demonstrated as a result of the supplementation, indicating a robust effect on the inflammatory system. The decrease in inflammation could be one of the mechanisms behind the positive clinical results on reduced cardiovascular morbidity and mortality reported earlier as a result of the intervention. The study is small and should be regarded as hypothesis-generating, but nonetheless adds important data about mechanisms presently known to increase the risk of clinical effects such as reduced cardiovascular mortality, increased cardiac function and better health-related quality of life scoring, as previously demonstrated in the active treatment group . Trial registration The intervention study was registered at Clinicaltrials.gov, and has the identifier NCT01443780 and registered on 09/30/2011.
Collapse
Affiliation(s)
- Urban Alehagen
- 1Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Jan Alexander
- 2Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - Jan Aaseth
- 3Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,4Inland Norway University of Applied Sciences, N-2411 Elverum, Norway
| | - Anders Larsson
- 5Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
11
|
The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int J Mol Sci 2019; 20:ijms20030705. [PMID: 30736365 PMCID: PMC6387017 DOI: 10.3390/ijms20030705] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022] Open
Abstract
The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG) and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts on specific cell surface receptors, which are then able to transmit their signals to other intracellular components and modify gene expression. Cytokine production and activation of their receptors induce mechanisms to recruit monocytes and neutrophils as well as endothelial cells. Data support the role of an increased OPG/RANKL ratio as a possible marker of progression of endothelial dysfunction in metabolic disorders in relationship with inflammatory marker levels. We review the role of the OPG/RANKL/RANK triad in vascular function as well as molecular mechanisms related to the etiology of vascular diseases. The potential therapeutic strategies may be very promising in the future.
Collapse
|
12
|
Edwards N, Langford-Smith AWW, Wilkinson FL, Alexander MY. Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions With High Cardiovascular Risk. Front Med (Lausanne) 2018; 5:200. [PMID: 30042945 PMCID: PMC6048266 DOI: 10.3389/fmed.2018.00200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, we have witnessed an exponential growth of interest into the role of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking revolves around EPC angiogenic repair properties, we have used a hypothesis-driven approach to discover disease-related defects in their characteristics and based on these findings, have identified opportunities for functional enhancement, which offer an exciting avenue for translation into clinical intervention. In this review, we focus on two groups; circulating myeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming cells (ECFCs), and will discuss the unique properties and defects of each population, as new insights have been gained into the potential function of each sub-type using current techniques and multiomic technology. We will discuss their role in inflammatory disorders and alterations in mitochondrial function. In addition, we share key insights into the glycocalyx, and propose this network of membrane-bound proteoglycans and glycoproteins, covering the endothelium warrants further investigation in order to clarify its significance in ECFC regulation of vascularization and angiogenesis and ultimately for potential translational therapeutic aspects.
Collapse
Affiliation(s)
- Nicola Edwards
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alexander W W Langford-Smith
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Fiona L Wilkinson
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - M Yvonne Alexander
- Cardiovascular Science, Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
13
|
Identification of Patients Affected by Mitral Valve Prolapse with Severe Regurgitation: A Multivariable Regression Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6838921. [PMID: 28261377 PMCID: PMC5312449 DOI: 10.1155/2017/6838921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Background. Mitral valve prolapse (MVP) is the most common cause of severe mitral regurgitation. Besides echocardiography, up to now there are no reliable biomarkers available for the identification of this pathology. We aim to generate a predictive model, based on circulating biomarkers, able to identify MVP patients with the highest accuracy. Methods. We analysed 43 patients who underwent mitral valve repair due to MVP and compared to 29 matched controls. We assessed the oxidative stress status measuring the oxidized and the reduced form of glutathione by liquid chromatography-tandem mass spectrometry method. Osteoprotegerin (OPG) plasma levels were measured by an enzyme-linked immunosorbent assay. The combination of these biochemical variables was used to implement several logistic regression models. Results. Oxidative stress levels and OPG concentrations were significantly higher in patients compared to control subjects (0.116 ± 0.007 versus 0.053 ± 0.013 and 1748 ± 100.2 versus 1109 ± 45.3 pg/mL, respectively; p < 0.0001). The best regression model was able to correctly classify 62 samples out of 72 with accuracy in terms of area under the curve of 0.92. Conclusions. To the best of our knowledge, this is the first study to show a strong association between OPG and oxidative stress status in patients affected by MVP with severe regurgitation.
Collapse
|
14
|
Liu FQ, Liu SQ, Zhang Y, Wang Y, Chu C, Wang D, Pan S, Wang JK, Yu Q, Mu JJ. Effects of Salt Loading on Plasma Osteoprotegerin Levels and Protective Role of Potassium Supplement in Normotensive Subjects. Circ J 2016; 81:77-81. [PMID: 27867157 DOI: 10.1253/circj.cj-16-0756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Excess dietary salt is strongly correlated with cardiovascular disease, morbidity, and mortality. Conversely, potassium likely elicits favorable effects on cardiovascular disorders. In epidemiological studies, increased plasma osteoprotegerin (OPG) concentrations are associated with atherosclerosis and vascular deaths. Our study was designed to examine the effects of salt intake and potassium supplementation on plasma OPG levels in normotensive subjects.Methods and Results:The 18 normotensive subjects were selected from a rural community in China. They were sequentially maintained on low-salt diet for 7 days (3 g/day, NaCl), high-salt diet for 7 days (18 g/day), and high-salt diet with potassium supplementation for 7 days (18 g/day of NaCl+4.5 g/day of KCl). High-salt intake enhanced plasma OPG levels (252.7±13.9 vs. 293.4±16.1 pg/mL). This phenomenon was abolished through potassium supplementation (293.4±16.1 vs. 235.1±11.3 pg/mL). Further analyses revealed that the OPG concentration positively correlated with 24-h urinary sodium excretion (r=0.497, P<0.01). By contrast, OPG concentration negatively correlated with 24-h urinary potassium excretion (r=0.594, P<0.01). CONCLUSIONS Salt loading can enhance the production of circulating OPG. Potassium supplementation can reverse the effects of excessive OPG. Our study results may improve our understanding of the roles of salt and potassium in the risk of cardiovascular disorders.
Collapse
Affiliation(s)
- Fu-Qiang Liu
- Cardiovascular Department, Shaanxi Provincial People's Hospital
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Songia P, Branchetti E, Parolari A, Myasoedova V, Ferrari G, Alamanni F, Tremoli E, Poggio P. Mitral valve endothelial cells secrete osteoprotegerin during endothelial mesenchymal transition. J Mol Cell Cardiol 2016; 98:48-57. [PMID: 27338002 DOI: 10.1016/j.yjmcc.2016.06.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/20/2022]
Abstract
AIMS Mitral valve prolapse (MVP) has a prevalence of 3% in the general population, affecting >176 million people worldwide. Despite this, little is known about the molecular and cellular mechanisms involved in the progression of MVP and surgical intervention is the only available option. In this study we investigated the role of osteoprotegerin (OPG) during endothelial to mesenchymal transition (EndMT) in MVP. METHODS AND RESULTS VECs and VICs were isolated from posterior mitral valve leaflets of patients undergoing mitral valve repair (n=25). Plasma was collected from 57 subjects (29 controls and 28 MVP patients). Overexpression of OPG during EndMT followed by autocrine effects characterised by reactive oxygen species increment and accelerated migration was documented. In addition, OPG increased VIC proliferation. Finally, OPG plasma levels were significantly higher in MVP patients compared to control subjects and the area under the ROC curve was 0.92. CONCLUSION EndMT has been recognised as a possible pathological mechanism for MVP. For the first time, we report the involvement of OPG in cellular and molecular changes in MVP isolated cells. In addition, we detected elevated circulating OPG levels in MVP patients when compared to controls, which supports the hypothesis that OPG is involved in MVP development and progression.
Collapse
Affiliation(s)
- Paola Songia
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari, Milan, Italy
| | | | - Alessandro Parolari
- Policlinico San Donato IRCCS, U.O. Cardiochirurgia e Ricerca traslazionale, San Donato Milanese, Italy; Università degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, Milan, Italy
| | | | - Giovanni Ferrari
- University of Pennsylvania, Department of Surgery, Philadelphia, PA, USA
| | - Francesco Alamanni
- Centro Cardiologico Monzino IRCCS, Milan, Italy; Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Milan, Italy
| | | | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
16
|
Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV, Gromenko EA. Relation of osteoprotegerin level and numerous of circulating progenitor mononuclears in patients with metabolic syndrome. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0007-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Sleep-disordered breathing is associated with depletion of circulating endothelial progenitor cells and elevation in pulmonary arterial pressure in patients with decompensated systolic heart failure. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:424-30. [PMID: 26346897 PMCID: PMC4554780 DOI: 10.11909/j.issn.1671-5411.2015.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/13/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
Abstract
Background Sleep-disordered breathing (SDB) is known to occur frequently in and may predict worsening progression of patients with congestive heart failure (CHF). SDB is also known to play an important role in the development of idiopathic pulmonary arterial hypertension (PAH) via inducing endothelial dysfunction and vascular remodeling, a pathological process that can be significantly influenced by factors such as osteoprotegerin (OPG) and endothelial progenitor cells (EPCs). The objective of this study is to determine if CHF with SDB is associated with changes in OPG, EPCs, and PAH. Methods EPCs were isolated, cultured, and quantified from CHF patients with SDB (n = 52), or without SDB (n = 68). OPG and N-terminal pro-brain natriuretic peptide (NT-proBNP) from each group was analyzed and correlated with EPCs and the mean pulmonary artery pressure (mPAP) measured by right heart catheterization. Results A significant decrease in circulating EPCs (29.30 ± 9.01 vs. 45.17 ± 10.51 EPCs/× 200 field; P < 0.05) was found in CHF patients with SDB compared to those without SDB. Both OPG (789.83 ± 89.38 vs. 551.29 ± 42.12 pg/mL; P < 0.05) and NT-proBNP (5946.50 ± 1434.50 vs. 3028.60 ± 811.90 ng/mL; P < 0.05) were also significantly elevated in SDB CHF patients who also had significantly elevated mPAP (50.2 ± 9.5 vs. 36.4 ± 4.1 mm Hg; P < 0.05). EPC numbers correlated inversely with the episodes of apnea and hypopnea per hour (RDI, r = –0.45, P = 0.037) and blood level of OPG (r = –0.53, P = 0.011). Although NT-proBNP was also increased significantly in patients with SDB, it had no correlation with either EPCs or RDI. Conclusions SDB due to hypoxemia from decompensated CHF is associated with (1) OPG elevation, (2) EPC depletion, and (3) mPAP elevation. The inverse relationship of circulating OPG with EPCs suggests a likely mechanism for hypoxemia and OPG in the development of pulmonary vascular dysfunction via depleting EPCs, thus worsening prognosis of CHF.
Collapse
|
18
|
Abstract
Endothelial progenitor cells (EPCs) play a critical role in maintenance of the endothelial integrity and vascular homeostasis, as well as in neovascularization. Dysfunctional EPCs are believed to contribute to the endothelial dysfunction and are closely related to the development of various cardiovascular diseases, such as hypertension, hyperlipidemia, and stroke. However, the underlying mechanisms of EPC dysfunction are complicated and remain largely elusive. Recent studies have demonstrated that reactive oxygen species (ROS) are key factors that involve in modulation of stem and progenitor cell function under various physiologic and pathologic conditions. It has been shown that NADPH oxidase (NOX)-derived ROS are the major sources of ROS in cardiovascular system. Accumulating evidence suggests that NOX-mediated oxidative stress can modulate EPC bioactivities, such as mobilization, migration, and neovascularization, and that inhibition of NOX has been shown to improve EPC functions. This review summarized recent progress in the studies on the correlation between NOX-mediated EPC dysfunction and cardiovascular diseases.
Collapse
|
19
|
Du G, Song Y, Zhang T, Ma L, Bian N, Chen X, Feng J, Chang Q, Li Z. Simvastatin attenuates TNF‑α‑induced apoptosis in endothelial progenitor cells via the upregulation of SIRT1. Int J Mol Med 2014; 34:177-82. [PMID: 24718722 DOI: 10.3892/ijmm.2014.1740] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 01/30/2023] Open
Abstract
Endothelial progenitor cells (EPCs) originate from the bone marrow and can be classified as either early or late EPCs. The focus of this study was on late EPCs, as they play an important role in angiogenesis and vascular proliferation. Evidence suggests that inflammatory and oxidative changes can increase EPC apoptosis. Of note, tumor necrosis factor-α (TNF-α) is a contributing risk factor to the development of atherosclerosis and plays a key role as both an inflammatory mediator and an inducer of apoptosis in endothelial cells. Additionally, a member of the sirtuin family, silent information regulator type-1 (SIRT1), promotes cell survival by repressing p53- and non-p53-dependent apoptosis in response to DNA damage and oxidative stress. Statins have also been shown to play a key role in the prevention of endothelial apoptosis and senescence via their lipid-lowering and anti-inflammatory actions. However, there is little evidence that statins themselves attenuate EPC apoptosis induced by TNF-α. The aim of this study was to demonstrate the effectiveness of one of the most commonly used statins, simvastatin, on decreasing TNF-α-induced apoptosis in EPCs. The results indicated that SIRT1 protein expression was decreased by TNF-α in a time- and dose-dependent manner and that while TNF-α caused a marked increase in the percentage of apoptotic EPCs, application of simvastatin decreased this percentage. A high concentration of simvastatin promoted the expression of SIRT1 and increased the proliferation of EPCs. In conclusion, findings of this study showed that simvastatin is crucial in counteracting the TNF-α-induced apoptosis of EPCs and that this protection may involve the actions of SIRT1.
Collapse
Affiliation(s)
- Gang Du
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Yunlin Song
- Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Tao Zhang
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Long Ma
- Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, P.R. China
| | - Ning Bian
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Xiaoming Chen
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Jianyi Feng
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Qing Chang
- Department of Histology and Embryology, Medical College of Jinan University, Guangzhou 510632, P.R. China
| | - Zicheng Li
- Department of Internal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
20
|
Park YJ, Shin YJ, Kim WU, Cho CS. Prediction of subclinical atherosclerosis by serum osteoprotegerin in premenopausal women with systemic lupus erythematous: correlation of osteoprotegerin with monocyte chemotactic protein-1. Lupus 2014; 23:236-44. [DOI: 10.1177/0961203313517151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective Patients with systemic lupus erythematosus (SLE) have increased risk for cardiovascular disease. Previous studies disclosed the association of serum osteoprotegerin (OPG) with the presence of symptomatic atherosclerosis in the general population and several disease conditions. We thus investigated the association between serum OPG levels and subclinical atherosclerosis in premenopausal SLE patients. Methods Serum OPG levels and carotid artery intima-media thickness (IMT) were measured in 181 premenopausal SLE patients and age-matched 85 control subjects. Traditional cardiovascular risk factors and SLE-related factors were analyzed. Results Patients with SLE had significantly increased serum OPG levels (1086 versus 517 pg/ml, p < 0.001) and carotid IMT (0.63 versus 0.45 mm, p < 0.001) compared with control subjects. Carotid IMT significantly increased across the quartiles of OPG. Logistic regression analysis revealed that compared to the lowest OPG quartile, the odds ratio (OR, 95% confidence interval) for increased carotid IMT in quartile 2, 3, and 4 was 1.126 (1.013–1.801), 1.562 (1.268–2.799), and 4.460 (1.126–7.128), respectively, after multiple adjustments ( p for trend across quartiles < 0.001). These associations remained significant after further adjustment for inflammatory parameters. Interestingly, serum monocyte chemotactic protein-1 (MCP-1) levels were positively correlated with serum OPG levels (γ = 0.332, p < 0.001). Parallel analysis showed that serum MCP-1 was also an independent predictor of carotid IMT incrassation, but this association was lost when serum OPG was included in the model. Conclusion Serum OPG levels were increased and correlated with serum MCP-1 levels in premenopausal SLE patients. Increased serum OPG was independently associated with subclinical atherosclerosis in these patients.
Collapse
Affiliation(s)
- Y-J Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Y-J Shin
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - W-U Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - C-S Cho
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
21
|
Reynolds JA, Robertson AC, Bruce IN, Alexander MY. Improving cardiovascular outcomes in rheumatic diseases: therapeutic potential of circulating endothelial progenitor cells. Pharmacol Ther 2013; 142:231-43. [PMID: 24333265 DOI: 10.1016/j.pharmthera.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023]
Abstract
Patients with Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE) have a significantly increased risk of cardiovascular disease (CVD). The reason for this is unclear but may be due, at least in part, to the failure of endothelial repair mechanisms. Over the last 15 years there has been much interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD. In the circulation there are two distinct populations of cells; myeloid angiogenic cells (MACs) which augment repair by the paracrine secretion of angiogenic factors, and outgrowth endothelial cells (OECs) which are true endothelial progenitor cells (EPCs) and promote vasculogenesis by differentiating into mature endothelium. There are marked abnormalities in the number and function of these cells in patients with RA and SLE. Inflammatory cytokines including interferon-alpha (IFNα) and tumour-necrosis factor alpha (TNFα) both impair MAC and OEC function ex vivo and may therefore contribute to the CVD risk in these patients. Whilst administration of mononuclear cells, MACs and other progenitors has improved cardiovascular outcomes in the acute setting, this is not a viable option in chronic disease. The pharmacological manipulation of MAC/OEC function in vivo however has the potential to significantly improve endothelial repair and thus reduce CVD in this high risk population.
Collapse
Affiliation(s)
- John A Reynolds
- Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK.
| | - Abigail C Robertson
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, UK
| | - Ian N Bruce
- Arthritis Research UK Epidemiology Unit, Institute of Inflammation and Repair, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; NIHR Manchester Musculoskeletal Biomedical Research Unit, and Kellgren Centre for Rheumatology, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - M Yvonne Alexander
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, UK; Healthcare Science Research Institute, Manchester Metropolitan University, UK Healthcare Science Research Institute, Manchester Metropolitan University, UK
| |
Collapse
|