1
|
Aljaberi N, Bharathan A, Gopal RP, Mohammed E, Al Shibli F, Tabouni M, Alhmoudi S, Kizhakkedath P, Baydoun I, Allam M, Mustafa N, Aljasmi F, Al Dhaheri A, Alblooshi H. Identification and functional characterisation of a novel DNASE1L3 variant (c.572A>G, p.Asn191Ser) in three Emirati families with systemic lupus erythematosus and hypocomplementaemic urticarial vasculitis. Lupus Sci Med 2025; 12:e001477. [PMID: 39947743 PMCID: PMC11831315 DOI: 10.1136/lupus-2024-001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/19/2025]
Abstract
OBJECTIVES To evaluate the functional impact of a novel DNASE1L3 variant (c.572A>G, p.Asn191Ser) in three families with SLE and hypocomplementaemic urticarial vasculitis (HUV) from the United Arab Emirates. METHODS Whole-exome sequencing was performed on affected patients and findings were confirmed using Sanger sequencing in family members. DNASE1L3 protein expression, secretion and enzymatic activity were assessed in HEK293 cell lines. Plasma smear assay for neutrophil extracellular traps (NETs) was evaluated in patients, family members and healthy control. RESULTS A total of seven patients diagnosed with both SLE and HUV were identified from three unrelated families. All affected individuals were found to carry a homozygous c.572A>G, p.Asn191Ser (191S) variant in DNASE1L3. The variant 191S was shown to impact the secretion and activity of DNASE1L3. Patients homozygous for 191S variant had significantly higher burden (p=0.0409) of NET structure in comparison to heterozygous and healthy control. CONCLUSIONS We functionally evaluated the effect of a novel DNASE1L3 (c.572A>G, p.Asn191Ser) in familial SLE with a consistent pattern of HUV across seven patients. This variant resulted in impaired secretion and enzymatic activity of DNASE1L3 along with increased NETosis in patients with homozygous genotype.
Collapse
Affiliation(s)
- Najla Aljaberi
- Department of Pediatrics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Anjali Bharathan
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Remya Prajesh Gopal
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Ekhlass Mohammed
- Department of Pediatrics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Fatema Al Shibli
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Mohammed Tabouni
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Sara Alhmoudi
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Ibrahim Baydoun
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Mushal Allam
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Noor Mustafa
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Fatma Aljasmi
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| | - Afra Al Dhaheri
- Rheumatology Department, Tawam Hospital, Al Ain, Abu Dhabi, UAE
| | - Hiba Alblooshi
- Department of Genetics and Genomics, United Arab Emirates University College of Medicine and Health Sciences, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
2
|
Ates I, Terzi U, Suzen S, Irham LM. An overview on Sjögren's syndrome and systemic lupus erythematosus' genetics. Toxicol Res (Camb) 2025; 14:tfae194. [PMID: 39991010 PMCID: PMC11847510 DOI: 10.1093/toxres/tfae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
Major autoimmune rheumatic disorders, such as systemic lupus erythematosus and Sjögren's syndrome, are defined by the presence of autoantibodies. These diseases are brought on by immune system dysregulation, which can present clinically in a wide range of ways. The etiologies of these illnesses are complex and heavily impacted by a variety of genetic and environmental variables. The most powerful susceptibility element for each of these disorders is still the human leukocyte antigen (HLA) area, that was the initial locus found to be associated. This region is primarily responsible for the HLA class II genes, such as DQA1, DQB1, and DRB1, however class I genes have also been linked. Numerous genetic variants that do not pose a risk to HLA have been found as a result of intensive research into the genetic component of these diseases conducted over the last 20 years. Furthermore, it is generally acknowledged that autoimmune rheumatic illnesses have similar genetic backgrounds and share molecular pathways of disease, including the interferon (IFN) type I routes. Pleiotropic sites for autoimmune rheumatic illnesses comprise TNIP1, DNASEL13, IRF5, the HLA region, and others. It remains a challenge to determine the causative biological mechanisms beneath the genetic connections. Nonetheless, functional analyses of the loci and mouse models have produced recent advancements. With an emphasis on the HLA region, we present an updated summary of the structure of genes underpinning both of these autoimmune rheumatic illnesses here.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Ulku Terzi
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Sinan Suzen
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Lalu Muhammad Irham
- Department of Toxicology, Ahmad Dahlan University, Faculty of Pharmacy, Prof. Dr. Soepomo, S.H., Street, Warungboto, 55164, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Singh SK, Gupta M, Rani S, Singh P. Hypocomplementemic Urticarial Vasculitis Syndrome: A Rare Form of Vasculitis. Cureus 2025; 17:e78227. [PMID: 40026936 PMCID: PMC11871547 DOI: 10.7759/cureus.78227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Hypocomplementemic urticarial vasculitis syndrome (HUVS) is a rare autoimmune disorder characterized by recurrent urticarial lesions and acquired hypocomplementemia with systemic manifestations. Systemic involvement can either be present at the onset of disease or develop later. Here, we present a rare case of a 22-year-old female, who initially presented with generalized rash and was eventually diagnosed with HUVS. She responded well to dapsone. This article emphasizes the importance of a comprehensive review of systemic manifestations accompanying urticaria.
Collapse
Affiliation(s)
- Saurabh Kumar Singh
- Cardiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
- Medicine, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, IND
| | - Mohit Gupta
- Cardiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Shilpi Rani
- Internal Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Pratap Singh
- Internal Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| |
Collapse
|
4
|
Volpi S, Angelotti ML, Palazzini G, Antonelli G, Ravaglia F, Garibotto F, Agrusti A, Grossi A, Magnasco A, Rossi GM, Errichiello C, Peyronel F, Buti E, Lodi L, Ghiggeri GM, Romagnani P, Vaglio A. Lupus Nephritis Patterns and Response to Type I Interferon in Patients With DNASE1L3 Variants: Report of Three Cases. Am J Kidney Dis 2024; 84:791-797. [PMID: 39059688 DOI: 10.1053/j.ajkd.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
DNASE1L3 is an extracellular nuclease that digests chromatin released from apoptotic cells. DNASE1L3 variants impair the enzyme function, enhance autoantibody production and type I interferon (IFN-I) responses, and cause different autosomal recessive phenotypes ranging from hypocomplementemic urticarial vasculitis syndrome to full-blown systemic lupus erythematosus (SLE). Kidney involvement in patients with DNASE1L3 variants is poorly characterized. Herein, we describe the clinical course of 3 children with monogenic SLE due to DNASE1L3 variants who developed refractory glomerulonephritis leading to kidney failure. They had different renal histopathological patterns (ie, membranous, endocapillary, and extracapillary glomerulonephritis and thrombotic microangiopathy), all belonging to the lupus nephritis (LN) spectrum. One patient had a mixed phenotype, showing an overlap between SLE and antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Using immunofluorescence, we detected glomerular expression of the IFN-I-induced human myxovirus resistance protein 1 (MXA), which was particularly evident in glomerular endothelial cells. Two of the patients had increased expression of interferon-stimulated genes in the peripheral blood, and all 3 patients had reduced serum DNAse activity. Our findings suggest that DNASE1L3-related glomerulonephritis can be included in the spectrum of IFN-I-mediated kidney disorders and provide the rationale for IFN-I-directed therapies in order to improve the poor outcome of this rare condition.
Collapse
Affiliation(s)
- Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences, University of Genova, Genova, Italy
| | - Maria L Angelotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Giulia Palazzini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Giulia Antonelli
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | | | - Federica Garibotto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences, University of Genova, Genova, Italy
| | - Anna Agrusti
- Department of General Pediatrics and Pediatric Infectious Diseases, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Université Paris Cité, Paris, France
| | - Alice Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alberto Magnasco
- Division of Nephrology, Dialysis and Transplantation, Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Carmela Errichiello
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Francesco Peyronel
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Firenze, Italy; Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Elisa Buti
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Lorenzo Lodi
- Immunology Unit, Meyer Children's Hospital IRCCS, Firenze, Italy
| | - Gian M Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Paola Romagnani
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Firenze, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Augusto Vaglio
- Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, Firenze, Italy; Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy.
| |
Collapse
|
5
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Fregel Lorenzo RI, Dyall SD, Isenberg D, D'Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. eLife 2024; 13:RP96085. [PMID: 39570652 PMCID: PMC11581429 DOI: 10.7554/elife.96085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris CitéParisFrance
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Barbara Craddock
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | | | | | - Sabrina D Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of MauritiusReduitMauritius
| | - David Isenberg
- Bioinformatics Core, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - David D'Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| | - Nico Lachmann
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne BuildingLondonUnited Kingdom
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical CollegeNew YorkUnited States
| | - Agnes Viale
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
| | - Nicholas D Socci
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - W Todd Miller
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of Physiology and Biophysics, Stony Brook University School of MedicineStony BrookUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller UniversityNew YorkUnited States
- University of Paris Cité, Imagine InstituteParisFrance
- Howard Hughes Medical InstituteNew YorkUnited States
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick ChildrenParisFrance
- Department of Pediatrics, Necker Hospital for Sick ChildrenParisFrance
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ HospitalsLondonUnited Kingdom
| |
Collapse
|
6
|
Linthorst J, Nivard M, Sistermans EA. GWAS shows the genetics behind cell-free DNA and highlights the importance of p.Arg206Cys in DNASE1L3 for non-invasive testing. Cell Rep 2024; 43:114799. [PMID: 39331505 DOI: 10.1016/j.celrep.2024.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The properties of cell-free DNA (cfDNA) are intensely studied for their potential as non-invasive biomarkers. We explored the effect of common genetic variants on the concentration and fragmentation properties of cfDNA using a genome-wide association study (GWAS) based on low-coverage whole-genome sequencing data of 140,000 Dutch non-invasive prenatal tests (NIPTs). Our GWAS detects many genome-wide significant loci, functional enrichments for phagocytes, liver, adipose tissue, and macrophages, and genetic correlations with autoimmune and cardiovascular disease. A common (7%) missense variant in DNASE1L3 (p.Arg206Cys) strongly affects all cfDNA properties. It increases the size of fragments, lowers cfDNA concentrations, affects the distribution of cleave-site motifs, and increases the fraction of circulating fetal DNA during pregnancy. For the application of NIPT, and potentially other cfDNA-based tests, this variant has direct clinical consequences, as it increases the odds of inconclusive results and impairs the sensitivity of NIPT by causing predictors to overestimate the fetal fraction.
Collapse
Affiliation(s)
- Jasper Linthorst
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Michel Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Erik A Sistermans
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Lin S, Kafisheh D, Elder ME. Case Report: Hypocomplementemic urticarial vasculitis syndrome in a pediatric patient with complement factor 1 deficiency. Front Pediatr 2024; 12:1448094. [PMID: 39376673 PMCID: PMC11456532 DOI: 10.3389/fped.2024.1448094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Urticarial vasculitis (UV) is a type III hypersensitivity reaction, characterized by immune complex deposition in small vessels leading to complement activation. Hypocomplementemic urticarial vasculitis syndrome (HUVS) represents the most severe form of UV, manifesting as chronic and recurrent urticarial skin lesions with leukocytoclastic vasculitis on histology, hypocomplementemia, anti-C1q antibodies, and systemic organ involvement. This case study focuses on an adolescent who initially presented with invasive pneumococcal infection and was later diagnosed with two rare disorders: HUVS and coexisting complement factor 1 (CF1) deficiency by genotyping. The role of CF1 deficiency in the development of HUVS in this patient is uncertain but has not previously been described.
Collapse
Affiliation(s)
- Sallie Lin
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Dina Kafisheh
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of Florida, Gainesville, FL, United States
| | - Melissa E. Elder
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Sener S, Sag E, Han X, Bilginer Y, Zhou Q, Ozen S. Detection of genetic mutations underlying early-onset systemic lupus erythematosus. Lupus 2024; 33:998-1003. [PMID: 38739464 DOI: 10.1177/09612033241255011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE We aimed to investigate the presence of monogenic causes of systemic lupus erythematosus (SLE) in our early-onset SLE patients. METHODS Fifteen pediatric SLE cases who had early disease onset (≤6 years) were enrolled in this study. All patients fulfilled the Systemic Lupus International Collaborating Clinics (SLICC) criteria. Genomic DNA was used for whole exome sequencing (WES). Pathogenic variants were confirmed by Sanger sequencing. RESULTS The median age at diagnosis of 15 early-onset SLE patients included in the study was 4 (2-6) years (F/M = 12/3). Significant gene mutations were detected in five of these patients (33.3%). Patients 1 and 2 with homozygous DNASE1L3 mutations [c.320+4_320+7del and G188 A (c.563 G>C) variants] had skin involvement and oral ulcers. One of them (patient 1) had arthritis and nephritis, and another (patient 2) had nonscarring alopecia and thrombocytopenia. They are currently clinically inactive but have positive serological findings. Patient 3 with homozygous pathogenic ACP5 mutation [G109 R (c.325 G>A) variant] had arthritis, nephritis, short stature, and skeletal dysplasia. Patient 4 with a heterozygote novel IFIH1 mutation [L809 F (c.2425 C>T) variant] had skin findings and leukopenia. Patient 5 with novel C1S variant [homozygous C147 W (c.441 C>G) variant] had marked skin findings, oral ulcers, nonscarring alopecia, pancytopenia, and low total hemolytic complement CH50 level. All patients have responded to the treatments and have low Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores, on therapy. CONCLUSION Genetic causes should be investigated in early-onset SLE, for better management and genetic counseling. On the other hand, multicenter studies may help to further define genotype-phenotype associations.
Collapse
Affiliation(s)
- Seher Sener
- Department of Pediatrics, Division of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Erdal Sag
- Department of Pediatrics, Division of Rheumatology, Ankara Research and Training Hospital, University of Health Sciences, Ankara, Turkey
| | - Xu Han
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yelda Bilginer
- Department of Pediatrics, Division of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Qing Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Seza Ozen
- Department of Pediatrics, Division of Pediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Wang RX, Newman SA. Urticarial Vasculitis. Immunol Allergy Clin North Am 2024; 44:483-502. [PMID: 38937011 DOI: 10.1016/j.iac.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Urticarial vasculitis is a rare autoimmune disorder characterized by persistent edematous papules and plaques on the skin that last longer than 24 hours, often accompanied by systemic symptoms such as joint pain and fever. Unlike common urticaria, this condition involves inflammation of small blood vessels, leading to more severe and long-lasting skin lesions with a tendency to leave a bruiselike appearance. Diagnosis is challenging and may require a skin biopsy. Associated with underlying autoimmune diseases, treatment involves managing symptoms with medications such as antihistamines and corticosteroids, addressing the immune system's dysfunction, and treating any concurrent autoimmune conditions.
Collapse
Affiliation(s)
- Ruth X Wang
- Department of Internal Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Sabrina A Newman
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, 12801 East 17th Avenue, Mail Stop 8127, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Stabach PR, Sims D, Gomez-Bañuelos E, Zehentmeier S, Dammen-Brower K, Bernhisel A, Kujawski S, Lopez SG, Petri M, Goldman DW, Lester ER, Le Q, Ishaq T, Kim H, Srivastava S, Kumar D, Pereira JP, Yarema KJ, Koumpouras F, Andrade F, Braddock DT. A dual-acting DNASE1/DNASE1L3 biologic prevents autoimmunity and death in genetic and induced lupus models. JCI Insight 2024; 9:e177003. [PMID: 38888971 PMCID: PMC11383374 DOI: 10.1172/jci.insight.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and deficiency of DNASE1L3, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association can be found in an ultrarare population of pediatric patients with DNASE1L3 deficiency who develop SLE, adult patients with loss-of-function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies against DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1-/-Dnase1L3-/- double-knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degraded genomic and mitochondrial cell-free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.
Collapse
Affiliation(s)
- Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dominique Sims
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eduardo Gomez-Bañuelos
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kris Dammen-Brower
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Bernhisel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sophia Kujawski
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sam G. Lopez
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W. Goldman
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan R. Lester
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Quan Le
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tayyaba Ishaq
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hana Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shivani Srivastava
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deepika Kumar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joao P. Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kevin J. Yarema
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fotios Koumpouras
- Department of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Calatroni M, Moroni G, Conte E, Stella M, Reggiani F, Ponticelli C. Anti-C1q antibodies: a biomarker for diagnosis and management of lupus nephritis. A narrative review. Front Immunol 2024; 15:1410032. [PMID: 38938561 PMCID: PMC11208682 DOI: 10.3389/fimmu.2024.1410032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Nephritis is a frequent and severe complication of Systemic Lupus Erythematous (SLE). The clinical course of lupus nephritis (LN) is usually characterized by alternating phases of remission and exacerbation. Flares of LN can lead to deterioration of kidney function, necessitating timely diagnosis and therapy. The presence of autoantibodies against C1q (anti-C1qAb) in the sera of SLE patients has been reported in various studies. Some research suggests that the presence and changes in the titer of anti-C1qAb may be associated with the development of LN, as well as with LN activity and renal flares. However, the exact role of anti-C1qAb in LN remains a subject of debate. Despite variability in the results of published studies, anti-C1qAb hold promise as noninvasive markers for assessing LN activity in SLE patients. Measuring anti-C1qAb levels could aid in diagnosing and managing LN during periods of both inactive disease and renal flares. Nevertheless, larger controlled trials with standardized laboratory assays are necessary to further establish the utility of anti-C1qAb in predicting the reactivation and remission of LN and guiding treatment strategies.
Collapse
Affiliation(s)
- Marta Calatroni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Nephrology and Dialysis Division, Humanitas Research Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Milan, Italy
| | - Gabriella Moroni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Nephrology and Dialysis Division, Humanitas Research Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Milan, Italy
| | - Emanuele Conte
- Nephrology and Dialysis Division, Humanitas Research Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Stella
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Nephrology and Dialysis Division, Humanitas Research Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Milan, Italy
| | - Francesco Reggiani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Nephrology and Dialysis Division, Humanitas Research Hospital, Institute for Research, Hospitalization and Health Care (IRCCS), Milan, Italy
| | | |
Collapse
|
12
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
13
|
Guillet S, Lazarov T, Jordan N, Boisson B, Tello M, Craddock B, Zhou T, Nishi C, Bareja R, Yang H, Rieux-Laucat F, Lorenzo RIF, Dyall SD, Isenberg D, D’Cruz D, Lachmann N, Elemento O, Viale A, Socci ND, Abel L, Nagata S, Huse M, Miller WT, Casanova JL, Geissmann F. ACK1 and BRK non-receptor tyrosine kinase deficiencies are associated with familial systemic lupus and involved in efferocytosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.15.24302255. [PMID: 38883731 PMCID: PMC11177913 DOI: 10.1101/2024.02.15.24302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with systemic lupus erythematosus (SLE) we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, non-receptor tyrosine kinases (NRTKs) regulate activation, migration, and proliferation of immune cells. We found that the patients' ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced Pluripotent Stem Cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.
Collapse
Affiliation(s)
- Stephanie Guillet
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Ecole doctorale Bio Sorbonne Paris Cité, Université Paris Descartes-Sorbonne Paris Cité.Paris, France
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
| | - Natasha Jordan
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Maria Tello
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chihiro Nishi
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Rohan Bareja
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Hairu Yang
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | - Sabrina D. Dyall
- Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, The Rayne Building, University College London
| | - David D’Cruz
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Olivier Elemento
- Cary and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Meyer Cancer Center Weill Cornell Medical College, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
| | - Shigekazu Nagata
- Laboratory of Biochemistry & Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871
| | - Morgan Huse
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
- University of Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, 10065 NY, USA
- Lab of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France, EU
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of MedicalSciences, New York, New York 10065, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King’s College London and Louise Coote Lupus Unit, Guy’s and Thomas’ Hospitals, London SE1 1UL, UK
| |
Collapse
|
14
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
15
|
Engavale M, Hernandez CJ, Infante A, LeRoith T, Radovan E, Evans L, Villarreal J, Reilly CM, Sutton RB, Keyel PA. Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice. J Leukoc Biol 2023; 114:547-556. [PMID: 37804110 PMCID: PMC10843819 DOI: 10.1093/jleuko/qiad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease caused by environmental factors and loss of key proteins, including the endonuclease Dnase1L3. Dnase1L3 absence causes pediatric-onset lupus in humans, while reduced activity occurs in adult-onset SLE. The amount of Dnase1L3 that prevents lupus remains unknown. To genetically reduce Dnase1L3 levels, we developed a mouse model lacking Dnase1L3 in macrophages (conditional knockout [cKO]). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Homogeneous and peripheral antinuclear antibodies were detected in the sera by immunofluorescence, consistent with anti-double-stranded DNA (anti-dsDNA) antibodies. Total immunoglobulin M, total immunoglobulin G, and anti-dsDNA antibody levels increased in cKO mice with age. The cKO mice developed anti-Dnase1L3 antibodies. In contrast to global Dnase1L3-/- mice, anti-dsDNA antibodies were not elevated early in life. The cKO mice had minimal kidney pathology. Therefore, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes, and macrophage-derived DnaselL3 helps limit lupus.
Collapse
Affiliation(s)
- Minal Engavale
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Colton J. Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Angelica Infante
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Tanya LeRoith
- Department of Cell Biology and Physiology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elliott Radovan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Lauryn Evans
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - Johanna Villarreal
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Virginia Tech, Blacksburg, VA 24061, United States
| | - R. Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| |
Collapse
|
16
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Skaug B, Guo X, Li YJ, Charles J, Pham KT, Couturier J, Lewis DE, Bracaglia C, Caiello I, Mayes MD, Assassi S. Reduced digestion of circulating genomic DNA in systemic sclerosis patients with the DNASE1L3 R206C variant. Rheumatology (Oxford) 2023; 62:3197-3204. [PMID: 36708011 PMCID: PMC10473277 DOI: 10.1093/rheumatology/kead050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Polymorphism in a coding region of deoxyribonuclease I-like III (DNASE1L3), causing amino acid substitution of Arg-206 to Cys (R206C), is a robustly replicated heritable risk factor for SSc and other autoimmune diseases. DNASE1L3 is secreted into the circulation, where it can digest genomic DNA (gDNA) in apoptosis-derived membrane vesicles (AdMVs). We sought to determine the impact of DNASE1L3 R206C on digestion of circulating gDNA in SSc patients and healthy controls (HCs). METHODS The ability of DNASE1L3 to digest AdMV-associated gDNA was tested in vitro. The effect of R206C substitution on extracellular secretion of DNASE1L3 was determined using a transfected cell line and primary monocyte-derived dendritic cells from SSc patients. Plasma samples from SSc patients and HCs with DNASE1L3 R206C or R206 wild type were compared for their ability to digest AdMV-associated gDNA. The digestion status of endogenous gDNA in plasma samples from 123 SSc patients and 74 HCs was determined by measuring the proportion of relatively long to short gDNA fragments. RESULTS The unique ability of DNASE1L3 to digest AdMV-associated gDNA was confirmed. Extracellular secretion of DNASE1L3 R206C was impaired. Plasma from individuals with DNASE1L3 R206C had reduced ability to digest AdMV-associated gDNA. The ratio of long: short gDNA fragments was increased in plasma from SSc patients with DNASE1L3 R206C, and this ratio correlated inversely with DNase activity. CONCLUSION Our results confirm that circulating gDNA is a physiological DNASE1L3 substrate and show that its digestion is reduced in SSc patients with the DNASE1L3 R206C variant.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Xinjian Guo
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Yuanteng Jeff Li
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Julio Charles
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Kay T Pham
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jacob Couturier
- Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Dorothy E Lewis
- Division of Infectious Diseases, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Claudia Bracaglia
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
18
|
Lacey KA, Serpas L, Makita S, Wang Y, Rashidfarrokhi A, Soni C, Gonzalez S, Moreira A, Torres VJ, Reizis B. Secreted mammalian DNases protect against systemic bacterial infection by digesting biofilms. J Exp Med 2023; 220:e20221086. [PMID: 36928522 PMCID: PMC10037111 DOI: 10.1084/jem.20221086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.
Collapse
Affiliation(s)
- Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andre Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
19
|
Englert H, Göbel J, Khong D, Omidi M, Wolska N, Konrath S, Frye M, Mailer RK, Beerens M, Gerwers JC, Preston RJS, Odeberg J, Butler LM, Maas C, Stavrou EX, Fuchs TA, Renné T. Targeting NETs using dual-active DNase1 variants. Front Immunol 2023; 14:1181761. [PMID: 37287977 PMCID: PMC10242134 DOI: 10.3389/fimmu.2023.1181761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Background Neutrophil Extracellular Traps (NETs) are key mediators of immunothrombotic mechanisms and defective clearance of NETs from the circulation underlies an array of thrombotic, inflammatory, infectious, and autoimmune diseases. Efficient NET degradation depends on the combined activity of two distinct DNases, DNase1 and DNase1-like 3 (DNase1L3) that preferentially digest double-stranded DNA (dsDNA) and chromatin, respectively. Methods Here, we engineered a dual-active DNase with combined DNase1 and DNase1L3 activities and characterized the enzyme for its NET degrading potential in vitro. Furthermore, we produced a mouse model with transgenic expression of the dual-active DNase and analyzed body fluids of these animals for DNase1 and DNase 1L3 activities. We systematically substituted 20 amino acid stretches in DNase1 that were not conserved among DNase1 and DNase1L3 with homologous DNase1L3 sequences. Results We found that the ability of DNase1L3 to degrade chromatin is embedded into three discrete areas of the enzyme's core body, not the C-terminal domain as suggested by the state-of-the-art. Further, combined transfer of the aforementioned areas of DNase1L3 to DNase1 generated a dual-active DNase1 enzyme with additional chromatin degrading activity. The dual-active DNase1 mutant was superior to native DNase1 and DNase1L3 in degrading dsDNA and chromatin, respectively. Transgenic expression of the dual-active DNase1 mutant in hepatocytes of mice lacking endogenous DNases revealed that the engineered enzyme was stable in the circulation, released into serum and filtered to the bile but not into the urine. Conclusion Therefore, the dual-active DNase1 mutant is a promising tool for neutralization of DNA and NETs with potential therapeutic applications for interference with thromboinflammatory disease states.
Collapse
Affiliation(s)
- Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josephine Göbel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danika Khong
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian C. Gerwers
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roger J. S. Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jacob Odeberg
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lynn M. Butler
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evi X. Stavrou
- Medicine Service, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH, United States
- Department of Medicine, Hematology and Oncology Division, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tobias A. Fuchs
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neutrolis, Inc., Cambridge, MA, United States
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
20
|
Abstract
Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.
Collapse
Affiliation(s)
- Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Zurong Wan
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medical Center, New York, NY, USA; , ,
| |
Collapse
|
21
|
Engavale M, Hernandez CJ, Infante A, LeRoith T, Radovan E, Evans L, Villarreal J, Reilly CM, Sutton RB, Keyel PA. Deficiency of macrophage-derived Dnase1L3 causes lupus-like phenotypes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537232. [PMID: 37131692 PMCID: PMC10153119 DOI: 10.1101/2023.04.17.537232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease caused by environmental factors and loss of key proteins. One such protein is a serum endonuclease secreted by macrophages and dendritic cells, Dnase1L3. Loss of Dnase1L3 causes pediatric-onset lupus in humans is Dnase1L3. Reduction in Dnase1L3 activity occurs in adult-onset human SLE. However, the amount of Dnase1L3 necessary to prevent lupus onset, if the impact is continuous or requires a threshold, and which phenotypes are most impacted by Dnase1L3 remain unknown. To reduce Dnase1L3 protein levels, we developed a genetic mouse model with reduced Dnase1L3 activity by deleting Dnase1L3 from macrophages (cKO). Serum Dnase1L3 levels were reduced 67%, though Dnase1 activity remained constant. Sera were collected weekly from cKO and littermate controls until 50 weeks of age. Homogeneous and peripheral anti-nuclear antibodies were detected by immunofluorescence, consistent with anti-dsDNA antibodies. Total IgM, total IgG, and anti-dsDNA antibody levels increased in cKO mice with increasing age. In contrast to global Dnase1L3 -/- mice, anti-dsDNA antibodies were not elevated until 30 weeks of age. The cKO mice had minimal kidney pathology, except for deposition of immune complexes and C3. Based on these findings, we conclude that an intermediate reduction in serum Dnase1L3 causes mild lupus phenotypes. This suggest that macrophage-derived DnaselL3 is critical to limiting lupus.
Collapse
|
22
|
Bai Q, He X, Hu T. Pan‑cancer analysis of the deoxyribonuclease gene family. Mol Clin Oncol 2023; 18:19. [PMID: 36798465 PMCID: PMC9926046 DOI: 10.3892/mco.2023.2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Deoxyribonuclease (DNase) is an enzyme that catalyzes the cleavage of phosphodiester bonds in the main chain of DNA to degrade DNA. DNase serves a vital role in several immune-related diseases. The present study linked the expression of DNase with overall survival (OS), performed pan-cancer co-expression analysis, and assessed the association between DNase and immune infiltration subtypes, tumor microenvironment and drug sensitivity through pan-cancer studies. Furthermore, gene expression data and clinical data were downloaded from The Cancer Genome Atlas. Next, through a series of bioinformatics analyses, DNase expression and survival, immune subtypes, tumor microenvironment and drug sensitivity in 33 tumor types were systematically studied. The expression of the DNase gene family was shown to have an apparent intratumoral heterogeneity. The expression of DNase 2, lysosomal (DNASE2) was the highest in tumors, whereas that of DNASE2 β was the lowest. DNase 1-like 3 (DNASE1L3) was mainly downregulated in tumors, whereas the rest of the DNases were mainly upregulated in tumors. The expression of DNase family members was also found to be associated with the OS rate of patients. DNase family genes may serve an essential role in the tumor microenvironment. DNase family gene expression was related to the content of cytotoxic cells, Immunescore, Stromalscore, Estimatescore and Tumorpurity. The present study also revealed that the DNase genes may be involved in the drug resistance of cancer cells. Finally, the correlation between DNase, and clinical stage and tumor microenvironment in hepatocellular carcinoma (HCC) was studied. In addition, the difference in DNASE1L3 expression between HCC and adjacent normal tissues, and the relationship between DNASE1L3 expression and clinical stage was verified by analyzing three groups in a Gene Expression Omnibus dataset and by performing immunohistochemistry. In conclusion, the present study assessed DNase gene expression, analyzed its relationship with patient OS, performed pan-cancer co-expression analysis, and assessed the association between DNase and immune infiltration subtypes, tumor microenvironment and drug sensitivity. The present study also confirmed the value of further laboratory research on DNases and their prospects in clinical cancer treatment.
Collapse
Affiliation(s)
- Qingquan Bai
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, D-13353 Berlin, Germany,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Correspondence to: Dr Qingquan Bai, Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Xiao He
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, P.R. China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Correspondence to: Dr Qingquan Bai, Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
23
|
Aubé FA, Bidias A, Pépin G. Who and how, DNA sensors in NETs-driven inflammation. Front Immunol 2023; 14:1190177. [PMID: 37187738 PMCID: PMC10179500 DOI: 10.3389/fimmu.2023.1190177] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
During infections, neutrophil extracellular traps act like a meshwork of molecules that captures microbes. In contrast, during sterile inflammation the presence of NETs is usually associated with tissue damage and uncontrolled inflammation. In this context, DNA acts both as activator of NETs formation and immunogenic molecule fueling inflammation within the injured tissue microenvironment. Pattern recognition receptors that specifically bind to and get activated by DNA such as Toll-like receptor-9 (TLR9), cyclic GMP-AMP synthase (cGAS), Nod-like receptor protein 3 (NLRP3) and Absence in Melanoma-2 (AIM2) have been reported to play a role in NETs formation and detection. However, how these DNA sensors contribute to NETs-driven inflammation is not well understood. Whether these DNA sensors have unique roles or on the contrary they are mostly redundant is still elusive. In this review, we summarize the known contribution of the above DNA sensors to the formation and detection of NETs in the context of sterile inflammation. We also highlight scientific gaps needed to be addressed and propose future direction for therapeutic targets.
Collapse
Affiliation(s)
- Félix-Antoine Aubé
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Amel Bidias
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- *Correspondence: Geneviève Pépin,
| |
Collapse
|
24
|
Oliveira CB, Byrd AS, Okoye GA, Kaplan MJ, Carmona-Rivera C. Neutralizing Anti‒DNase 1 and ‒DNase 1L3 Antibodies Impair Neutrophil Extracellular Traps Degradation in Hidradenitis Suppurativa. J Invest Dermatol 2023; 143:57-66. [PMID: 35934056 PMCID: PMC9771923 DOI: 10.1016/j.jid.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Hidradenitis suppurativa (HS) is a debilitating inflammatory skin disorder characterized by abscess-like nodules and boils resulting in fistulas and tissue scarring. We previously reported evidence of an autoimmune signature in HS, characterized by enhanced neutrophil extracellular trap (NET) infiltration in HS skin lesions and dysregulation of the adaptive immune system characterized by the presence of autoantibodies. Timely removal of NETs is critical for tissue homeostasis to prevent a dysregulated generation of modified autoantigens and tissue damage. DNases 1 and 1L3 play important roles in proper NET removal. We tested the hypothesis that NETs in patients with HS are not effectively cleared owing to the presence of antibodies against DNase 1 and DNase 1L3. We report that HS serum poorly degraded NETs. Addition of exogenous DNase 1 restored NET degradation capabilities in a subset of HS samples. DNase 1 activity was significantly decreased in HS sera. Anti‒DNase 1 and ‒DNase 1L3 antibodies were detected in serum samples and skin lesions from patients with HS. Purified IgGs from HS decreased DNase 1 activity and NET degradation. Taken together, this identification of neutralizing antibodies against nucleases in HS expands the understanding of the pathogenesis of this disease to support an autoimmune mechanism in its underlying pathogenesis.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Angel S Byrd
- Department of Dermatology, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ginette A Okoye
- Department of Dermatology, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
25
|
Saulescu I, Ionescu R, Opris-Belinski D. Interferon in systemic lupus erythematosus-A halfway between monogenic autoinflammatory and autoimmune disease. Heliyon 2022; 8:e11741. [PMID: 36468094 PMCID: PMC9708627 DOI: 10.1016/j.heliyon.2022.e11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Although perceived as an adaptative immune disorder, mainly related to Lymphocyte B and T, last years focus on Systemic Lupus Erythematosus (SLE) pathogeny emphasised the important role of innate immunity. This should not take us by surprise since the lupus cell described by Hargraves and colleagues in 1948 was a neutrophil or macrophage with specific aspect after coloration with haematoxylin related to cell detritus engulfment (Hargraves et al., 1948) [1] (Presentation of two bone marrow elements; the tart. Hargraves M, Ricmond H, Morton R. 1948, Proc Staff Meet Mayo Clinic, pp. 23:25-28). Normal immune system maintains homeostasis through innate and adaptative response that are working together to prevent both infection and autoimmunity. Failure of the immune mechanisms to preserve the balance between these two will initiate and propagate autoinflammation and/or autoimmunity. It is well known now that autoinflammation and autoimmunity are the two extremes of different pathologic conditions marked with multiple overlaps in many diseases. Recent findings in SLE demonstrated that innate immune system initiates the abnormal autoimmunity and starts the continuous inflammatory reaction after that, interferon being one of the key cytokines in innate immunity and SLE. Understanding this mechanism might offer a better clue for an efficient treatment in SLE patients. The purpose of this review is to highlight the enormous impact of innate immunity and mostly interferons in SLE.
Collapse
Affiliation(s)
- Ioana Saulescu
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| | - Ruxandra Ionescu
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| | - Daniela Opris-Belinski
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| |
Collapse
|
26
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
27
|
McCord JJ, Engavale M, Masoumzadeh E, Villarreal J, Mapp B, Latham MP, Keyel PA, Sutton RB. Structural features of Dnase1L3 responsible for serum antigen clearance. Commun Biol 2022; 5:825. [PMID: 35974043 PMCID: PMC9381713 DOI: 10.1038/s42003-022-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Autoimmunity develops when extracellular DNA released from dying cells is not cleared from serum. While serum DNA is primarily digested by Dnase1 and Dnase1L3, Dnase1 cannot rescue autoimmunity arising from Dnase1L3 deficiencies. Dnase1L3 uniquely degrades antigenic forms of cell-free DNA, including DNA complexed with lipids and proteins. The distinct activity of Dnase1L3 relies on its unique C-terminal Domain (CTD), but the mechanism is unknown. We used multiple biophysical techniques and functional assays to study the interplay between the core catalytic domain and the CTD. While the core domain resembles Dnase1, there are key structural differences between the two enzymes. First, Dnase1L3 is not inhibited by actin due to multiple differences in the actin recognition site. Second, the CTD augments the ability of the core to bind DNA, thereby facilitating the degradation of complexed DNA. Together, these structural insights will inform the development of Dnase1L3-based therapies for autoimmunity.
Collapse
Affiliation(s)
- Jon J McCord
- Texas Tech University Health Sciences Center, Dept of Cell Physiology and Molecular Biophysics, Lubbock, TX, USA
| | - Minal Engavale
- Texas Tech University, Dept. of Biological Sciences, Lubbock, TX, USA
| | - Elahe Masoumzadeh
- Texas Tech University, Dept. of Chemistry & Biochemistry, Lubbock, TX, USA
| | - Johanna Villarreal
- Texas Tech University Health Sciences Center, Dept of Cell Physiology and Molecular Biophysics, Lubbock, TX, USA
| | - Britney Mapp
- Texas Tech University, Dept. of Biological Sciences, Lubbock, TX, USA
| | - Michael P Latham
- Texas Tech University, Dept. of Chemistry & Biochemistry, Lubbock, TX, USA
| | - Peter A Keyel
- Texas Tech University, Dept. of Biological Sciences, Lubbock, TX, USA
| | - R Bryan Sutton
- Texas Tech University Health Sciences Center, Dept of Cell Physiology and Molecular Biophysics, Lubbock, TX, USA.
| |
Collapse
|
28
|
Tusseau M, Lovšin E, Samaille C, Pescarmona R, Mathieu AL, Maggio MC, Selmanović V, Debeljak M, Dachy A, Novljan G, Janin A, Januel L, Gibier JB, Chopin E, Rouvet I, Goncalves D, Fabien N, Rice GI, Lesca G, Labalme A, Romagnani P, Walzer T, Viel S, Perret M, Crow YJ, Avčin T, Cimaz R, Belot A. DNASE1L3 deficiency, new phenotypes, and evidence for a transient type I IFN signaling. J Clin Immunol 2022; 42:1310-1320. [PMID: 35670985 DOI: 10.1007/s10875-022-01287-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Deoxyribonuclease 1 like 3 (DNASE1L3) is a secreted enzyme that has been shown to digest the extracellular chromatin derived from apoptotic bodies, and DNASE1L3 pathogenic variants have been associated with a lupus phenotype. It is unclear whether interferon signaling is sustained in DNASE1L3 deficiency in humans. OBJECTIVES To explore interferon signaling in DNASE1L3 deficient patients. To depict the characteristic features of DNASE1L3 deficiencies in human. METHODS We identified, characterized, and analyzed five new patients carrying biallelic DNASE1L3 variations. Whole or targeted exome and/or Sanger sequencing was performed to detect pathogenic variations in five juvenile systemic erythematosus lupus (jSLE) patients. We measured interferon-stimulated gene (ISG) expression in all patients. We performed a systematic review of all published cases available from its first description in 2011 to March 24th 2022. RESULTS We identified five new patients carrying biallelic DNASE1L3 pathogenic variations, including three previously unreported mutations. Contrary to canonical type I interferonopathies, we noticed a transient increase of ISGs in blood, which returned to normal with disease remission. Disease in one patient was characterized by lupus nephritis and skin lesions, while four others exhibited hypocomplementemic urticarial vasculitis syndrome. The fourth patient presented also with early-onset inflammatory bowel disease. Reviewing previous reports, we identified 35 additional patients with DNASE1L3 deficiency which was associated with a significant risk of lupus nephritis and a poor outcome together with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). Lung lesions were reported in 6/35 patients. CONCLUSIONS DNASE1L3 deficiencies are associated with a broad phenotype including frequently lupus nephritis and hypocomplementemic urticarial vasculitis with positive ANCA and rarely, alveolar hemorrhages and inflammatory bowel disease. This report shows that interferon production is transient contrary to anomalies of intracellular DNA sensing and signaling observed in Aicardi-Goutières syndrome or STING-associated vasculitis in infancy (SAVI).
Collapse
Affiliation(s)
- Maud Tusseau
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Ema Lovšin
- University Children's Hospital University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Charlotte Samaille
- Nephrologie Pediatrique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Rémi Pescarmona
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Anne-Laure Mathieu
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Maria-Cristina Maggio
- University Department PROMISE "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Velma Selmanović
- Children's Hospital, University Clinical Center , Sarajevo, Bosnia and Herzegovina
| | - Marusa Debeljak
- University Children's Hospital University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Angelique Dachy
- Nephrologie Pediatrique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Gregor Novljan
- Pediatric Nephrology Department, Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alexandre Janin
- Cardiogenetics Laboratory, Biochemistry and Molecular Biology Department, Lyon University Hospital, Lyon, France
- NeuroMyoGene Institute, Lyon 1 University, CNRS UMR 5510, INSERM U1217, Lyon, France
| | - Louis Januel
- NeuroMyoGene Institute, Lyon 1 University, CNRS UMR 5510, INSERM U1217, Lyon, France
| | - Jean-Baptiste Gibier
- University Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000, Lille, France
| | - Emilie Chopin
- Centre de Biotechnologie Cellulaire Et Biothèque, Hospices Civils de Lyon, Bron, France
| | - Isabelle Rouvet
- Centre de Biotechnologie Cellulaire Et Biothèque, Hospices Civils de Lyon, Bron, France
| | - David Goncalves
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Nicole Fabien
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gaétan Lesca
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Audrey Labalme
- Genetics Department, Lyon University Hospital, Lyon, France
| | - Paola Romagnani
- Nephrology Unit, Anna Meyer Children Hospital and University of Florence, University of Florence, Florence, Italy
| | - Thierry Walzer
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Sebastien Viel
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Magali Perret
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tadej Avčin
- University Children's Hospital University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Rolando Cimaz
- ASST G. Pini, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Alexandre Belot
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.
- National Referee Centre for Rheumatic and Autoimmune Diseases in Children, RAISE, Paris and Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Department, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Bd Pinel, 68677, Bron Cedex, France.
| |
Collapse
|
29
|
Urticarial vasculitis: Clinical and laboratory findings with a particular emphasis on differential diagnosis. J Allergy Clin Immunol 2022; 149:1137-1149. [PMID: 35396080 DOI: 10.1016/j.jaci.2022.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Urticarial vasculitis (UV) is a rare cutaneous vasculitis of small vessels characterized by recurrent episodes of wheal-like lesions that tend to last more than 24 hours, healing with a residual ecchymotic postinflammatory hyperpigmentation. The histopathologic pattern of UV is that of leukocytoclastic vasculitis, consisting of fibrinoid necrosis of dermal vessels' walls and neutrophil-rich perivascular inflammatory infiltrates. Although its etiopahogenesis remains still undefined, UV is now regarded as an immune complex-driven disease with activation of the complement cascade, leading to exaggerated production of anaphylatoxins that are responsible for neutrophil recruitment and activation. This condition can be categorized into 2 main entities according to serum complement levels: normocomplementemic UV and hypocomplementemic UV, the latter being associated with circulating anti-C1q autoantibodies and possible extracutaneous manifestations. Systemic multiorgan involvement may be seen particularly in syndromic hypocomplementemic UV, also known as McDuffie syndrome. This review summarizes the clinicopathological and laboratory features as well as the underlying pathophysiological mechanisms of UV. A focus on its main differential diagnoses is provided, that is, chronic spontaneous urticaria, bullous pemphigoid, IgA (Henoch-Schönlein purpura) and IgM/IgG immune complex vasculitis, lupus erythematous tumidus, Wells syndrome, erythema multiforme, cutaneous mastocytosis, cryopyrin-associated periodic syndromes, and coronavirus disease 2019-associated and anti-severe acute respiratory syndrome coronavirus 2-vaccine-associated urticarial eruptions.
Collapse
|
30
|
Lodi L, Mastrolia MV, Bello F, Rossi GM, Angelotti ML, Crow YJ, Romagnani P, Vaglio A. Type I interferon-related kidney disorders. Kidney Int 2022; 101:1142-1159. [PMID: 35339535 DOI: 10.1016/j.kint.2022.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Type I interferon (IFN-I) mediates tissue damage in a wide range of kidney disorders, directly affecting the biology and function of several renal cell types including podocytes, mesangial, endothelial and parietal epithelial cells (PECs).Enhanced IFN-I signalling is observed in the context of viral infections, autoimmunity (e.g., systemic lupus erythematosus, SLE), and the type 1 interferonopathies (T1Is), rare monogenic disorders characterised by constitutive activation of the IFN-I pathway. All of these IFN I-related disorders can cause renal dysfunction, and share pathogenic and histopathological features. Collapsing glomerulopathy, a histopathological lesion characterised by podocyte loss, collapse of the vascular tuft and PEC proliferation, is commonly associated with viral infections, has been described in T1Is such as Aicardi-Goutières syndrome and STING-associated vasculopathy with onset in infancy (SAVI), and can also be induced by recombinant IFN-therapy. In all of these conditions, podocytes and PECs seem to be the primary target of IFN I-mediated damage. Additionally, immune-mediated glomerular injury is common to viral infections, SLE, and T1Is such as COPA syndrome and DNASE1L3 deficiency, diseases in which IFN-I apparently promotes immune-mediated kidney injury. Finally, kidney pathology primarily characterised by vascular lesions (e.g., thrombotic microangiopathy, vasculitis) is a hallmark of the T1I ADA2 deficiency as well as of SLE, viral infections and IFN-therapy.Defining the nosology, pathogenic mechanisms and histopathological patterns of IFN I-related kidney disorders has diagnostic and therapeutic implications, especially considering the likely near-term availability of novel drugs targeting the IFN-I pathway.
Collapse
Affiliation(s)
- Lorenzo Lodi
- Department of Health Sciences, University of Firenze; Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Maria V Mastrolia
- Rheumatology Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | | | - Maria L Angelotti
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Paola Romagnani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy; Nephrology and Dialysis Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Firenze, Firenze, Italy; Nephrology and Dialysis Unit, Department of Pediatrics, Meyer Children's Hospital, Firenze, Italy.
| |
Collapse
|
31
|
Yıldırım DG, Bakkaloğlu SA. Monogenic lupus caused by mutations in DNASE1L3: a rare cause of systemic lupus erythematosus in children. Scand J Immunol 2022; 95:e13162. [PMID: 35302646 DOI: 10.1111/sji.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Gezgin Yıldırım
- Department of Pediatric Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Sevcan A Bakkaloğlu
- Department of Pediatric Rheumatology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
32
|
Ahmad A, Mandwie M, O'Sullivan KM, Smyth C, York J, Doyle H, Holdsworth S, Pickering MC, Lachmann PJ, Alexander IE, Logan G. Conversion of the liver into a biofactory for DNaseI using adeno-associated virus vector gene transfer reduces neutrophil extracellular traps in a model of Systemic Lupus Erythematosus. Hum Gene Ther 2022; 33:560-571. [PMID: 35293226 DOI: 10.1089/hum.2021.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are proving to be clinically transformative tools in the treatment of monogenic genetic disease. Rapid ongoing development of this technology promises to not only increase the number of monogenic disorders amenable to this approach, but also to bring diseases with complex multigenic and non-genetic aetiologies within therapeutic reach. Here we explore the broader paradigm of converting the liver into a biofactory for systemic output of therapeutic molecules using AAV-mediated delivery of DNaseI as an exemplar. DNaseI can clear neutrophil extracellular traps (NETs), which are nuclear-protein structures possessing anti-microbial action that are also involved in the pathophysiology of clinically troubling immune-mediated diseases. However, a translational challenge is short half-life of the enzyme in vivo (<5 hours). The current study demonstrates that AAV-mediated liver-targeted gene transfer stably induces serum DNaseI activity to >190-fold above physiological levels. In lupus-prone mice (NZBWF1) activity was maintained for longer than 6 months, the latest time point tested, and resulted in a clear functional effect with reduced renal presence of neutrophils, NETs, IgG and complement C3. However, treatment in this complex disease model did not extend life-span, improve serological endpoints or preserve renal function indicating there are elements of pathophysiology not accessible to DNaseI in the NZBWF1 model. We conclude that a translational solution to the challenge of short half-life of DNaseI is AAV-mediated gene delivery and that this may be efficacious in treating disease where NETs are a dominant pathological mechanism.
Collapse
Affiliation(s)
- Amina Ahmad
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, Westmead, Australia;
| | - Mawj Mandwie
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, Westmead, Australia;
| | | | - Christine Smyth
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, 214 Hawkesbury Road, Westmead, NSW, Sydney, Westmead, New South Wales, Australia, 2145;
| | - Jarrod York
- The University of Sydney, 4334, Sydney, New South Wales, Australia;
| | - Helen Doyle
- The Sydney Children's Hospitals Network Randwick and Westmead, 371501, Pathology, Westmead, New South Wales, Australia;
| | - Stephen Holdsworth
- Monash University, 2541, Department of Medicine, Clayton, Victoria, Australia;
| | - Matthew C Pickering
- Imperial College London, 4615, Centre of Inflammatory Disease, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Peter J Lachmann
- University of Cambridge, 2152, Department of Veterinary Medicine, Cambridge, Cambridgeshire, United Kingdom of Great Britain and Northern Ireland;
| | - Ian Edward Alexander
- Sydney Children's Hospitals Network and Children's Medical Research Institute, Corner Hawkesbury Rd & Hainsworth St, Locked Bag 4001, Westmead, New South Wales, Australia, 2145 Sydney;
| | - Grant Logan
- Children's Medical Research Institute, 58454, Gene Therapy Research Unit, 214 Hawkesbury Road, Westmead, Australia, 2145;
| |
Collapse
|
33
|
Mathapathi S, Chu CQ. Contribution of Impaired DNASE1L3 Activity to Anti-DNA Autoantibody Production in Systemic Lupus Erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:17-22. [PMID: 36467024 PMCID: PMC9524810 DOI: 10.2478/rir-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 06/17/2023]
Abstract
Anti-DNA autoantibodies are pathogenic in systemic lupus erythematosus (SLE). Cell-free chromatin associated long DNA fragments are antigens for anti-DNA antibodies. In health state, released by cell death and actively secreted by live cells, these cell-free DNA are cleared by deoxyribonucleases (DNASES). In SLE, cell-free DNA are accumulated. The defective clearance of long fragments of cell-free DNA in SLE is largely attributed to impaired deoxyribonuclease 1 like 3 (DNASE1L3). DNASE1L3 null mutation results in monogenic SLE. The SLE risk single-nucleotide polymorphism (rs35677470) encodes R260C variant DNASE1L3, which is defective in secretion, leading to reduced levels of DNASE1L3. In addition, neutralizing autoantibodies to DNASE1L3 are produced in SLE to inhibit its enzymatic activity.
Collapse
Affiliation(s)
- Samarth Mathapathi
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Section of Rheumatology, VA Portland Health Care System, Portland, Oregon, USA
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Section of Rheumatology, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
34
|
Dasdemir S, Yildiz M, Celebi D, Sahin S, Aliyeva N, Haslak F, Gunalp A, Adrovic A, Barut K, Artim Esen B, Kasapcopur O. Genetic screening of early-onset patients with systemic lupus erythematosus by a targeted next-generation sequencing gene panel. Lupus 2022; 31:330-337. [PMID: 35086391 DOI: 10.1177/09612033221076733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE In this study, we aimed to screen 31 genes (C1QA, C1QB, C1QC, C1R, C1S, C2, C3, TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, DNASE1, DNASE1L3, PRKCD, ACP5, SLC7A7, IFIH1, TMEM173, ISG15, CYBB, FAS, FASLG, KRAS, NRAS, MAN2B1, PEPD, PTPN11, RAG2, and SHOC2), that we have categorized under the umbrella term "monogenic lupus" using a targeted next-generation sequencing (NGS) panel in 24 individuals with early-onset (≤10 years of age) systemic lupus erythematosus (SLE) and in 24 patients with late-onset (>10 years of age) disease. METHODS A total of 48 SLE patients (24 with disease onset ≤10 years of age and 24 with disease onset >10 years of age) were included. Patients with late-onset disease have been used as patient controls. Sequencing was carried out using 400 bp kit on the Ion S5 system. RESULTS Among the 48 patients, three had one pathogenic variant and 45 patients had at least one rare variant classified as benign, likely benign or variant of unknown significance (VUS). In all three patients with a pathogenic variant, the onset of disease was before 10 years of age. Two patients (they were siblings) carried C1QA homozygote pathogenic allele (p.Gln208Ter, rs121909581), and one patient carried PEPD heterozygote pathogenic allele (p.Arg184Gln, rs121917722). CONCLUSION We demonstrated a pathogenic variant in our target gene panel with a frequency of 9.52% in patients with a disease onset ≤10 years of age. All patients with early-onset SLE phenotype, irrespective of a positive family history for SLE or parental consanguinity, should be scanned for a single-gene defect by a targeted gene panel sequencing. With the discovery of many single-gene defects and ongoing efforts to identify novel genes in SLE, similar gene panels including even more genes will possibly become more necessary and practical in the future.
Collapse
Affiliation(s)
- Selcuk Dasdemir
- Department of Medical Biology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Mehmet Yildiz
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Damla Celebi
- Department of Medical Biology, Istanbul Faculty of Medicine, 64041Istanbul University, Istanbul, Turkey
| | - Sezgin Sahin
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Numune Aliyeva
- Department of Internal Medicine, Istanbul Faculty of Medicine, Division of Rheumatology, 64041Istanbul University, Istanbul, Turkey
| | - Fatih Haslak
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aybuke Gunalp
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Amra Adrovic
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kenan Barut
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahar Artim Esen
- Department of Internal Medicine, Istanbul Faculty of Medicine, Division of Rheumatology, 64041Istanbul University, Istanbul, Turkey
| | - Ozgur Kasapcopur
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, 532719Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
35
|
Acharya M, Jackson SW. Regulatory strategies limiting endosomal Toll-like receptor activation in B cells. Immunol Rev 2022; 307:66-78. [PMID: 35040152 PMCID: PMC8986562 DOI: 10.1111/imr.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/26/2022]
Abstract
The recognition of pathogen-associated nucleic acid (NA) promotes effective immunity against invading pathogens. However, endosomal Toll-like receptor (TLR) activation by self-NA also underlies the pathogenesis of systemic autoimmune diseases, such as systemic lupus erythematosus (SLE). For this reason, the activation thresholds of NA-sensing TLRs must be tightly regulated to balance protective and pathogenic immune responses. In this study, we will provide an overview of the evolutionary mechanisms designed to limit the aberrant activation of endosomal TLRs by self-ligands, focusing on four broad strategies. These include the following: 1) the production of nucleases able to degrade self-DNA and RNA; 2) the cell-specific regulation of endosomal TLR expression; 3) the spatial and temporal control of TLR positioning at a sub-cellular level; and 4) the modulation of downstream TLR signaling cascades. Given the critical role of B cells in lupus pathogenesis, where possible, we will describe evidence for B cell-specific induction of these regulatory mechanisms. We will also highlight our own work showing how modulation of B cell endolysosomal flux tunes NA-sensing TLR activation signals. In the face of inevitable generation of self-NA during normal cellular turnover, these parallel mechanisms are vital to protect against pathogenic inflammation.
Collapse
Affiliation(s)
- Mridu Acharya
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| | - Shaun W Jackson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
36
|
Ding SC, Chan RWY, Peng W, Huang L, Zhou Z, Hu X, Volpi S, Hiraki LT, Vaglio A, Fenaroli P, Bocca P, Tam LS, Wong PCH, Tam LHP, Jiang P, Chiu RWK, Allen Chan KC, Dennis Lo YM. OUP accepted manuscript. Clin Chem 2022; 68:917-926. [PMID: 35587043 DOI: 10.1093/clinchem/hvac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Spencer C Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Liangbo Huang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ze Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xi Hu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence, Italy
- Medical Genetics Unit, Meyer Children's Hospital, Florence, Italy
- Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | | | - Paola Bocca
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Lai Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Priscilla C H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Lydia H P Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
37
|
Moezinia CJ, Alden J. Neonatal hypocomplementemic urticarial vasculitis. Rheumatol Adv Pract 2021; 5:rkab090. [PMID: 34938951 PMCID: PMC8688776 DOI: 10.1093/rap/rkab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carine J Moezinia
- Rheumatology Department, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - James Alden
- Rheumatology Department, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| |
Collapse
|
38
|
Fava A, Rao DA. Cellular and molecular heterogeneity in systemic lupus erythematosus. Semin Immunol 2021; 58:101653. [PMID: 36184357 DOI: 10.1016/j.smim.2022.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Fava
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA.
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Angeletti A, Volpi S, Bruschi M, Lugani F, Vaglio A, Prunotto M, Gattorno M, Schena F, Verrina E, Ravelli A, Ghiggeri GM. Neutrophil Extracellular Traps-DNase Balance and Autoimmunity. Cells 2021; 10:cells10102667. [PMID: 34685647 PMCID: PMC8534732 DOI: 10.3390/cells10102667] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are macromolecular structures programmed to trap circulating bacteria and viruses. The accumulation of NETs in the circulation correlates with the formation of anti-double-stranded (ds) DNA antibodies and is considered a causative factor for systemic lupus erythematosus (SLE). The digestion of DNA by DNase1 and DNases1L3 is the rate- limiting factor for NET accumulation. Mutations occurring in one of these two DNase genes determine anti-DNA formation and are associated with severe Lupus-like syndromes and lupus nephritis (LN). A second mechanism that may lead to DNase functional impairment is the presence of circulating DNase inhibitors in patients with low DNase activity, or the generation of anti-DNase antibodies. This phenomenon has been described in a relevant number of patients with SLE and may represent an important mechanism determining autoimmunity flares. On the basis of the reviewed studies, it is tempting to suppose that the blockade or selective depletion of anti-DNase autoantibodies could represent a potential novel therapeutic approach to prevent or halt SLE and LN. In general, strategies aimed at reducing NET formation might have a similar impact on the progression of SLE and LN.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno Infantili, University of Genoa, 16132 Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, 50121 Firenze, Italy;
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland;
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Clinics of Pediatrics and Rheumatology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Francesca Schena
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Angelo Ravelli
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
- Correspondence:
| |
Collapse
|
40
|
Han DSC, Ni M, Chan RWY, Wong DKL, Hiraki LT, Volpi S, Jiang P, Lui KO, Chan KCA, Chiu RWK, Lo YMD. Nuclease deficiencies alter plasma cell-free DNA methylation profiles. Genome Res 2021; 31:2008-2021. [PMID: 34470801 PMCID: PMC8559716 DOI: 10.1101/gr.275426.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
The effects of DNASE1L3 or DNASE1 deficiency on cell-free DNA (cfDNA) methylation were explored in plasma of mice deficient in these nucleases and in DNASE1L3-deficient humans. Compared to wild-type cfDNA, cfDNA in DNASE1L3-deficient mice was significantly hypomethylated, while cfDNA in DNASE1-deficient mice was hypermethylated. The cfDNA hypomethylation in DNASE1L3-deficient mice was due to increased fragmentation and representation from open chromatin regions (OCRs) and CpG islands (CGIs). These findings were absent in DNASE1-deficient mice, demonstrating the preference of DNASE1 to cleave in hypomethylated OCRs and CGIs. We also observed a substantial decrease of fragment ends at methylated CpGs in the absence of DNASE1L3, thereby demonstrating that DNASE1L3 prefers to cleave at methylated CpGs. Furthermore, we found that methylation levels of cfDNA varied by fragment size in a periodic pattern, with cfDNA of specific sizes being more hypomethylated and enriched for OCRs and CGIs. These findings were confirmed in DNASE1L3-deficient human cfDNA. Thus, we have found that nuclease-mediated cfDNA fragmentation markedly affects cfDNA methylation level on a genome-wide scale. This work provides a foundational understanding of the relationship between methylation, nuclease biology, and cfDNA fragmentation.
Collapse
Affiliation(s)
- Diana S C Han
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Meng Ni
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Danny K L Wong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Linda T Hiraki
- Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario M5G 1X5, Canada
| | - Stefano Volpi
- Clinica Pediatrica e Reumatologia, Centro per le malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, 16147 Genova, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, 16132 Genova, Italy
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kathy O Lui
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Rossa W K Chiu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
41
|
Leyens J, Bender TTA, Mücke M, Stieber C, Kravchenko D, Dernbach C, Seidel MF. The combined prevalence of classified rare rheumatic diseases is almost double that of ankylosing spondylitis. Orphanet J Rare Dis 2021; 16:326. [PMID: 34294115 PMCID: PMC8296612 DOI: 10.1186/s13023-021-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare diseases (RDs) affect less than 5/10,000 people in Europe and fewer than 200,000 individuals in the United States. In rheumatology, RDs are heterogeneous and lack systemic classification. Clinical courses involve a variety of diverse symptoms, and patients may be misdiagnosed and not receive appropriate treatment. The objective of this study was to identify and classify some of the most important RDs in rheumatology. We also attempted to determine their combined prevalence to more precisely define this area of rheumatology and increase awareness of RDs in healthcare systems. We conducted a comprehensive literature search and analyzed each disease for the specified criteria, such as clinical symptoms, treatment regimens, prognoses, and point prevalences. If no epidemiological data were available, we estimated the prevalence as 1/1,000,000. The total point prevalence for all RDs in rheumatology was estimated as the sum of the individually determined prevalences. RESULTS A total of 76 syndromes and diseases were identified, including vasculitis/vasculopathy (n = 15), arthritis/arthropathy (n = 11), autoinflammatory syndromes (n = 11), myositis (n = 9), bone disorders (n = 11), connective tissue diseases (n = 8), overgrowth syndromes (n = 3), and others (n = 8). Out of the 76 diseases, 61 (80%) are classified as chronic, with a remitting-relapsing course in 27 cases (35%) upon adequate treatment. Another 34 (45%) diseases were predominantly progressive and difficult to control. Corticosteroids are a therapeutic option in 49 (64%) syndromes. Mortality is variable and could not be determined precisely. Epidemiological studies and prevalence data were available for 33 syndromes and diseases. For an additional eight diseases, only incidence data were accessible. The summed prevalence of all RDs was 28.8/10,000. CONCLUSIONS RDs in rheumatology are frequently chronic, progressive, and present variable symptoms. Treatment options are often restricted to corticosteroids, presumably because of the scarcity of randomized controlled trials. The estimated combined prevalence is significant and almost double that of ankylosing spondylitis (18/10,000). Thus, healthcare systems should assign RDs similar importance as any other common disease in rheumatology.
Collapse
Affiliation(s)
- Judith Leyens
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Neonatology and Pediatric Care, Children's University Hospital, Bonn, Germany
| | - Tim Th A Bender
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Institute of Human Genetics, University Hospital, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
| | - Christiane Stieber
- Institute of General Practice and Family Medicine, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dmitrij Kravchenko
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Radiology, University Hospital, Bonn, Germany
| | - Christian Dernbach
- Division of Medical Psychology and Department of Psychiatry, University Hospital, Bonn, Germany
| | - Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre hospitalier, Biel-Bienne, Switzerland.
| |
Collapse
|
42
|
Gu SL, Jorizzo JL. Urticarial vasculitis. Int J Womens Dermatol 2021; 7:290-297. [PMID: 34222586 PMCID: PMC8243153 DOI: 10.1016/j.ijwd.2021.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 01/19/2023] Open
Abstract
Urticarial vasculitis is a rare clinicopathologic entity that is characterized by chronic or recurrent episodes of urticarial lesions. Skin findings of this disease can be difficult to distinguish visually from those of chronic idiopathic urticaria but are unique in that individual lesions persist for ≥24 hours and can leave behind dusky hyperpigmentation. This disease is most often idiopathic but has been linked to certain drugs, infections, autoimmune connective disease, myelodysplastic disorders, and malignancies. More recently, some authors have reported associations between urticarial vasculitis and COVID-19, as well as influenza A/H1N1 infection. Urticarial vasculitis can extend systemically as well, most often affecting the musculoskeletal, renal, pulmonary, gastrointestinal, and ocular systems. Features of leukocytoclastic vasculitis seen on histopathologic examination are diagnostic of this disease, but not always seen. In practice, antibiotics, dapsone, colchicine, and hydroxychloroquine are popular first-line therapies, especially for mild cutaneous disease. In more severe cases, immunosuppressives, including methotrexate, mycophenolate mofetil, azathioprine, and cyclosporine, as well as corticosteroids, may be necessary for control. More recently, select biologic therapies, including rituximab, omalizumab, and interleukin-1 inhibitors have shown promise for the treatment of recalcitrant or refractory cases.
Collapse
Affiliation(s)
- Stephanie L. Gu
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- Corresponding author.
| | - Joseph L. Jorizzo
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
43
|
Kisla Ekinci RM, Balci S, Ozcan D, Atmis B, Bisgin A. Monogenic lupus due to DNASE1L3 deficiency in a pediatric patient with urticarial rash, hypocomplementemia, pulmonary hemorrhage, and immune-complex glomerulonephritis. Eur J Med Genet 2021; 64:104262. [PMID: 34161863 DOI: 10.1016/j.ejmg.2021.104262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease and usually involves the skin, musculoskeletal system, and kidneys. More than 30 genes have been to monogenic lupus, so far. Monogenic lupus is often characterized by an early-onset, similar family history, and syndromic appearance. Herein we present a pediatric patient with DNASE1L3 deficiency, suffering from both urticarial skin lesions, recurrent hemoptysis, and renal involvement, eventually diagnosed as this rare monogenic lupus. The patient suffered from recurrent urticarial rash and hemoptysis since the age of 15 months of age. He had microscopic hematuria, mild proteinuria, hypocomplementemia, and positive antinuclear antibody, anti-dsDNA, and antineutrophil cytoplasmic antibodies. Renal biopsy yielded immunocomplex glomerulonephritis. Due to early-onset, similar sibling history and consanguineous parents, we suspected monogenic lupus and performed whole-exome sequencing, which further revealed a homozygous T97Ifs*2 mutation (NM_004944.4: c.290_291delCA/p.Thr97Ilefs*2) in DNASE1L3 gene. In conclusion, DNASE1L3 deficiency should be thought when juvenile SLE occurs with early disease-onset, pulmonary hemorrhage, glomerulonephritis, and recurrent urticarial rash along with ANCA positivity.
Collapse
Affiliation(s)
| | - Sibel Balci
- Department of Pediatric Rheumatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Dilek Ozcan
- Department of Pediatric Allergy and Immunology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Bahriye Atmis
- Department of Pediatric Nephrology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
44
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
45
|
A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets. Genes (Basel) 2021; 12:genes12060898. [PMID: 34200671 PMCID: PMC8229796 DOI: 10.3390/genes12060898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Technology to generate single cell RNA-sequencing (scRNA-seq) datasets and tools to annotate them have advanced rapidly in the past several years. Such tools generally rely on existing transcriptomic datasets or curated databases of cell type defining genes, while the application of scalable natural language processing (NLP) methods to enhance analysis workflows has not been adequately explored. Here we deployed an NLP framework to objectively quantify associations between a comprehensive set of over 20,000 human protein-coding genes and over 500 cell type terms across over 26 million biomedical documents. The resultant gene-cell type associations (GCAs) are significantly stronger between a curated set of matched cell type-marker pairs than the complementary set of mismatched pairs (Mann Whitney p = 6.15 × 10−76, r = 0.24; cohen’s D = 2.6). Building on this, we developed an augmented annotation algorithm (single cell Annotation via Literature Encoding, or scALE) that leverages GCAs to categorize cell clusters identified in scRNA-seq datasets, and we tested its ability to predict the cellular identity of 133 clusters from nine datasets of human breast, colon, heart, joint, ovary, prostate, skin, and small intestine tissues. With the optimized settings, the true cellular identity matched the top prediction in 59% of tested clusters and was present among the top five predictions for 91% of clusters. scALE slightly outperformed an existing method for reference data driven automated cluster annotation, and we demonstrate that integration of scALE can meaningfully improve the annotations derived from such methods. Further, contextualization of differential expression analyses with these GCAs highlights poorly characterized markers of well-studied cell types, such as CLIC6 and DNASE1L3 in retinal pigment epithelial cells and endothelial cells, respectively. Taken together, this study illustrates for the first time how the systematic application of a literature-derived knowledge graph can expedite and enhance the annotation and interpretation of scRNA-seq data.
Collapse
|
46
|
Coke LN, Wen H, Comeau M, Ghanem MH, Shih A, Metz CN, Li W, Langefeld CD, Gregersen PK, Simpfendorfer KR. Arg206Cys substitution in DNASE1L3 causes a defect in DNASE1L3 protein secretion that confers risk of systemic lupus erythematosus. Ann Rheum Dis 2021; 80:782-787. [PMID: 33455918 PMCID: PMC8142439 DOI: 10.1136/annrheumdis-2020-218810] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To determine if the polymorphism encoding the Arg206Cys substitution in DNASE1L3 explains the association of the DNASE1L3/PXK gene locus with systemic lupus erythematosus (SLE) and to examine the effect of the Arg206Cys sequence change on DNASE1L3 protein function. METHODS Conditional analysis for rs35677470 was performed on cases and controls with European ancestry from the SLE Immunochip study, and genotype and haplotype frequencies were compared. DNASE1L3 protein levels were measured in cells and supernatants of HEK293 cells and monocyte-derived dendritic cells expressing recombinant and endogenous 206Arg and 206Cys protein variants. RESULTS Conditional analysis on rs35677470 eliminated the SLE risk association signal for lead single-nucleotide polymorphisms (SNPs) rs180977001 and rs73081554, which are found to tag the same risk haplotype as rs35677470. The modest effect sizes of the SLE risk genotypes (heterozygous risk OR=1.14 and homozygous risk allele OR=1.68) suggest some DNASE1L3 endonuclease enzyme function is retained. An SLE protective signal in PXK (lead SNP rs11130643) remained following conditioning on rs35677470. The DNASE1L3 206Cys risk variant maintained enzymatic activity, but secretion of the artificial and endogenous DNASE1L3 206Cys protein was substantially reduced. CONCLUSIONS SLE risk association in the DNASE1L3 locus is dependent on the missense SNP rs35677470, which confers a reduction in DNASE1L3 protein secretion but does not eliminate its DNase enzyme function.
Collapse
Affiliation(s)
- Latanya N Coke
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hongxiu Wen
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Mary Comeau
- Department of Biostatistics and Data Science, Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mustafa H Ghanem
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Andrew Shih
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Christine N Metz
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Wentian Li
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Peter K Gregersen
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kim R Simpfendorfer
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
47
|
The Nexus of cfDNA and Nuclease Biology. Trends Genet 2021; 37:758-770. [PMID: 34006390 DOI: 10.1016/j.tig.2021.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Cell-free DNA (cfDNA) is a widely used noninvasive biomarker for diagnosis and prognosis of multiple disease states. Emerging evidence suggests that cfDNA might not just be passive waste products of cell death but could have a physiological and pathological function in inflammation and autoimmunity. The balance of cfDNA generation and clearance may thus be vital in health and disease. In particular, plasma nuclease activity has been linked to multiple pathologies including cancer and systemic lupus erythematosus (SLE) and associated with profound changes in the nonrandom fragmentation of cfDNA. Lastly, in this review, we explore the effects of DNA fragmentation factor B (DFFB), DNASE1L3, and DNASE1 on cfDNA levels and their fragmentomic profiles, and what these recent insights reveal about the biology of cfDNA.
Collapse
|
48
|
Berry EC, Wells J, Morey A, Anantharajah A. Hypocomplementemic urticarial vasculitis syndrome presenting with bilateral scleritis. BMJ Case Rep 2021; 14:14/5/e240041. [PMID: 33972296 PMCID: PMC8112411 DOI: 10.1136/bcr-2020-240041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypocomplementemic urticarial vasculitis syndrome (HUVS) is a rare autoimmune disorder characterised by recurrent urticarial lesions and acquired hypocomplementemia with systemic manifestations. The authors present the case of a 70-year-old man who presented to the ophthalmology clinic with bilateral scleritis and ocular hypertension. He was diagnosed with HUVS after a 6-month period of bilateral scleritis, vestibulitis, significant weight loss, mononeuritis multiplex and recurrent urticarial vasculitis with pronounced persistent hypocomplementemia and the presence of anti-C1q antibodies. Disease control was eventually obtained with mycophenolate and prednisolone.
Collapse
Affiliation(s)
- Ella Claire Berry
- Canberra Health Services Library, ACT Government, Garren, Australian Capital Territory, Australia .,Ophthalmology Unit, Canberra Health Services, Garran, Australian Capital Territory, Australia
| | - Jane Wells
- Ophthalmology Unit, Canberra Health Services, Garran, Australian Capital Territory, Australia.,Department of Ophthalmology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Adrienne Morey
- ACT Pathology, Canberra Health Services, Garran, Australian Capital Territory, Australia.,Australian National University Medical School, Garran, Australian Capital Territory, Australia
| | - Anthea Anantharajah
- Department of Immunology, Canberra Health Services, Garran, Australian Capital Territory, Australia.,John Curtin School of Medical Research, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
49
|
Girardelli M, Valencic E, Moressa V, Margagliotta R, Tesser A, Pastore S, Spadola O, Athanasakis E, Severini GM, Taddio A, Tommasini A. Genetic and immunologic findings in children with recurrent aphthous stomatitis with systemic inflammation. Pediatr Rheumatol Online J 2021; 19:70. [PMID: 33971891 PMCID: PMC8111718 DOI: 10.1186/s12969-021-00552-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recurrent aphthous stomatitis with systemic signs of inflammation can be encountered in inflammatory bowel disease, Behçet's disease (BD), Systemic Lupus Erythematosus (SLE). In addition, it has been proposed that cases with very early onset in childhood can be underpinned by rare monogenic defects of immunity, which may require targeted treatments. Thus, subjects with early onset recurrent aphthous stomatitis receiving a clinical diagnosis of BD-like or SLE-like disease may deserve a further diagnostic workout, including immunologic and genetic investigations. OBJECTIVE To investigate how an immunologic, genetic and transcriptomics assessment of interferon inflammation may improve diagnosis and care in children with recurrent aphthous stomatitis with systemic inflammation. METHODS Subjects referred to the pediatric rheumatologist for recurrent aphthous stomatitis associated with signs of systemic inflammation from January 2015 to January 2020 were enrolled in the study and underwent analysis of peripheral lymphocyte subsets, sequencing of a 17-genes panel and measure of interferon score. RESULTS We enrolled 15 subjects (12 females, median age at disease onset 4 years). The clinical diagnosis was BD in 8, incomplete BD in 5, BD/SLE overlap in 1, SLE in 1. Pathogenic genetic variants were detected in 3 patients, respectively 2 STAT1 gain of function variants in two patients classified as BD/SLE overlap and SLE, and 1 TNFAIP3 mutation (A20 haploinsufficiency) in patients with BD. Moreover 2 likely pathogenic variants were identified in DNASE1L3 and PTPN22, both in patients with incomplete BD. Interferon score was high in the two patients with STAT1 GOF mutations, in the patient with TNFAIP3 mutation, and in 3 genetic-negative subjects. In two patients, the treatment was modified based on genetic results. CONCLUSIONS Although recurrent aphthous stomatitis associated with systemic inflammation may lead to a clinical diagnosis of BD or SLE, subjects with early disease onset in childhood deserve genetic investigation for rare monogenic disorders. A wider genetic panel may help disclosing the genetic background in the subset of children with increased interferon score, who tested negative in this study.
Collapse
Affiliation(s)
- Martina Girardelli
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Erica Valencic
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Valentina Moressa
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Alessandra Tesser
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| | - Serena Pastore
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Ottavia Spadola
- grid.5133.40000 0001 1941 4308University of Trieste, Trieste, Italy
| | - Emmanouil Athanasakis
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Maria Severini
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Andrea Taddio
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy ,grid.5133.40000 0001 1941 4308University of Trieste, Trieste, Italy
| | - Alberto Tommasini
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy ,grid.5133.40000 0001 1941 4308University of Trieste, Trieste, Italy
| |
Collapse
|
50
|
Hartl J, Serpas L, Wang Y, Rashidfarrokhi A, Perez OA, Sally B, Sisirak V, Soni C, Khodadadi-Jamayran A, Tsirigos A, Caiello I, Bracaglia C, Volpi S, Ghiggeri GM, Chida AS, Sanz I, Kim MY, Belmont HM, Silverman GJ, Clancy RM, Izmirly PM, Buyon JP, Reizis B. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J Exp Med 2021; 218:e20201138. [PMID: 33783474 PMCID: PMC8020718 DOI: 10.1084/jem.20201138] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies to double-stranded DNA (dsDNA) are prevalent in systemic lupus erythematosus (SLE), particularly in patients with lupus nephritis, yet the nature and regulation of antigenic cell-free DNA (cfDNA) are poorly understood. Null mutations in the secreted DNase DNASE1L3 cause human monogenic SLE with anti-dsDNA autoreactivity. We report that >50% of sporadic SLE patients with nephritis manifested reduced DNASE1L3 activity in circulation, which was associated with neutralizing autoantibodies to DNASE1L3. These patients had normal total plasma cfDNA levels but showed accumulation of cfDNA in circulating microparticles. Microparticle-associated cfDNA contained a higher fraction of longer polynucleosomal cfDNA fragments, which bound autoantibodies with higher affinity than mononucleosomal fragments. Autoantibodies to DNASE1L3-sensitive antigens on microparticles were prevalent in SLE nephritis patients and correlated with the accumulation of cfDNA in microparticles and with disease severity. DNASE1L3-sensitive antigens included DNA-associated proteins such as HMGB1. Our results reveal autoantibody-mediated impairment of DNASE1L3 activity as a common nongenetic mechanism facilitating anti-dsDNA autoreactivity in patients with severe sporadic SLE.
Collapse
Affiliation(s)
- Johannes Hartl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Oriana A. Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Benjamin Sally
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Vanja Sisirak
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Le Centre national de la recherche scientifique - unité mixte de recherche 5164, ImmunoConcEpt, Universite ´de Bordeaux, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY
| | - Ivan Caiello
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Bracaglia
- Division of Rheumatology, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stefano Volpi
- Centro per le Malattie Autoinfiammatorie e Immunodeficienze, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, Genoa, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genoa, Italy
| | - Asiya Seema Chida
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA
| | - Mimi Y. Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - H. Michael Belmont
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Gregg J. Silverman
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Robert M. Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Peter M. Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Jill P. Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|