1
|
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, Gowifel AMH. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs. Biomed Pharmacother 2024; 177:116929. [PMID: 38889644 DOI: 10.1016/j.biopha.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes.
Collapse
Affiliation(s)
- Noha F Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Mona R El-Ansary
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Mona S Ousman
- Emergency Medical Services, College of Applied Sciences, AlMaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia.
| | - Marwa S Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza 1211, Egypt.
| | - Mahmoud R M El-Ansary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 12566, Egypt.
| | - Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, faculty of Pharmacy, Sinai University-Kantara branch, Ismailia, Egypt
| | - Suzan M M Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, 44519, Egypt.
| | - Asmaa Gohar
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, sixth of October city, Giza, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43713, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
2
|
Ma L, Yuan J, Yang X, Yan M, Li Y, Niu M. Association between the adherence to Mediterranean diet and depression in rheumatoid arthritis patients: a cross-sectional study from the NHANES database. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:103. [PMID: 38970091 PMCID: PMC11227153 DOI: 10.1186/s41043-024-00572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease, and depression is a most frequent comorbid condition associated with RA. Studies have shown that inflammation plays a vital role in the pathophysiology of depression and RA. Mediterranean diet (MED) has been proved to be a healthy anti-inflammatory dietary pattern. This study aims to explore the association between the adherence to Mediterranean diet (aMED) and depression in RA patients. METHODS In this study, RA patients aged ≥ 20 years old were extracted from the National Health and Nutrition Examination Survey (NAHNES) database. Dietary intake information was obtained from 24-h dietary recall interview. Covariates included sociodemographic information, lifestyles, laboratory parameters, and the history of diseases and medications were included. The weighted univariable and multivariable logistic regression models were used to assess the association between aMED and depression. Subgroup analysis was conducted to further explore the association between MED components and depression. RESULTS Totally 1,148 patients were included, of whom 290 (25.26%) had depression. After adjusted all covariates, high aMED was associated with the lower odds of depression in RA patients (OR = 0.53, 95%CI: 0.29-0.97). Among MED components, higher consumption of vegetables (OR = 0.54, 95%CI: 0.34-0.84) and cereals (OR = 0.63, 95%CI: 0.39-0.99) contributed more to decrease the odds of depression. CONCLUSION Greater aMED may have potential benefits for improving mental health in RA patients. Future large-scale cohort studies are needed to explore the association between aMED and depression in RA patients.
Collapse
Affiliation(s)
- Liya Ma
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital Affiliated of Xi'an Jiaotong University, No.76 Nanguo Road, Beilin District, Xi'an, Shaanxi Province, 710061, China
| | - Jingman Yuan
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital Affiliated of Xi'an Jiaotong University, No.76 Nanguo Road, Beilin District, Xi'an, Shaanxi Province, 710061, China
| | - Xichao Yang
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital Affiliated of Xi'an Jiaotong University, No.76 Nanguo Road, Beilin District, Xi'an, Shaanxi Province, 710061, China
| | - Meixi Yan
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital Affiliated of Xi'an Jiaotong University, No.76 Nanguo Road, Beilin District, Xi'an, Shaanxi Province, 710061, China
| | - Ying Li
- Department of Geriatric, Xi'an Qinhuang Hospital, Xi'an, Shaanxi Province, 710061, China
| | - Min Niu
- Department of Rheumatology Immunology and Endocrinology, Honghui Hospital Affiliated of Xi'an Jiaotong University, No.76 Nanguo Road, Beilin District, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
3
|
Kahouadji S, Giguère Y, Lambert S, Forest JC, Bernard N, Blanchon L, Marceau G, Durif J, Pereira B, Gallot D, Sapin V, Bouvier D. CX3CL1/Fractalkine as a biomarker for early pregnancy prediction of preterm premature rupture of membranes. Clin Chem Lab Med 2024; 62:1101-1108. [PMID: 38278625 PMCID: PMC11056942 DOI: 10.1515/cclm-2023-1202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES The objective of our study was to evaluate serum CX3CL1/Fractalkine, a monocyte/macrophage chemoattractant expressed in cytotrophoblasts and decidual cells, as a predictive biomarker for the occurrence of preterm premature rupture of membranes (PPROM). METHODS A case-control study of 438 pregnancies including 82 PPROM cases and 64 preterm labor with intact membranes cases with blood samples collected at first trimester, second trimester and delivery was conducted. The predictive ability of CX3CL1 and maternal risk factors for the occurrence of PPROM was assessed by receiver operating characteristic curve analysis. A second, independent cohort was prospectively constituted to confirm the case-control study results. RESULTS First trimester CX3CL1 was significantly increased in PPROM cases when compared to matched controls. Multivariate regression analysis highlighted a significant difference for CX3CL1 measured during the first trimester (p<0.001). Alone, CX3CL1 predicts PPROM with a 90 % sensitivity and a specificity around 40 %. The area under the receiver operating characteristic curve for PPROM prediction were 0.64 (95% confidence interval: 0.57-0.71) for first trimester CX3CL1, and 0.61 (95% confidence interval: 0.54-0.68) for maternal risk factors (body mass index<18.5 kg/m2, nulliparity, tobacco use and the absence of high school diploma). The combination of CX3CL1 and maternal risk factors significantly improved the area under the curve: 0.72 (95% confidence interval: 0.66-0.79) (p<0.001). The results were confirmed on a second independent cohort. CONCLUSIONS CX3CL1 is a promising blood biomarker in the early (first trimester) prediction of PPROM.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Yves Giguère
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada
| | - Salomé Lambert
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Claude Forest
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, Canada
| | - Nathalie Bernard
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Canada
| | - Loïc Blanchon
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Gallot
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
- Department of Obstetrics and Gynecology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
- Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
4
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Teixeira VON, Bartikoski BJ, do Espirito Santo RC, Alabarse PVG, Ghannan K, Silva JMS, Filippin LI, Visioli F, Martinez-Gamboa L, Feist E, Xavier RM. The role of proteasome in muscle wasting of experimental arthritis. Adv Rheumatol 2023; 63:14. [PMID: 36949513 DOI: 10.1186/s42358-023-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. METHODS Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMβ5, PMSβ6, PSMβ7, PSMβ8, PSMβ9, and PSMβ10), and protein (PSMβ1, PSMβ5, PSMβ1i, PSMβ5i) expression of proteasome subunits. RESULTS Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMβ8 and PSMβ9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSβ6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMβ5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMβ5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit β1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). CONCLUSIONS The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMβ8 and PSMβ9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.
Collapse
Affiliation(s)
- Vivian Oliveira Nunes Teixeira
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Bárbara Jonson Bartikoski
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Rafaela Cavalheiro do Espirito Santo
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil.
| | - Paulo Vinícius Gil Alabarse
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
- University of California San Diego Medical Center Library, University of California San Diego School of Medicine, San Diego, USA
| | - Khetam Ghannan
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jordana Miranda Souza Silva
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Lidiane Isabel Filippin
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
- Health and Human Development Department, Universidade La Salle, Canoas, Brazil
| | - Fernanda Visioli
- Patology Department, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lorena Martinez-Gamboa
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eugen Feist
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Machado Xavier
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| |
Collapse
|
6
|
Khan MA, Rabbani G, Aggarawal J, Ahmed RS. Divulging the Intricacies of Crosstalk Between NF-kB and Nrf-2/Keap1 Pathway in the Treatment of Arthritis by Dimethyl Fumarate. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04324-0. [PMID: 36662423 DOI: 10.1007/s12010-023-04324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
The aim of this study was to examine the hypothesis that use of dimethyl fumarate (DMF) may mitigate arthritic symptoms in collagen-induced arthritis (CIA) rats through activation of NF-E2-related factor 2(Nrf-2) and suppression of NF-kB pathway. Arthritis in rats was induced by subcutaneous injection of collagen type II (200 µl) at the base of the tail. After induction arthritic rats were treated with DMF (25 mg/kg b.wt.) for 20 days from the day 25th to 45th. At the end of the study, serum and joint homogenate was used to assess the oxidative stress and cytokines level. In addition, mRNA expression of various genes such as NF-kB, Keap-1 (Kelch-like ECH-associated protein 1) and Nrf-2 was assayed through qRT-PCR in joint tissue. Finally, all these biochemical and molecular results were confirmed by histological and in silico study. Our results showed that decrease in the clinical severity, inflammation, and cell necrosis in DMF-treated rats. This was related with decrease in NF-kB activity and increase in activity of Nrf-2. Treatment with DMF increases the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) and decreases inflammation. These biochemical and molecular results were further confirmed by performing in silico study that shows DMF strongly inhibits the activation of NF-kB, and conversely at the same time increases the activity of Nrf-2 that means a significantly lower amount of inflammatory mediators and oxidants was produced. Decrease in inflammation leads to preserving the joint architecture and alleviation from clinical symptoms of arthritis. Collectively, these results indicate that Nrf-2 activation protects against arthritic symptoms.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi, 110095, India.
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi Si, Gyeongbuk, 39253, Republic of Korea
| | - Juhi Aggarawal
- Department of Biochemistry, Santosh Deemed to Be University, Ghaziabad, U.P, India
| | - Rafat Sultana Ahmed
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, Dilshad Garden, Delhi, 110095, India
| |
Collapse
|
7
|
Guo YN, Cui SJ, Tian YJ, Zhao NR, Zhang YD, Gan YH, Zhou YH, Wang XD. Chondrocyte apoptosis in temporomandibular joint osteoarthritis promotes bone resorption by enhancing chemotaxis of osteoclast precursors. Osteoarthritis Cartilage 2022; 30:1140-1153. [PMID: 35513247 DOI: 10.1016/j.joca.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to explore the effect and mechanism of chondrocyte apoptosis on the chemotaxis of osteoclast precursors (OCPs) during bone destruction. DESIGN The relationship between cartilage and bone destruction was verified with a rat temporomandibular joint osteoarthritis (TMJOA) model. The pan-caspase inhibitor Z-VAD-FMK (ZVAD) was applied to confirm the chemotactic effect of chondrocyte apoptosis on OCPs. Synthesis and release of the key chemokine CX3CL1 in apoptotic and non-apoptotic chondrocytes was assessed with IHC, IF, WB, and ELISA. The function of CX3CL1-CX3CR1 axis in the chemotaxis of OCPs was examined by CX3XR1 inhibitor AZD8797 (AZD) and si-CX3CL1. The regulatory effect of p38 MAPK on CX3CL1 release was verified by p38 inhibitor PH-797804. RESULTS A temporal and spatial association between cartilage degradation and bone resorption was found in the TMJOA model. The caspase-dependent chondrocyte apoptosis promoted chemotaxis of OCPs, which can be restrained by ZVAD. CX3CL1 was significantly upregulated when chondrocytes underwent apoptosis, and it played a critical role in the recruitment of OCPs, blockage of CX3CL1-CX3CR1 axis resulted in less bone resorption in TMJOA. P38 MAPK was activated in apoptotic chondrocytes, and had a regulatory effect on the synthesis and release of CX3CL1. After inhibition of p38 by PH-797804, the chemotactic effect of apoptotic chondrocytes on OCPs was limited. CONCLUSIONS This study indicates that apoptosis of chondrocytes in TMJOA enhances chemotaxis of OCPs toward osteoclast precursors through upregulation of the p38-CX3CL1 axis, thereby promoting the activation of local osteoclasts.
Collapse
Affiliation(s)
- Y N Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - S J Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Y J Tian
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - N R Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Y D Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Y H Gan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China; Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China; Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - Y H Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - X D Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China; Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
8
|
Omega-3 Supplementation Prevents Short-Term High-Fat Diet Effects on the α7 Nicotinic Cholinergic Receptor Expression and Inflammatory Response. Mediators Inflamm 2021; 2021:5526940. [PMID: 34421366 PMCID: PMC8371655 DOI: 10.1155/2021/5526940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
The study is aimed at investigating if PUFA supplementation could prevent the effects of a short-term HFD on α7nAChR expression and on the severity of sepsis. Swiss mice were used for the in vivo experiments. For the in vitro experiments, we used a microglia cell line (BV-2) and a hepatoma cell line (Hepa-1c1c7) derived from mice. The animals were either fed standard chow, fed a short-term HFD (60%), or given supplementation with omega-3 fatty acid (2 g/kg or 4 g/kg bw) for 17 days, followed by a short-term HFD. Endotoxemia was induced with an intraperitoneal (i.p.) lipopolysaccharide injection (LPS, 5 or 12 mg/kg), and sepsis was induced by subjecting the animals to cecal ligation and puncture (CLP). BV-2 and Hepa-1c1c7 cells were treated with LPS (100 and 500 ng/mL, respectively) for 3 hours. RT-PCR or Western blotting was used to evaluate α7nAChR expression, inflammatory markers, DNMT1, and overall ubiquitination. LPS and HFD reduced the expression of α7nAChR and increased the expression of inflammatory markers. Omega-3 partially prevented the damage caused by the HFD to the expression of α7nAChR in the bone marrow and hypothalamus, decreased the inflammatory markers, and reduced susceptibility to sepsis-induced death. Exposing the BV-2 cells to LPS increased the protein content of DNMT1 and the overall ubiquitination and reduced the expression of α7nAChR. The inflammation induced by LPS in the BV-2 cell decreased α7nAChR expression and concomitantly increased DNMT1 expression and the ubiquitinated protein levels, indicating the participation of pre- and posttranscriptional mechanisms.
Collapse
|
9
|
Stothert AR, Kaur T. Innate Immunity to Spiral Ganglion Neuron Loss: A Neuroprotective Role of Fractalkine Signaling in Injured Cochlea. Front Cell Neurosci 2021; 15:694292. [PMID: 34408629 PMCID: PMC8365835 DOI: 10.3389/fncel.2021.694292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Immune system dysregulation is increasingly being attributed to the development of a multitude of neurodegenerative diseases. This, in large part, is due to the delicate relationship that exists between neurons in the central nervous system (CNS) and peripheral nervous system (PNS), and the resident immune cells that aid in homeostasis and immune surveillance within a tissue. Classically, the inner ear was thought to be immune privileged due to the presence of a blood-labyrinth barrier. However, it is now well-established that both vestibular and auditory end organs in the inner ear contain a resident (local) population of macrophages which are the phagocytic cells of the innate-immune system. Upon cochlear sterile injury or infection, there is robust activation of these resident macrophages and a predominant increase in the numbers of macrophages as well as other types of leukocytes. Despite this, the source, nature, fate, and functions of these immune cells during cochlear physiology and pathology remains unclear. Migration of local macrophages and infiltration of bone-marrow-derived peripheral blood macrophages into the damaged cochlea occur through various signaling cascades, mediated by the release of specific chemical signals from damaged sensory and non-sensory cells of the cochlea. One such signaling pathway is CX3CL1-CX3CR1, or fractalkine (FKN) signaling, a direct line of communication between macrophages and sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) of the cochlea. Despite the known importance of this neuron-immune axis in CNS function and pathology, until recently it was not clear whether this signaling axis played a role in macrophage chemotaxis and SGN survival following cochlear injury. In this review, we will explore the importance of innate immunity in neurodegenerative disease development, specifically focusing on the regulation of the CX3CL1-CX3CR1 axis, and present evidence for a role of FKN signaling in cochlear neuroprotection.
Collapse
Affiliation(s)
- Andrew Rigel Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
10
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
11
|
Haque M, Singh AK, Ouseph MM, Ahmed S. Regulation of Synovial Inflammation and Tissue Destruction by Guanylate Binding Protein 5 in Synovial Fibroblasts From Patients With Rheumatoid Arthritis and Rats With Adjuvant-Induced Arthritis. Arthritis Rheumatol 2021; 73:943-954. [PMID: 33615742 DOI: 10.1002/art.41611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Rheumatoid arthritis synovial fibroblasts (RASFs) are crucial mediators of synovial inflammation and joint destruction. However, their intrinsic immunoregulatory mechanisms under chronic inflammation remain unclear. Thus, the present study was undertaken to understand the role of a newly identified GTPase, guanylate binding protein 5 (GBP-5), in RA pathogenesis. METHODS The expression of GBP1-GBP7 transcripts was evaluated using quantitative reverse transcription-polymerase chain reaction in RA synovial tissue or synovial tissue unaffected by RA. Our investigation on transient small interfering RNA (siRNA) knockdown and lentiviral overexpression in human RASFs examined the regulatory role of GBP-5 on proinflammatory cytokine signaling pathways. Unbiased whole transcriptome RNA sequencing analysis was used to assess the impact of GBP-5 on RASF molecular functions. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA) in vivo. RESULTS Among different GBPs evaluated, GBP-5 was selectively up-regulated in RA synovial tissue (P < 0.05; n = 4) and in the joints of rats with AIA (P < 0.05; n = 6) and was significantly induced in human RASFs by interleukin-1β (IL-1β), tumor necrosis factor (TNF), and/or interferon-γ (IFNγ) (P < 0.05; n = 3). Bioinformatics analysis of RNA sequencing data identified cytokine-cytokine receptor signaling as a major function altered by GBP-5, with IL-6 signaling as a primary target. Knockdown of GBP-5 amplified IL-1β-induced IL-6, IL-8, and epithelial neutrophil-activating peptide 78/CXCL5 production by 44%, 54%, 45%, respectively, and matrix metalloproteinase 1 (MMP-1) production by several-fold-effects that reversed with exogenously delivered GBP-5. Lack of GBP-5 increased IFNγ-induced proliferation and migration of human RASFs. GBP-5 knockdown in vivo using intraarticular siRNA exacerbated disease onset, severity, synovitis, and bone destruction in rat AIA. CONCLUSION Expressed by RASFs in response to cytokine stimulation, GBP-5 has potential to restore cellular homeostasis and blunt inflammation and tissue destruction in RA.
Collapse
Affiliation(s)
| | - Anil K Singh
- Washington State University College of Pharmacy, Spokane
| | - Madhu M Ouseph
- Stanford University School of Medicine, Stanford, California
| | - Salahuddin Ahmed
- Washington State University College of Pharmacy, Spokane, and University of Washington School of Medicine, Seattle
| |
Collapse
|
12
|
Rivas-Fuentes S, Salgado-Aguayo A, Arratia-Quijada J, Gorocica-Rosete P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J Cancer 2021; 12:571-583. [PMID: 33391453 PMCID: PMC7738983 DOI: 10.7150/jca.47022] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
CX3CL1 is a transmembrane protein from which a soluble form can be generated by proteolytic shedding. Membranal and soluble forms of CX3CL1 exhibit different functions, although both bind to the CX3CR1 chemokine receptor. The CX3CL1-CX3CR1 axis mediates the adhesion of leukocytes and is also involved in cell survival and recruitment of immune cell subpopulations. The function of CX3CL1 is finely tuned by cytokines and transcription factors regulating its expression and post-translational modifications. On homeostasis, the CX3CL1-CX3CR1 axis participates in the removal of damaged neurons and neurogenesis, and it is also involved on several pathological contexts. The CX3CL1-CX3CR1 axis induces several cellular responses relevant to cancer such as proliferation, migration, invasion and apoptosis resistance. In this review, we address biological aspects of this molecular axis with important therapeutic potential, emphasizing its role in cancer, one of the most prevalent chronic diseases which significantly affect the quality of life and life expectancy of patients.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jenny Arratia-Quijada
- Department of Biomedical Sciences, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - Patricia Gorocica-Rosete
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
13
|
Chen X, Wei Q, Hu Y, Wang C. Role of Fractalkine in promoting inflammation in sepsis-induced multiple organ dysfunction. INFECTION GENETICS AND EVOLUTION 2020; 85:104569. [PMID: 32979549 DOI: 10.1016/j.meegid.2020.104569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fractalkine, CX3CL1, is involved in the directional movement of chemokine cells, immune response, inflammatory response, tissue repair, and other processes. However, its role in sepsis is not well known. METHODS We measured circulating Fractalkine in adult patients with sepsis. Effects of Fractalkine on the survival, inflammation, tissue injury, and bacterial clearance were assessed using the WT or CX3CL-/- murine model of cecal ligation and puncture (CLP)-induced sepsis. RESULTS Serum Fractalkine concentrations were significantly elevated in adult patients with sepsis compared to healthy adults. Increased Fractalkine correlated positively with the number of blood leukocytes and the level of inflammatory cytokines, including IL-6, IL-1β, IL-17A, IFN-γ, and TNF-α, and correlated negatively with IL-10 in clinical sepsis. Recombinant Fractalkine impaired survival whereas Fractalkine gene knockout or anti-Fractalkine antibody improved survival in the murine model of CLP-induced sepsis. Fractalkine administration increased inflammatory response, evident by higher levels of cytokines (TNF-α, IL-1β, IL-17A, IFN-γ, and IL-6 but not IL-10), and tissue damage (lung, liver, and kidney) in CLP-induced sepsis. Fractalkine reduced bacterial clearance in CLP-induced polymicrobial sepsis by reducing macrophage or neutrophil phagocytosis and intracellular elimination of E. coli. CONCLUSIONS Fractalkine aggravates sepsis by increasing inflammation and decreasing bacterial clearance, and is a potential tool for anti-sepsis therapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing, Medical University, Chongqing, China.
| | - Qiang Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing, Medical University, Chongqing, China
| | - Yida Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuanjiang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Fractalkine/CX3CL1 in Neoplastic Processes. Int J Mol Sci 2020; 21:ijms21103723. [PMID: 32466280 PMCID: PMC7279446 DOI: 10.3390/ijms21103723] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Collapse
|
15
|
Muraoka S, Nishio J, Kuboi Y, Imai T, Nanki T. Rationale for and clinical development of anti-fractalkine antibody in rheumatic diseases. Expert Opin Biol Ther 2020; 20:1309-1319. [PMID: 32401060 DOI: 10.1080/14712598.2020.1764931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Rheumatic diseases are inflammatory diseases that damage target organs via multiple subsets of immune cells. Fractalkine (FKN) acts as chemoattractant as well as adhesion molecule. It contributes to the pathogenesis of rheumatoid arthritis (RA) and other rheumatic diseases through multiple mechanisms: the migration of monocytes and cytotoxic effector T cells, the proliferation and activation of fibroblast-like synoviocytes, angiogenesis, and osteoclastogenesis. FKN has potential as a new therapeutic target, and clinical trials on anti-FKN monoclonal antibodies for RA are ongoing. FKN-targeted therapy has been developed and a humanized anti-FKN monoclonal antibody is currently being tested in phase 2 clinical trials. Areas covered: This review summarizes accumulated evidence on the involvement of FKN in RA and other rheumatic diseases, including systemic lupus erythematosus (SLE), systemic sclerosis, inflammatory myositis, Sjögren's syndrome (SS), osteoarthritis, and systemic vasculitis. Expert opinion: A phase 1/2a clinical trial on anti-FKN demonstrated its safety, tolerability, and clinical efficacy. Anti-FKN therapy has potential in the treatment of atherosclerosis and interstitial lung diseases associated with RA. Based on recent findings, other rheumatic diseases, including SLE, polymyositis/dermatomyositis, and SS, may also be treated using anti-FKN therapy.
Collapse
Affiliation(s)
- Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine , Tokyo, Japan
| | - Junko Nishio
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine , Tokyo, Japan.,Department of Immunopathology and Immunoregulation, Toho University School of Medicine , Tokyo, Japan
| | | | | | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine , Tokyo, Japan
| |
Collapse
|
16
|
Yu Y, Cao Y, Bell B, Chen X, Weiss RM, Felder RB, Wei SG. Brain TACE (Tumor Necrosis Factor-α-Converting Enzyme) Contributes to Sympathetic Excitation in Heart Failure Rats. Hypertension 2019; 74:63-72. [PMID: 31154904 DOI: 10.1161/hypertensionaha.119.12651] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-α (tumor necrosis factor-α) is initially synthesized as a transmembrane protein that is cleaved by TACE (TNF-α-converting enzyme) to release soluble TNF-α. The elevated level of TNF-α in the brain and circulation in heart failure (HF) suggests an increase in the TACE-mediated ectodomain shedding process. The present study sought to determine whether TACE is upregulated in cardiovascular/autonomic brain regions like subfornical organ and hypothalamic paraventricular nucleus in rats with ischemia-induced HF and whether TACE plays a role in TNF-α-driven sympathetic excitation. We found that TACE was expressed throughout the subfornical organ and paraventricular nucleus, with significantly higher levels in HF than in sham-operated (Sham) rats. Intracerebroventricular injection of recombinant TACE induced a mild increase in blood pressure, heart rate, and renal sympathetic nerve activity that peaked at 15 to 20 minutes in both Sham and HF rats. HF rats had a secondary prolonged increase in these variables that was prevented by the TNF-α inhibitor SPD304. Intracerebroventricular administration of the TACE inhibitor TNF-alpha protease inhibitor 1 decreased blood pressure, heart rate, and renal sympathetic nerve activity in Sham and HF rats, with an exaggerated reduction in heart rate and renal sympathetic nerve activity in the HF rats. Direct microinjection of TACE or TNF-alpha protease inhibitor 1 into paraventricular nucleus or subfornical organ of Sham and HF rats elicited blood pressure, heart rate, and renal sympathetic nerve activity responses similar to intracerebroventricular TACE or TNF-alpha protease inhibitor 1. Intracerebroventricular infusion of Ang II (angiotensin II) and IL (interleukin)-1β increased TACE expression in subfornical organ and paraventricular nucleus of normal rats. These data suggest that a TACE-mediated increase in soluble TNF-α in the brain contributes to sympathetic excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine
| | - Yiling Cao
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine
| | - Balyssa Bell
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine
| | - Xiaolei Chen
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine
| | - Robert M Weiss
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine
| | - Robert B Felder
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine.,Veterans Affairs Medical Center, Iowa City, IA (R.B.F.)
| | - Shun-Guang Wei
- From the Department of Internal Medicine (Y.Y., Y.C., B.B., X.C., R.M.W., R.B.F., S.-G.W.), University of Iowa Carver College of Medicine.,Neuroscience Graduate Program (S.-G.W.), University of Iowa Carver College of Medicine
| |
Collapse
|
17
|
Finneran DJ, Nash KR. Neuroinflammation and fractalkine signaling in Alzheimer's disease. J Neuroinflammation 2019; 16:30. [PMID: 30744705 PMCID: PMC6371521 DOI: 10.1186/s12974-019-1412-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder, and the most common form of dementia. As the understanding of AD has progressed, it is now believed that AD is an amyloid-initiated tauopathy with neuroinflammation serving as the link between amyloid deposition, tau pathology, and neurodegeneration. As microglia are the main immune effectors in the central nervous system, they have been the focus of attention in studies investigating the neuroinflammatory component of AD. Therefore, recent work has focused on immunomodulators, which can alter microglial activation without suppressing activity, as potential therapeutics for AD. Fractalkine (CX3CL1; FKN), a unique chemokine with a one-to-one relationship with its receptor, signals through its cognate receptor (CX3CR1) to reduce expression of pro-inflammatory genes in activated microglia. Disrupting FKN signaling has opposing effects on the two hallmark pathologies of AD, but over-expressing a soluble FKN has been shown to reduce tau pathology while not altering amyloid pathology. Recently, differential signaling has been reported when comparing two cleavage variants of soluble FKN. These differential effects may explain recent studies reporting seemingly conflicting results regarding the effect of FKN over expression on AD pathologies.
Collapse
Affiliation(s)
- Dylan J Finneran
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Bvld, Tampa, FL, 33612, USA.
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Bvld, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
CNS-Wide over Expression of Fractalkine Improves Cognitive Functioning in a Tauopathy Model. J Neuroimmune Pharmacol 2018; 14:312-325. [PMID: 30499006 PMCID: PMC6525127 DOI: 10.1007/s11481-018-9822-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022]
Abstract
Accumulating evidence increasingly implicates regulation of neuroinflammation as a potential therapeutic target in Alzheimer’s disease and other neurodegenerative disorders. Fractalkine (FKN) is a unique chemokine that is expressed and secreted by neurons and reduces expression of pro-inflammatory genes. To further demonstrate the utility of agents that increase FKN signaling throughout the central nervous system as possible therapies for AD, we assessed the impact of soluble FKN (sFKN) over expression on cognition in tau depositing rTg450 mice after the onset of cognitive deficits. Using adeno-associated virus serotype 4, we infected cells lining the ventricular system with soluble FKN to increase FKN signaling over a larger fraction of the brain than achieved with intraparenchymal injections. We found that soluble FKN over expression by cells lining the ventricles significantly improved cognitive performance on the novel mouse recognition and radial arm water maze tasks. These benefits were achieved without detectable reductions in tau hyperphosphorylation, hippocampal atrophy, or microglial CD45 expression. Utilizing qPCR, we report a significant increase in Vegfa expression, indicating an increase in trophic support and possible neovascularization in AAV-sFKN-injected mice. To our knowledge, this is the first demonstration that FKN over expression can rescue cognitive function in a tau depositing mouse line. Regulating neuroinflammation is an attractive therapeutic target for Alzheimer’s disease. Microglial activation can not only drive pathology but also accelerate cognitive decline. The chemokine fractalkine regulates the microglial phenotype, increasing trophic support of neurons, and significantly improving cognitive functioning in the rTg4510 mouse model of tauopathy. ![]()
Collapse
|
19
|
Khan MA, Khan MJ. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1149-1158. [PMID: 29553845 DOI: 10.1080/21691401.2018.1446968] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, affecting almost 1% of world population. Although the exact cause of RA is not known but the complex interaction between inflammatory mediators like tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) and nitric oxide (NO) is accountable for cartilage destruction in joints. Gold is used for arthritis treatment since long without knowing its mechanism of action. Hence, the present study was designed to assess antiarthritic activity of nanogold (AuNGs) in collagen-induced arthritic (CIA) rat model by virtue of decreasing inflammatory mediators and oxidative stress. After induction CIA rats were treated with AuNGs in phosphate buffer at a dose of 20 μg/kg body weight for 20 days and found a significant decrease in the level of inflammatory mediators like TNF-α, IL-1β, COX-2 and transcription factor NF-kB (Nuclear factor-kB), which was found to be elevated in CIA rats. Additionally imbalance in oxidant and antioxidant status were determined and perceived that AuNGs remarkably attenuates the imbalance in level of antioxidant and oxidant near to normal. In consistent to biochemical results, mRNA expression of NF-kB, TNF-α, COX-2, and iNOS were also up-regulated in CIA rats, which were considerably down regulated by AuNGs treatment. These findings were positively correlated with the histological results of joints, displayed reduced inflammation and bone erosion in treated group. This study demonstrates the ability of AuNGs to ameliorate production of inflammatory mediators and oxidative stress in CIA rats. Induction of arthritis in rats showed increased inflammation, which activate the transcription factor NF-kB through activation of of IkB kinases (IKK) and ubiquination/proteosome degradation of IKB and transportation of activated NF-kB from cytoplasm to nucleus. In nucleus activated NF-kB bind to the promoter region of target gene and up regulate the production of pro-inflammatory cytokines, COX-2 and other inflammatory mediators that leads to cartilage destruction. AuNGs inhibit the activation of NF-kB and other inflammatory mediators and attenuate inflammation and cartilage destruction. COX-2: cyclooxygenase-2; IKK: IkB kinases; IKB: I Kappa B; IL-1β: interleukin-6; IL-6: interleukin-6; iNOS: inducible nitric oxide synthase; NF-kB: nuclear transcription factor kappa B; ROS: reactive oxygen species; TNF-α: tumour necrosis factor-alpha.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- a Department of Biochemistry , University College of Medical Sciences & GTB Hospital , Delhi , India
| | - Mohd Jahir Khan
- b School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
20
|
Agere SA, Akhtar N, Watson JM, Ahmed S. RANTES/CCL5 Induces Collagen Degradation by Activating MMP-1 and MMP-13 Expression in Human Rheumatoid Arthritis Synovial Fibroblasts. Front Immunol 2017; 8:1341. [PMID: 29093715 PMCID: PMC5651228 DOI: 10.3389/fimmu.2017.01341] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Regulated on activation, normal T expressed, and secreted (RANTES)/CC ligand 5 (CCL5) participates in rheumatoid arthritis (RA) pathogenesis by facilitating leukocyte infiltration, however, its other pathological functions are not fully defined in RA. In the present study, we evaluated the effect of RANTES/CCL5 on tissue degrading enzymes matrix metalloproteinase-1 (MMP-1) and MMP-13 expression and its contribution to the progressive joint damage by RA synovial fibroblasts (RASFs). Our results showed that RANTES/CCL5 dose dependently induced MMP-1 and MMP-13 expression in monolayers and three-dimensional (3D) micromass of human RASFs, which correlated with an increase in collagenase activity. This activation by RANTES/CCL5 was observed in RASF, but not in osteoarthritis SFs (OASFs). Evaluation of the signaling events showed that RANTES/CCL5 selectively activated PKCδ, JNK, and ERK proteins to induce MMP expression in human RASFs. Pretreatment with a functional antagonist (Met-RANTES) or heparinase III [an enzyme that selectively digests heparan sulfate proteoglycans (HSPGs)] completely abrogated RANTES/CCL5-induced MMP-1 and MMP-13 expression. Interestingly, the inhibition of RANTES/CCL5 using small-interfering RNA approach reduced the ability of interleukin-1β (IL-1β) to induce MMP-1 and MMP-13 expression, asserting its mediatory role in tissue remodeling. In the inhibitor study, only the selective inhibition of HSPGs or PKCδ, ERK, and JNK markedly inhibited RANTES/CCL5-induced MMP-1 and MMP-13 production. Circular dichroism spectroscopy results demonstrated the degradation of collagen triple-helical structure upon exposure to the conditioned media from RANTES/CCL5 stimulated RASFs, which was reverted by a broad-spectrum MMP inhibitor (GM6001). These findings suggest that RANTES/CCL5 not only upregulates MMP-1 and MMP-13 expression by partly utilizing HSPGs and/or PKCδ-JNK/ERK pathways but also mediates IL-1β-induced MMP-1 and MMP-13 expression.
Collapse
Affiliation(s)
- Solomon A Agere
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - Nahid Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - Jeffery M Watson
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA, United States
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, United States.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
21
|
O'Sullivan SA, Gasparini F, Mir AK, Dev KK. Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J Neuroinflammation 2016; 13:189. [PMID: 27549131 PMCID: PMC4994207 DOI: 10.1186/s12974-016-0659-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Background The fractalkine (CX3CR1) ligand is expressed in astrocytes and reported to be neuroprotective. When cleaved from the membrane, soluble fractalkine (sCX3CL1) activates the receptor CX3CR1. Although somewhat controversial, CX3CR1 is reported to be expressed in neurons and microglia. The membrane-bound form of CX3CL1 additionally acts as an adhesion molecule for microglia and infiltrating white blood cells. Much research has been done on the role of fractalkine in neuronal cells; however, little is known about the regulation of the CX3CL1 ligand in astrocytes. Methods The mechanisms involved in the up-regulation and cleavage of CX3CL1 from human astrocytes were investigated using immunocytochemistry, Q-PCR and ELISA. All statistical analysis was performed using GraphPad Prism 5. Results A combination of ADAM17 (TACE) and ADAM10 protease inhibitors was found to attenuate IL-1β-, TNF-α- and IFN-γ-induced sCX3CL1 levels in astrocytes. A specific ADAM10 (but not ADAM17) inhibitor also attenuated these effects, suggesting ADAM10 proteases induce release of sCX3CL1 from stimulated human astrocytes. A p38 MAPK inhibitor also attenuated the levels of sCX3CL1 upon treatment with IL-1β, TNF-α or IFN-γ. In addition, an IKKβ inhibitor significantly reduced the levels of sCX3CL1 induced by IL-1β or TNF-α in a concentration-dependent manner, suggesting a role for the NF-kB pathway. Conclusions In conclusion, this study shows that the release of soluble astrocytic fractalkine is regulated by ADAM10 proteases with p38 MAPK also playing a role in the fractalkine shedding event. These findings are important for understanding the role of CX3CL1 in healthy and stimulated astrocytes and may benefit our understanding of this pathway in neuro-inflammatory and neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabrizio Gasparini
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anis K Mir
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
22
|
Affiliation(s)
- Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan and
| | | | - Shinichi Kawai
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, Tokyo, Japan and
| |
Collapse
|
23
|
Xing R, Jin Y, Sun L, Yang L, Li C, Li Z, Liu X, Zhao J. Interleukin-21 induces migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Clin Exp Immunol 2016; 184:147-58. [PMID: 26646950 DOI: 10.1111/cei.12751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial fibroblast hyperplasia and bone erosion. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA pathogenesis through aggressive migration and matrix invasion, and certain proinflammatory cytokines may affect synoviocyte invasion. Whether interleukin (IL)-21 influences this process remains controversial. Here, we evaluated the potential regulatory effect of IL-21 on the migration, invasion and matrix metalloproteinase (MMP) expression in RA-FLS. We found that IL-21 promoted the migration, invasion and MMP (MMP-2, MMP-3, MMP-9, MMP-13) production in RA-FLS. Moreover, IL-21 induced activation of the phosphoinositide 3-kinase (PI3K), signal transducer and activator of transcription-3 (STAT-3) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways, and blockage of these pathways [PI3K/protein kinase B (AKT) inhibitor LY294002, STAT-3 inhibitor STA-21 and ERK1/2 inhibitor PD98059] attenuated IL-21-induced migration and secretion of MMP-3 and MMP-9. In conclusion, our results suggest that IL-21 promotes migration and invasion of RA-FLS. Therefore, therapeutic strategies targeting IL-21 might be effective for the treatment of RA.
Collapse
Affiliation(s)
- R Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - Y Jin
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - L Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - L Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - C Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - Z Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, PR China
| | - X Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| | - J Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
24
|
Umar S, Hedaya O, Singh AK, Ahmed S. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation. Toxicol Appl Pharmacol 2015; 287:299-305. [PMID: 26134265 DOI: 10.1016/j.taap.2015.06.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1-5μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p<0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p<0.05; n=4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p<0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA.
Collapse
Affiliation(s)
- Sadiq Umar
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Omar Hedaya
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Anil K Singh
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.
| |
Collapse
|
25
|
Repnik U, Starr AE, Overall CM, Turk B. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines. J Biol Chem 2015; 290:13800-11. [PMID: 25833952 DOI: 10.1074/jbc.m115.638395] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/24/2022] Open
Abstract
Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.
Collapse
Affiliation(s)
- Urska Repnik
- From the Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Amanda E Starr
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher M Overall
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, the Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| | - Boris Turk
- From the Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia, the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, SI-1000 Ljubljana, Slovenia, and the Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Increase of serum fractalkine and fractalkine gene expression levels in sickle cell disease patients. Int J Hematol 2014; 101:114-8. [DOI: 10.1007/s12185-014-1718-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
|
27
|
Matusiak N, Castelli R, Tuin AW, Overkleeft HS, Wisastra R, Dekker FJ, Prély LM, Bischoff R, Bischoff RPM, van Waarde A, Dierckx RAJO, Elsinga PH. A dual inhibitor of matrix metalloproteinases and a disintegrin and metalloproteinases, [¹⁸F]FB-ML5, as a molecular probe for non-invasive MMP/ADAM-targeted imaging. Bioorg Med Chem 2014; 23:192-202. [PMID: 25438884 DOI: 10.1016/j.bmc.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Numerous clinical studies have shown a correlation between increased matrix metalloproteinase (MMP)/a disintegrin and metalloproteinase (ADAM) activity and poor outcome of cancer. Various MMP inhibitors (MMPIs) have been developed for therapeutic purposes in oncology. In addition, molecular imaging of MMP/ADAM levels in vivo would allow the diagnosis of tumors. We selected the dual inhibitor of MMPs and ADAMs, ML5, which is a hydroxamate-based inhibitor with affinities for many MMPs and ADAMs. ML5 was radiolabelled with (18)F and the newly obtained radiolabelled inhibitor was evaluated in vitro and in vivo. MATERIALS AND METHODS ML5 was radiolabelled by direct acylation with N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB) for PET (positron emission tomography). The resulting radiotracer [(18)F]FB-ML5 was evaluated in vitro in human bronchial epithelium 16HBE cells and breast cancer MCF-7 cells. The non-radioactive probe FB-ML5 and native ML5 were tested in a fluorogenic inhibition assay against MMP-2, -9, -12 and ADAM-17. The in vivo kinetics of [(18)F]FB-ML5 were examined in a HT1080 tumor-bearing mouse model. Specificity of probe binding was examined by co-injection of 0 or 2.5mg/kg ML5. RESULTS ML5 and FB-ML5 showed high affinity for MMP-2, -9, -12 and ADAM-17; indeed IC50 values were respectively 7.4 ± 2.0, 19.5 ± 2.8, 2.0 ± 0.2 and 5.7 ± 2.2 nM and 12.5 ± 3.1, 31.5 ± 13.7, 138.0 ± 10.9 and 24.7 ± 2.8 nM. Radiochemical yield of HPLC-purified [(18)F]FB-ML5 was 13-16% (corrected for decay). Cellular binding of [(18)F]FB-ML5 was reduced by 36.6% and 27.5% in MCF-7 and 16 HBE cells, respectively, after co-incubation with 10 μM of ML5. In microPET scans, HT1080 tumors exhibited a low and homogeneous uptake of the tracer. Tumors of mice injected with [(18)F]FB-ML5 showed a SUVmean of 0.145 ± 0.064 (n=6) which decreased to 0.041 ± 0.027 (n=6) after target blocking (p<0.05). Ex vivo biodistribution showed a rapid excretion through the kidneys and the liver. Metabolite assays indicated that the parent tracer represented 23.2 ± 7.3% (n=2) of total radioactivity in plasma, at 90 min post injection (p.i.). CONCLUSION The nanomolar affinity MMP/ADAM inhibitor ML5 was successfully labelled with (18)F. [(18)F]FB-ML5 demonstrated rather low binding in ADAM-17 overexpressing cell lines. [(18)F]FB-ML5 uptake showed significant reduction in the HT1080 tumor in vivo after co-injection of ML5. [(18)F]FB-ML5 may be suitable for the visualization/quantification of diseases overexpressing simultaneously MMPs and ADAMs.
Collapse
Affiliation(s)
- Nathalie Matusiak
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Riccardo Castelli
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Adriaan W Tuin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Rosalina Wisastra
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Laurette M Prély
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Rainer P M Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
28
|
Sheridan GK, Wdowicz A, Pickering M, Watters O, Halley P, O'Sullivan NC, Mooney C, O'Connell DJ, O'Connor JJ, Murphy KJ. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front Cell Neurosci 2014; 8:233. [PMID: 25161610 PMCID: PMC4130185 DOI: 10.3389/fncel.2014.00233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/25/2014] [Indexed: 11/13/2022] Open
Abstract
Several cytokines and chemokines are now known to play normal physiological roles in the brain where they act as key regulators of communication between neurons, glia, and microglia. In particular, cytokines and chemokines can affect cardinal cellular and molecular processes of hippocampal-dependent long-term memory consolidation including synaptic plasticity, synaptic scaling and neurogenesis. The chemokine, CX3CL1 (fractalkine), has been shown to modulate synaptic transmission and long-term potentiation (LTP) in the CA1 pyramidal cell layer of the hippocampus. Here, we confirm widespread expression of CX3CL1 on mature neurons in the adult rat hippocampus. We report an up-regulation in CX3CL1 protein expression in the CA1, CA3 and dentate gyrus (DG) of the rat hippocampus 2 h after spatial learning in the water maze task. Moreover, the same temporal increase in CX3CL1 was evident following LTP-inducing theta-burst stimulation in the DG. At physiologically relevant concentrations, CX3CL1 inhibited LTP maintenance in the DG. This attenuation in dentate LTP was lost in the presence of GABAA receptor/chloride channel antagonism. CX3CL1 also had opposing actions on glutamate-mediated rise in intracellular calcium in hippocampal organotypic slice cultures in the presence and absence of GABAA receptor/chloride channel blockade. Using primary dissociated hippocampal cultures, we established that CX3CL1 reduces glutamate-mediated intracellular calcium rises in both neurons and glia in a dose dependent manner. In conclusion, CX3CL1 is up-regulated in the hippocampus during a brief temporal window following spatial learning the purpose of which may be to regulate glutamate-mediated neurotransmission tone. Our data supports a possible role for this chemokine in the protective plasticity process of synaptic scaling.
Collapse
Affiliation(s)
- Graham K Sheridan
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland ; Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Mark Pickering
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin Dublin, Ireland
| | - Orla Watters
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Paul Halley
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Claire Mooney
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| |
Collapse
|
29
|
Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ. Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4⁺ T cells across an in vitro blood-brain barrier model. Virology 2014; 454-455:128-38. [PMID: 24725939 DOI: 10.1016/j.virol.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/23/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022]
Abstract
Eicosanoids, including cysteinylleukotrienes (cysLTs), are found in the central nervous system (CNS) of individuals infected with HIV-1. Few studies have addressed the contribution of cysLTs in HIV-1-associated CNS disorders. We demonstrate that conditioned medium from human astrocytes treated with leukotriene C4 (LTC4) increases the transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier (BBB) model using cultured brain endothelial cells. Additional studies indicate that the higher cell migration is linked with secretion by astrocytes of CX3CL1/fractalkine, a chemokine that has chemoattractant activity for CD4(+) T cells. Moreover, we report that the enhanced cell migration across BBB leads to a more important CD4(+) T cell-mediated HIV-1 transfer toward macrophages. Altogether data presented in the present study reveal the important role that LTC4, a metabolite of arachidonic acid, may play in the HIV-1-induced neuroinvasion, neuropathogenesis and disease progression.
Collapse
Affiliation(s)
- Jonathan Bertin
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Pascal Jalaguier
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Marc-André Roy
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec - pavillon CHUL, Canada; Département de Microbiologie-Infectiologie et Immunologie, Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|