1
|
Fang Y, Huang W, Zhu X, Wang X, Wu X, Wang H, Hong W, Yan S, Zhang L, Deng Y, Wei W, Tu J, Zhu C. Epigenetic Regulatory Axis MIR22-TET3-MTRNR2L2 Represses Fibroblast-Like Synoviocyte-Mediated Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:845-856. [PMID: 38221658 DOI: 10.1002/art.42795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
OBJECTIVE The specific role of fibroblast-like synoviocytes (FLSs) in the pathogenesis of rheumatoid arthritis (RA) is still not fully elucidated. This study aimed to explore the molecular mechanisms of epigenetic pathways, including three epigenetic factors, microRNA (miRNA)-22 (MIR22), ten-eleven translocation methylcytosine dioxygenase 3 (TET3), and MT-RNR2 like 2 (MTRNR2L2), in RA-FLSs. METHODS The expression of MIR22, TET3, and MTRNR2L2 in the synovium of patients with RA and arthritic mice were determined by fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), immunohistochemistry, and Western blot. Mir22-/- and Tet3+/- mice were used to establish a collagen antibody-induced arthritis (CAIA) model. Mir22 angomir and Tet3 small interfering RNA (siRNA) were used to illustrate the therapeutic effects on arthritis using a collagen-induced (CIA) model. Bioinformatics, luciferase reporter assay, 5-hydroxymethylcytosine (5hmC) dot blotting, chromatin immunoprecipitation-qPCR, and hydroxymethylated DNA immunoprecipitation were conducted to show the direct repression of MIR22 on the TET3 and transcriptional activation of TET3 on MTRNR2L2. RESULTS The Mir22-/- CAIA model and RA-FLS-related in vitro experiments demonstrated the inhibitory effect of MIR22 on inflammation. MIR22 can directly inhibit the translation of TET3 in RA-FLSs by binding to its 3' untranslated region in TET3. The Tet3+/- mice-established CAIA model showed less severe symptoms of arthritis in vivo. In vitro experiments further confirmed the proinflammatory effect of TET3 in RA. In addition, the CIA model was used to validate the therapeutic effects of Mir22 angomir and Tet3 siRNA. Finally, TET3 exerts its proinflammatory effect by promoting 5hmC production in the promoter of its target MTRNR2L2 in RA-FLSs. CONCLUSION The key role of the MIR22-TET3-MTRNR2L2 pathway in RA-FLSs provided an experimental basis for further studies into the pathogenesis and related targets of RA from the perspective of FLSs.
Collapse
Affiliation(s)
- Yilong Fang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Huang
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| | - Xiangling Zhu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Xinming Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuming Wu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Wang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wenming Hong
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shangxue Yan
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Lingling Zhang
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yujie Deng
- Guangzhou National Laboratory, Guangzhou, China
| | - Wei Wei
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Jiajie Tu
- Anhui Medical University and Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chen Zhu
- The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Xia J, Gao H, Tang J, Jiang R, Xiao L, Sheng H, Lin J. A novel diagnostic model based on lncRNA PTPRE expression, neutrophil count and red blood cell distribution width for diagnosis of seronegative rheumatoid arthritis. Clin Exp Med 2024; 24:86. [PMID: 38662200 PMCID: PMC11045583 DOI: 10.1007/s10238-024-01343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Diagnosis of seronegative rheumatoid arthritis (SNRA) is difficult due to the lack of diagnostic markers. The study aims to construct a novel diagnostic model based on long noncoding RNAs (lncRNAs) expression and laboratory indicators to provide a new idea for diagnostic methods of SNRA. Differentially expressed lncRNAs in peripheral blood cells of RA patients were screened through eukaryotic long noncoding RNA sequencing and validated by quantitative real-time PCR. Meanwhile, the correlation between lncRNAs expression and laboratory indicators was analyzed. The diagnostic value was evaluated by receiver operating characteristic curve analysis. Finally, combined with laboratory indicators, a diagnostic model for SNRA was constructed based on logistic regression and visualized by nomogram. Expression of ADGRE5, FAM157A, PTPN6 and PTPRE in peripheral blood was significantly increased in RA than healthy donors. Meanwhile, we analyzed the relationship between lncRNAs and erythrocyte sedimentation rate, C-reactive protein and CD4 + T cell-related cytokines and transcription factors. Results showed that FAM157A and PTPN6 were positively related to RORγt, and negatively related to GATA3. Moreover, PTPRE has potential discrimination ability between SNRA and healthy donor (AUC = 0.6709). Finally, we constructed a diagnostic model based on PTPRE, neutrophil count and red blood cell distribution width (RDW). The AUC of the model was 0.939 and well-fitted calibration curves. Decision curve analysis indicated the model had better predict performance in SNRA diagnosis. Our study constructed a novel diagnostic model based on PTPRE, neutrophil count and RDW which may serve as a potential tool for the diagnosis of SNRA.
Collapse
Affiliation(s)
- Jinfang Xia
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huali Gao
- Department of Orthopedic Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renquan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lianbo Xiao
- Department of Orthopedic Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinpiao Lin
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Luo H, Wei J, Wu S, Zheng Q, Zhang N, Chen P. Exploring CircRNA N6-methyladenosine in human rheumatoid arthritis: Hyper-methylated hsa_circ_0007259 as a potential biomarker and its involvement in the hsa_circ_0007259/hsa_miR-21-5p/STAT3 axis. Int Immunopharmacol 2023; 124:110938. [PMID: 37713782 DOI: 10.1016/j.intimp.2023.110938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a highly enriched modification found in circular RNAs (CircRNAs); however, the ability and mechanism of CircRNAs to encode for m6A function in rheumatoid arthritis (RA) remain poorly understood. METHODS We utilized an epitranscriptomic microarray to measure levels and quantities of m6A methylated CircRNAs in synovial tissues of patients with RA and osteoarthritis (OA). We then utilized methylated RNA immunoprecipitation- and MazF-quantitative PCR to identify and validate differentially m6A-methylated RNAs between the groups, conducted a functional enrichment analysis, and selected protein-protein interaction hub genes. Lastly, we predicted and validated the CircRNA/miRNA/mRNA interaction networks. RESULTS We detected 4,845 CircRNAs containing m6A in our samples, with 53 CircRNAs upregulated, and 139 CircRNAs downregulated compared to human OA synovial tissue (|fold change| ≥ 1.2 and p ≤ 0.05). The differentially m6A-modified CircRNAs were associated with the interleukin-6-mediated signaling pathway, with an increase in relative m6A-methylated levels of hsa_circ_0007259 in human RA, a significant decrease in hsa_miR-21-5p, and an increase in signal transducer and activator of transcription 3(STAT3). The Luciferase Reporter Gene assay verified the binding of hsa_circ_0007259 to hsa_miR-21-5p and the subsequent binding of hsa_miR-21-5p to STAT3. CONCLUSION We showed a notable increase in the relative m6A-methylated levels of hsa_circ_0007259 in human RA, indicating a potential role of hypermethylated hsa_circ_0007259 in RA pathogenesis. This may provide valuable insight into the mechanism of RA and the possibility of utilizing hsa_circ_0007259 as a valuable biomarker.
Collapse
Affiliation(s)
- Hongbin Luo
- Department of Sports Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Wei
- The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian, China
| | - Songye Wu
- Department of Sports Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qunya Zheng
- The School of Clinical Medical, Fujian Medical University, Fuzhou, Fujian, China
| | - Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| | - Peng Chen
- Department of Sports Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Staniszewska M, Kiełbowski K, Rusińska K, Bakinowska E, Gromowska E, Pawlik A. Targeting cyclin-dependent kinases in rheumatoid arthritis and psoriasis - a review of current evidence. Expert Opin Ther Targets 2023; 27:1097-1113. [PMID: 37982244 DOI: 10.1080/14728222.2023.2285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with synovial proliferation and bone erosion, which leads to the structural and functional impairment of the joints. Immune cells, together with synoviocytes, induce a pro-inflammatory environment and novel treatment agents target inflammatory cytokines. Psoriasis is a chronic immune-mediated skin disease, and several cytokines are considered as typical mediators in the progression of the disease, including IL-23, IL-22, and IL-17, among others. AREA COVERED In this review, we try to evaluate whether cyclin-dependent kinases (CDK), enzymes that regulate cell cycle and transcription of various genes, could become novel therapeutic targets in RA and psoriasis. We present the main results of in vitro and in vivo studies, as well as scarce clinical reports. EXPERT OPINION CDK inhibitors seem promising for treating RA and psoriasis because of their multidirectional effects. CDK inhibitors may affect not only the process of osteoclastogenesis, thereby reducing joint destruction in RA, but also the process of apoptosis of neutrophils and macrophages responsible for the development of inflammation in both RA and psoriasis. However, assessing the efficacy of these drugs in clinical practice requires multi-center, long-term clinical trials evaluating the effectiveness and safety of CDK-blocking therapy in RA and psoriasis.
Collapse
Affiliation(s)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Klaudia Rusińska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Gromowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Saquib M, Agnihotri P, Biswas S. Interrelated grid of non-coding RNA: An important aspect in Rheumatoid Arthritis pathogenesis. Mol Biol Rep 2023:10.1007/s11033-023-08543-w. [PMID: 37294467 DOI: 10.1007/s11033-023-08543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Inflammation and autoimmunity are the root cause of rheumatoid arthritis, a destructive disease of joints. Multiple biomolecules are involved in the pathogenesis of RA and are related to various events of molecular biology. RNA is a versatile biomolecule, playing numerous roles at structural, functional, and regulatory stages to maintain cellular homeostasis. The involvement of RNA (coding/non-coding) in disease development and progression has left a wide whole to fill with newer approaches. Non-coding RNAs belong to the housekeeping and regulatory categories and both have their specific roles, and their alteration causes specific implications in disease pathogenesis. Housekeeping RNAs, rRNA, tRNA and regulatory RNA, micro-RNA, circular RNA, piRNA and long non-coding RNA were found to be important regulators of inflammation. They work at the pre-and post-transcriptional levels and were found to be more intriguing to study their regulatory impact on disease pathogenesis. The review addresses a question on how the non-coding RNA gets involved in early RA pathogenesis and can be utilized to know their targets to understand the disease better and make way towards the unresolved mystery of RA development.
Collapse
Affiliation(s)
- Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Integrative and Functional Biology Department CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110 007, India.
| |
Collapse
|
6
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
7
|
Kim SS, Harford JB, Moghe M, Doherty C, Chang EH. A Novel P53 Nanomedicine Reduces Immunosuppression and Augments Anti-PD-1 Therapy for Non-Small Cell Lung Cancer in Syngeneic Mouse Models. Cells 2022; 11:3434. [PMID: 36359830 PMCID: PMC9654894 DOI: 10.3390/cells11213434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer is among the most common and lethal cancers and warrants novel therapeutic approaches to improving patient outcomes. Although immune checkpoint inhibitors (ICIs) have demonstrated substantial clinical benefits, most patients remain unresponsive to currently approved ICIs or develop resistance after initial response. Many ongoing clinical studies are investigating combination therapies to address the limited efficacy of ICIs. Here, we have assessed whether p53 gene therapy via a tumor-targeting nanomedicine (termed SGT-53) can augment anti-programmed cell death-1 (PD-1) immunotherapy to expand its use in non-responding patients. Using syngeneic mouse models of lung cancers that are resistant to anti-PD-1, we demonstrate that restoration of normal p53 function potentiates anti-PD-1 to inhibit tumor growth and prolong survival of tumor-bearing animals. Our data indicate that SGT-53 can restore effective immune responses against lung cancer cells by reducing immuno-suppressive cells (M2 macrophages and regulatory T cells) and by downregulating immunosuppressive molecules (e.g., galectin-1, a negative regulator of T cell activation and survival) while increasing activity of cytotoxic T cells. These results suggest that combining SGT-53 with anti-PD-1 immunotherapy could increase the fraction of lung cancer patients that responds to anti-PD-1 therapy and support evaluation of this combination particularly in patients with ICI-resistant lung cancers.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA
| | | | - Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Caroline Doherty
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- College of Medicine and Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
8
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
10
|
Jiang R, Tang J, Zhang X, He Y, Yu Z, Chen S, Xia J, Lin J, Ou Q. CCN1 Promotes Inflammation by Inducing IL-6 Production via α6β1/PI3K/Akt/NF-κB Pathway in Autoimmune Hepatitis. Front Immunol 2022; 13:810671. [PMID: 35547732 PMCID: PMC9084230 DOI: 10.3389/fimmu.2022.810671] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease with unknown etiology. CCN1, an extracellular matrix-associated protein, is associated with carcinoma, inflammation, liver fibrosis, and even autoimmune diseases. However, the role that CCN1 plays in AIH has remained undetermined. In this study, expression of CCN1 in liver was detected by real-time PCR, western blot and immunohistochemistry (IHC). CCN1 level in serum was detected by ELISA. Diagnostic value of CCN1 was determined by receiver operating characteristic (ROC) curve analysis. CCN1 conditional knockout (CCN1fl/flCre+) mice were generated by mating CCN1fl/fl C57BL/6J and CAG-Cre-ERT C57BL/6J mice. Autoimmune hepatitis mice model was induced by concanavalin A (ConA). IKKα/β, IκBα, NF-κB p65 and Akt phosphorylation were determined by western blot. NF-κB p65 nuclear translocation was examined by immunofluorescence. Here, we found that CCN1 was over-expressed in hepatocytes of AIH patients. CCN1 level also increased in serum of AIH patients compared to healthy controls (HC). ROC curve analysis results showed that serum CCN1 was able to distinguish AIH patients from HD. In ConA induced hepatitis mice model, CCN1 conditional knockout (CCN1fl/flCre+) attenuated inflammation by reducing ALT/AST level and IL-6 expression. In vitro, CCN1 treatment dramatically induced IL-6 production in LO2 cells. Moreover, the production of IL-6 was attenuated by CCN1 knockdown. Furthermore, we showed that CCN1 could activate IL-6 production via the PI3K/Akt/NF-κB signaling pathway by binding to α6β1 receptor. In summary, our results reveal a novel role of CCN1 in promoting inflammation by upregulation of IL-6 production in AIH. Our study also suggests that targeting of CCN1 may represent a novel strategy in AIH treatment.
Collapse
Affiliation(s)
- Renquan Jiang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xuehao Zhang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shuhui Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinfang Xia
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Mei HY, Liu J, Shen XP, Wu R. A novel circRNA, circRACGAP1, hampers the progression of systemic lupus erythematosus via miR-22-3p-mediated AKT signalling. Autoimmunity 2022; 55:360-370. [PMID: 35543435 DOI: 10.1080/08916934.2022.2073590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is defined as a multisystem autoimmune disease involving various organs, of which exact molecular mechanisms remain elusive. Here, we aimed to investigate a novel circular RNA (circRNA), circRACGAP1, abnormally expressed in SLE and explored its underlying regulatory network. METHODS The expression patterns of circRACGAP1 were determined in patients diagnosed with SLE by using a qRT-PCR assay. Spearman correlation analysis was employed to evaluate the correlation between circRACGAP1 and clinicopathological variables in patients with SLE. Flow cytometry and TUNEL assays were subjected to assess the cell apoptosis. Nuclear-cytoplasmic fractionation and luciferase reporter assay was used to verify the circRACGAP1/miR-22-3p/PTEN axis. Western blot analysis was performed to measure the PTEN/AKT signalling-related proteins and apoptotic-related biomarkers. RESULTS Down-regulated circRACGAP1 was observed and correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, anti-double-stranded (ds) DNA, and complement C3 level in patients with SLE. Overexpression of circRACGAP1 significantly alleviated cell apoptosis in Jurkat cells within UVB exposure. Mechanistic investigation revealed that circRACGAP1 could serve as a sponge of miR-22-3p to regulate PTEN/AKT signalling. CONCLUSIONS Collectively, circRACGAP1 regulated the AKT signalling pathway via binding to miR-22-3p in the progression of SLE, suggesting therapeutic targets for SLE treatment.
Collapse
Affiliation(s)
- Han-Ying Mei
- Department of Rheumatology and Immunology, Affiliated Jiujiang Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Ju Liu
- Department of Rheumatology and Immunology, Affiliated Jiujiang Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Ping Shen
- Department of Neurology, Affiliated Jiujiang Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Wei K, Jiang P, Zhao J, Jin Y, Zhang R, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. Biomarkers to Predict DMARDs Efficacy and Adverse Effect in Rheumatoid Arthritis. Front Immunol 2022; 13:865267. [PMID: 35418971 PMCID: PMC8995470 DOI: 10.3389/fimmu.2022.865267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA), one of the most common immune system diseases, mainly affects middle-aged and elderly individuals and has a serious impact on the quality of life of patients. Pain and disability caused by RA are significant symptoms negatively affecting patients, and they are especially seen when inappropriate treatment is administered. Effective therapeutic strategies have evolved over the past few decades, with many new disease-modifying antirheumatic drugs (DMARDs) being used in the clinic. Owing to the breakthrough in the treatment of RA, the symptoms of patients who could not be treated effectively in the past few years have been relieved. However, some patients complain about symptoms that have not been reported, implying that there are still some limitations in the RA treatment and evaluation system. In recent years, biomarkers, an effective means of diagnosing and evaluating the condition of patients with RA, have gradually been used in clinical practice to evaluate the therapeutic effect of RA, which is constantly being improved for accurate application of treatment in patients with RA. In this article, we summarize a series of biomarkers that may be helpful in evaluating the therapeutic effect and improving the efficiency of clinical treatment for RA. These efforts may also encourage researchers to devote more time and resources to the study and application of biomarkers, resulting in a new evaluation system that will reduce the inappropriate use of DMARDs, as well as patients’ physical pain and financial burden.
Collapse
Affiliation(s)
- Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Runrun Zhang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China.,The Second Affiliated Hospital of the Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
13
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, Xu L, Shi Y, Zhao J, Xiong M, Guo S, He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol 2022; 13:838884. [PMID: 35401568 PMCID: PMC8987113 DOI: 10.3389/fimmu.2022.838884] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
14
|
Chang L, Zhou R. Histone methyltransferase EZH2 in proliferation, invasion, and migration of fibroblast-like synoviocytes in rheumatoid arthritis. J Bone Miner Metab 2022; 40:262-274. [PMID: 35083555 DOI: 10.1007/s00774-021-01299-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) may lead to irreversible joint damage. The role of histone modifications in RA has been emphasized. This study investigated the effect of histone methyltransferase EZH2 on fibroblast-like synoviocytes (FLSs) in RA. MATERIALS AND METHODS Synovial tissues were collected from RA patients and non-RA patients (NC). RA-FLSs and NC-FLSs were isolated and identified using flow cytometry. EZH2 expression in synovial tissues and FLSs was detected using RT-qPCR and Western blot. The proliferation, migration, and invasion of RA-FLSs and NC-FLSs were measured using MTT, EdU, and Transwell assays. The binding of EZH2, H3K27me3, and miR-22-3p was analyzed using ChIP assay. The targeting relationship between miR-22-3p and CYR61 was verified using dual-luciferase assay. miR-22-3p and CYR61 expressions were detected using RT-qPCR. CYR61 and H3K27me3 levels were detected using Western blot. Functional rescue experiments were performed to verify the effect of miR-22-3p or CYR61 on RA-FLSs. RESULTS EZH2 was highly expressed in synovial tissues and FLSs from RA patients. The proliferation, migration, and invasion ability of RA-FLSs was stronger than that of NC-FLSs. Downregulation of EZH2 repressed proliferation, migration, and invasion of RA-FLSs. EZH2 inhibited miR-22-3p expression by binding to the miR-22-3p promoter and increasing H3K27me3 methylation level, and thereby upregulated CYR61 expression. Downregulation of miR-22-3p or overexpression of CYR61 annulled the inhibitory effect of EZH2 silencing on RA-FLS proliferation, migration, and invasion. CONCLUSION EZH2 bound to the miR-22-3p promoter and inhibited miR-22-3p expression by upregulating H3K27me3 level, thereby promoting CYR61 expression and inducing the proliferation, migration, and invasion of RA-FLSs.
Collapse
Affiliation(s)
- Lihua Chang
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang City, 110000, Liaoning Province, China
| | - Renyi Zhou
- Department of Orthopaedics, The First Hospital of China Medical University, No.155 Nan Jing North Street, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
15
|
Hao LY, Zhang M, Tao Y, Xu H, Liu Q, Yang K, Wei R, Zhou H, Jin T, Liu XD, Xue Z, Shen W, Cao JL, Pan Z. miRNA-22 Upregulates Mtf1 in Dorsal Horn Neurons and Is Essential for Inflammatory Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8622388. [PMID: 35242280 PMCID: PMC8886789 DOI: 10.1155/2022/8622388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
Chronic inflammatory pain seriously affects patients' quality of life because of a paucity of effective clinical treatments caused, at least in part, by lack of full understanding of the underlying mechanisms. miRNAs are known to be involved in inflammatory pain via silencing or degrading of target mRNA in the cytoplasm. The present study provides a novel mechanism by which miRNA-22 positively regulates metal-regulatory transcription factor 1 (Mtf1) in the nuclei of neurons in the dorsal horn of the spinal cord. We found that miRNA-22 was significantly increased in the dorsal horn of mice with either inflammatory pain induced by plantar injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by unilateral sciatic nerve chronic constrictive injury (CCI). Knocking down or blocking miRNA-22 alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas overexpressing miRNA-22 produced pain-like behaviors. Mechanistically, the increased miRNA-22 binds directly to the Mtf1 promoter to recruit RNA polymerase II and elevate Mtf1 expression. The increased Mtf1 subsequently enhances spinal central sensitization, as evidenced by increased expression of p-ERK1/2, GFAP, and c-Fos in the dorsal horn. Our findings suggest that the miRNA-22-Mtf1 signaling axis in the dorsal horn plays a critical role in the induction and maintenance of inflammatory pain. This signaling pathway may be a promising therapeutic target in inflammatory pain.
Collapse
Affiliation(s)
- Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Huimin Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiao-Dan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Zhouya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Wen Shen
- Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| |
Collapse
|
16
|
Payet M, Dargai F, Gasque P, Guillot X. Epigenetic Regulation (Including Micro-RNAs, DNA Methylation and Histone Modifications) of Rheumatoid Arthritis: A Systematic Review. Int J Mol Sci 2021; 22:ijms222212170. [PMID: 34830057 PMCID: PMC8625518 DOI: 10.3390/ijms222212170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
The inflammatory reaction in rheumatoid arthritis (RA) is controlled by major epigenetic modifications that modulate the phenotype of synovial and immune cells. The aim of this work was to perform a systematic review focusing on miR expression, DNA methylation and histone modifications in RA. We demonstrated that, in human samples, the expressions of miR-155, miR-146a and miR-150 were significantly decreased while the expression of miR-410-3p was significantly increased in the RA group. Moreover, miR-146a significantly decreased pro-autoimmune IL-17 cytokine expression in RA. In a murine model, miR-34a inhibition can ameliorate the arthritis score. However, this evidence remain critically insufficient to support current therapeutic applications in RA patients.
Collapse
Affiliation(s)
- Melissa Payet
- Research Unit ‘Etudes en Pharmaco-Immunologie’ UR EPI, Université de la Réunion, 97400 Réunion, France; (P.G.); (X.G.)
- Correspondence:
| | - Farouk Dargai
- Orthopedic Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Réunion, France;
| | - Philippe Gasque
- Research Unit ‘Etudes en Pharmaco-Immunologie’ UR EPI, Université de la Réunion, 97400 Réunion, France; (P.G.); (X.G.)
- Immunology Laboratory (LICE-OI), CHU Bellepierre, Reunion University Hospital, 97400 Réunion, France
| | - Xavier Guillot
- Research Unit ‘Etudes en Pharmaco-Immunologie’ UR EPI, Université de la Réunion, 97400 Réunion, France; (P.G.); (X.G.)
- Rheumatology Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Réunion, France
| |
Collapse
|
17
|
Exploring the Extracellular Vesicle MicroRNA Expression Repertoire in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis Treated with TNF Inhibitors. DISEASE MARKERS 2021; 2021:2924935. [PMID: 34691284 PMCID: PMC8529175 DOI: 10.1155/2021/2924935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) belong to the most common inflammatory rheumatic diseases. MicroRNAs (miRNAs) are small 18–22 RNA molecules that function as posttranscriptional regulators. They are abundantly present within extracellular vesicles (EVs), small intercellular communication vesicles that can be found in bodily fluids and that have key functions in pathological and physiological pathways. Recently, EVs have gained much interest because of their diagnostic and therapeutic potential. Using NanoString profiling technology, the miRNA repertoire of serum EVs was determined and compared in RA and AS patients before and after anti-TNF therapy to assess its potential use as a diagnostic and prognostic biomarker. Furthermore, possible functional effects of those miRNAs that were characterized by the most significant expression changes were evaluated using in silico prediction algorithms. The analysis revealed a unique profile of differentially expressed miRNAs in RA and AS patient serum EVs. We identified 12 miRNAs whose expression profiles enabled differentiation between RA and AS patients before induction of anti-TNF treatment, as well as 4 and 14 miRNAs whose repertoires were significantly changed during the treatment in RA and AS patients, respectively. In conclusion, our findings suggest that extracellular vesicle miRNAs could be used as potential biomarkers associated with RA and AS response to biological treatment.
Collapse
|
18
|
Daraghmeh DN, King C, Wiese MD. A review of liquid biopsy as a tool to assess epigenetic, cfDNA and miRNA variability as methotrexate response predictors in patients with rheumatoid arthritis. Pharmacol Res 2021; 173:105887. [PMID: 34536550 DOI: 10.1016/j.phrs.2021.105887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune inflammatory disease affecting 0.5-1% of adults worldwide. Achieving long term remission or low disease activity is possible through early diagnosis, rapid initiation of disease modifying anti-rheumatic drugs (DMARDs) and implementation of a treat to target approach. Initial DMARD therapy usually involves methotrexate (MTX), either alone or in combination with other agents, however 40% of RA patients do not respond adequately, putting them at risk of disease progression and unnecessary exposure to MTX related adverse effects. Early predictors of MTX response would therefore enable a more personalized treatment strategy, ensuring timely access to MTX for those likely to respond and importantly, early initiation of alternative treatment for those in which MTX is unlikely to be efficacious. Predicting response to treatment will most likely require consideration of the clinical characteristics of the patient and interrogation of a number of factors including genetic, epigenetic, cell free DNA (cfDNA) and microRNA (miRNA), all of which can be investigated through blood derived liquid biopsies. This review will summarize the existing literature examining the use of epigenetic factors, cfDNA and miRNA as response predictors among RA patients treated with MTX.
Collapse
Affiliation(s)
- Dala N Daraghmeh
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | - Catherine King
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Michael D Wiese
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
19
|
Abstract
BACKGROUND Hypoxia may play a role in the pathogenesis of infantile hemangioma. Cysteine-rich angiogenic inducer 61 (Cyr61), or CCN1, can be induced under hypoxic conditions in several types of cells. However, whether CCN1 has any impact on infantile hemangioma remains unknown. This study aims to explore the expression of CCN1 in infantile hemangioma and to investigate the effect of hypoxia on CCN1 and vascular endothelial growth factor-A (VEGF-A) production. METHODS Hemangioma-derived endothelial cells and hemangioma-derived stem cells were isolated from surgical specimens of proliferative infantile hemangioma. RNA extracted from infantile hemangioma tissue, hemangioma-derived endothelial cells, and hemangioma-derived stem cells was used to analyze gene expression by real-time polymerase chain reaction. The effects of CCN1 blockade were examined in hemangioma-derived stem cells. Immunostaining, immunoblotting, and enzyme-linked immunosorbent assays were used to assess protein expression. RESULTS By double-label immunofluorescence staining, the authors first identified that CCN1 was abundant in proliferative infantile hemangioma lesions and colocalized well with immature microvessels. The authors found that the mRNA level of CCN1 in proliferative infantile hemangioma was significantly higher than in healthy controls, as was involuting infantile hemangioma. Treatment with the hypoxia inducer cobalt chloride dramatically increased CCN1 production in hemangioma-derived endothelial cells in a time-dependent manner. Furthermore, blocking or knockdown of CCN1 expression reduced the expression of VEGF-A in hemangioma-derived stem cells. Lastly, the signaling pathway study showed that CCN1 up-regulation of VEGF-A synthesis in hemangioma-derived stem cells depends on nuclear factor-κB and JNK activation. CONCLUSIONS These findings provide new evidence that CCN1 participates in the crosstalk between hemangioma-derived endothelial cells and hemangioma-derived stem cells through promoting VEGF-A expression in the hypoxic environment of infantile hemangioma angiogenesis and vasculogenesis. Targeting of CCN1 might be a novel therapeutic strategy for infantile hemangioma.
Collapse
|
20
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
21
|
Guo S, Chen R, Zhang L, Wu M, Wei Y, Dai W, Jiang Y, Kong X. microRNA-22-3p plays a protective role in a murine asthma model through the inhibition of the NLRP3-caspase-1-IL-1β axis. Exp Physiol 2021; 106:1829-1838. [PMID: 33932961 DOI: 10.1113/ep089575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does miR-22-3p exert a protective role in asthma? What is the main finding and its importance? Upregulation of miR-22-3p hampered airway inflammation and release of inflammatory cytokines through blocking the activation of the NLRP3-caspase-1-IL-1β signalling pathway in asthma. ABSTRACT Asthma, a great public health burden, is triggered by inflammatory responses in the airways and these are not addressed appropriately by current therapies. This study aims to investigate the regulatory mechanism of microRNA-22-3p (miR-22-3p) on the proliferation of bronchial epithelial cells exposed to lipopolysaccharide (LPS) and expression of pro-inflammatory cytokines in a murine asthma model challenged by ovalbumin. We first confirmed the downregulation of miR-22-3p in the murine asthma model and bronchial epithelial cells. miR-22-3p remarkably reversed the decline in bronchial epithelial cell viability, enhancement in apoptosis rate and release of inflammatory factors induced by LPS. miR-22-3p targeted and conversely regulated NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Overexpression of NLRP3 counteracted the inhibitory effect of miR-22-3p on inflammatory damage in bronchial epithelial cells through activation of caspase-1/interleukin (IL)-1β. In an in vivo model, overexpression of miR-22-3p significantly attenuated airway obstruction and tissue damage in mice. In summary, our study underscores that miR-22-3p serves both as a negative regulator of the NLRP3-caspase-1-IL-1β axis and as a protective factor against the inflammatory response, suggesting a future therapeutic role in asthma.
Collapse
Affiliation(s)
- Shufang Guo
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Lina Zhang
- Department of Intensive Care, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yangyang Wei
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
22
|
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 2021; 69:225-238. [PMID: 33983569 DOI: 10.1007/s12026-021-09202-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Collapse
|
23
|
Li P, Mao W, Zhang S, Zhang L, Chen Z, Lu Z. MicroRNA-22 contributes to dexamethasone-induced osteoblast differentiation inhibition and dysfunction through targeting caveolin-3 expression in osteoblastic cells. Exp Ther Med 2021; 21:336. [PMID: 33732309 PMCID: PMC7903452 DOI: 10.3892/etm.2021.9767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a common complication of long-term use of glucocorticoids (GCs) characterized by the loss of bone mass and damage of the microarchitecture as well as osteoblast dysfunction. Previous studies have demonstrated that microRNA-22 (miR-22) is the negative modulator of osteogenesis that may target caveolin-3 (CAV3), which has been reported to enhance bone formation and inhibit the progression of osteoporosis as well as apoptosis. The present study aimed to investigate whether miR-22 may be involved in dexamethasone (DEX)-induced inhibition of osteoblast differentiation and dysfunction by regulating CAV3 expression. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure the expression of miR-22 and western blotting was performed to determine protein levels. The results demonstrated that miR-22 expression was upregulated in DEX-treated osteoblastic cells compared with the control group. In addition, miR-22 mimic aggravated, whereas miR-22 inhibitor mitigated DEX-induced damage in osteoblastic cells compared with the control groups. Additionally, CAV3 was identified as the target of miR-22 in osteoblasts using RT-qPCR, western blotting and dual-luciferase reporter gene assay analysis. The results also demonstrated that silencing of CAV3 blocked the beneficial effects of miR-22 inhibitor against DEX-induced cell damage and apoptosis in osteoblasts, as evidenced by the increased expression levels of cleaved caspase-3, Bax and alkaline phosphatase activity as well as decreased cell viability and Bcl-2 levels. Collectively, these results indicate a novel molecular mechanism by which miR-22 contributes to DEX-induced osteoblast dysfunction and apoptosis via the miR-22/CAV3 pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Weiwei Mao
- Clinical Skill Center of Yinchuan First People's Hospital, Yinchuan, Ningxia 750001, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhirong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhidong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
24
|
Wang S, Li B, Shen X, Duan H, Guo Z, Li X, Sun F. The cannabinoid receptor CB1 affects the proliferation and apoptosis of adenomyotic human uterine smooth muscle cells of the junctional zone: a mechanism study. Reprod Biol Endocrinol 2021; 19:16. [PMID: 33531043 PMCID: PMC7852156 DOI: 10.1186/s12958-020-00690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The denomyotic junctional zone (JZ) plays an important role in the pathogenesis of adenomyosis. Proliferating cell nuclear antigen (PCNA) is an important nuclear marker of cell proliferation. This study aimed to evaluate the effects of the cannabinoid receptor CB1 on proliferation and apoptosis in the JZ in women with and without adenomyosis. METHODS JZ smooth muscle cells (JZSMCs) of the adenomyosis and control groups were collected and cultivated. Immunohistochemistry and immunoblotting were used for protein localization and expression detection of CB1 and PCNA. Additionally, qRT-PCR was used to quantitatively analyse the mRNA expression of the two. AM251 and ACEA were used to regulate the function of CB1 receptors, and CCK-8 assay and flow cytometry assay were used to verify the proliferation and apoptosis of JZSMCs after regulation. RESULTS We demonstrated that in normal JZSMCs CB1 and PCNA messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. CB1 and PCNA expression in JZSMCs from women with ADS was significantly higher than that in control women and did not significantly differ across the menstrual cycle. CB1 receptor antagonist AM251 inhibited the proliferation of adenomyotic JZSMCs in a dose-dependent manner. The CB1 receptor agonist ACEA significantly promoted the proliferation of adenomyotic JZSMCs. The apoptosis rate of adenomyotic JZSMCs treated with AM251 was significantly higher than that of JZSMCs from the untreated control group. The apoptosis rate was significantly decreased in the ACEA group compared with that in the untreated control group. Furthermore, AM251 suppressed the phosphorylation of AKT and Erk1/2 in adenomyotic JZSMCs. The CB1 agonist ACEA significantly promoted the phosphorylation of AKT and Erk1/2. CONCLUSIONS Our results indicated that the levels of CB1 and PCNA were increased in patients with adenomyosis and that cyclic changes were lost. CB1 may affect uterine JZ proliferation and apoptosis in adenomyosis by enhancing AKT and MAPK/Erk signalling.
Collapse
Affiliation(s)
- Sha Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China
| | - Bohan Li
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China
| | - Xue Shen
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China
| | - Hua Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China.
| | - Zhengchen Guo
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China
| | - Xiao Li
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China
| | - Fuqing Sun
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100006, Beijing, China
| |
Collapse
|
25
|
Dysregulated microRNA expression in rheumatoid arthritis families-a comparison between rheumatoid arthritis patients, their first-degree relatives, and healthy controls. Clin Rheumatol 2020; 40:2387-2394. [PMID: 33210166 PMCID: PMC8121735 DOI: 10.1007/s10067-020-05502-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Recent studies have demonstrated an altered expression of certain microRNAs in patients with rheumatoid arthritis (RA) as well as their first-degree relatives (FDRs) compared to healthy controls (HCs), suggesting a role of microRNA in the progression of the disease. To corroborate this, a set of well-characterized RA families originating from northern Sweden were analyzed for differential expression of a selected set of microRNAs. METHOD MicroRNA was isolated from frozen peripheral blood cells obtained from 21 different families and included 26 RA patients, 22 FDRs, and 21 HCs. Expression of the selected microRNAs miR-22-3p, miR-26b-5p, miR-34a-3p, miR-103a-3p, miR-142-3p, miR-146a-5p, miR-155, miR-346, and miR-451a was determined by a two-step quantitative real-time polymerase chain reaction (qRT-PCR). Statistical analysis including clinical variables was applied. RESULTS Out of the nine selected microRNAs that previously have been linked to RA, we confirmed four after adjusting for age and gender, i.e., miR-22-3p (p = 0.020), miR-26b-5p (p = 0.018), miR-142-3p (p = 0.005), and miR-155 (p = 0.033). Moreover, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs. In addition, analysis of the effect of corticosteroid use showed modulation of miR-103a-3p expression. CONCLUSIONS We confirm that microRNAs seem to be involved in the development of RA, and that the expression pattern in FDR is partly overlapping with RA patients. The contribution of single microRNAs in relation to the complex network including all microRNAs and other molecules is still to be revealed. Key Points • Expression levels of miR-22-3p, miR-26b-5p, miR-142-3p, and miR-155 were significantly altered in RA patients compared to those in controls. • In first-degree relatives, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs.
Collapse
|
26
|
Abnormal expression of connective tissue growth factor and its correlation with fibrogenesis in adenomyosis. Reprod Biomed Online 2020; 42:651-660. [PMID: 33431336 DOI: 10.1016/j.rbmo.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022]
Abstract
RESEARCH QUESTION Does connective tissue growth factor (CTGF) expression relate to adenomyotic fibrosis and determine the correlation between fibrosis with adenomyosis-associated dysmenorrhoea? DESIGN Protein and mRNA expression of CTGF was detected by Western blots and real-time quantitative polymerase chain reaction in the endometrium of the control group and the eutopic and ectopic endometrium of the adenomyosis group. Collagen fibres and type I collagen in the myometrium were detected by immunohistochemistry and Masson's trichrome staining, and the correlations of CTGF protein and mRNA levels with the degree of fibrosis were analysed. Furthermore, the relationship between the severity of dysmenorrhoea and the degree of fibrosis was determined, and the correlation between uterus size and the degree of fibrosis was also analysed. RESULTS Levels of CTGF mRNA and protein were significantly higher in patients with adenomyosis than in controls, and CTGF mRNA and protein expression in adenomyosis was positively correlated with fibrosis severity (r = 0.57, P < 0.001 and r = 0.39, P = 0.012), which correlated positively with dysmenorrhoea and uterus size (r = 0.42 and r = 0.6, P < 0.002). CONCLUSIONS Increased CTGF may contribute to the occurrence and fibrogenic progression of adenomyosis and may play an important role in dysmenorrhoea. The present study may provide ideas for treating adenomyosis-associated dysmenorrhoea.
Collapse
|
27
|
The tissue specific regulation of miR22 expression in the lung and brain by ribosomal protein L29. Sci Rep 2020; 10:16242. [PMID: 33004906 PMCID: PMC7530758 DOI: 10.1038/s41598-020-73281-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Endogenous miR22 is associated with a diverse range of biological processes through post-translational modification of gene expression and its deregulation results in various diseases including cancer. Its expression is usually tissue or cell-specific, however, the reasons behind this tissue or cell specificity are not clearly outlined till-date. Therefore, our keen interest was to investigate the mechanisms of tissue or cell-specific expression of miR22. In the current study, miR22 expression showed a tissues-specific difference in the poly(I:C) induced inflammatory mouse lung and brain tissues. The cell-specific different expression of miR22 was also observed in inflammatory glial cells and endothelial cells. The pattern of RPL29 expression was also similar to miR22 in these tissues and cells under the same treatment. Interestingly, the knockdown of RPL29 exerted an inhibitory effect on miR22 and its known transcription factors including Fos-B and c-Fos. Fos-B and c-Fos were also differentially expressed in the two cell lines transfected with poly(I:C). The knockdown of c-Fos also exerted its negative effects on miR22 expression in both cells. These findings suggest that RPL29 might have regulatory roles on tissue or cell-specific expression of miR22 through the transcription activities of c-Fos and also possibly through Fos-B.
Collapse
|
28
|
Tsai MH, Chi MC, Hsu JF, Lee IT, Lin KM, Fang ML, Lee MH, Lee CW, Liu JF. Urban Particulate Matter Enhances ROS/IL-6/COX-II Production by Inhibiting MicroRNA-137 in Synovial Fibroblast of Rheumatoid Arthritis. Cells 2020; 9:cells9061378. [PMID: 32498294 PMCID: PMC7348867 DOI: 10.3390/cells9061378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) has been associated with air pollution, possibly due to the augmentation of inflammatory effects. In this study, we aimed to determine the roles of inflammatory pathways and microRNA involved in the pathogenesis of RA fibroblast-like synoviocytes (FLS) inflammation induced by particulate matter. METHODS The inflammatory mediators, messenger RNAs, microRNAs and their interrelationships were investigated using western blotting, QPCR, ELISA and immunohistochemistry. RESULTS Particulate matter (PMs) induced an increase in the expression of interleukin-6 (IL-6) and cyclooxygenase-II (COX-II) in RA-FLS and microRNA-137 was found definitely to mediate the inflammatory pathways. PMs-induced generation of reactive oxygen species (ROS) in RA-FLS was attenuated by pretreatment with antioxidants. Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38 and JNK, followed by downregulation of microRNA-137. In vivo studies, the joints of rats exposed to PMs revealed synovial fibroblast inflammation under pathologic examination and the expressions of IL-6 and COX-II were obviously increased. PMs exposure results in activated ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways and cause increased IL-6 and COX-II through downregulation of hsa-miRNA-137, which lead to inflammation and RA exacerbation. CONCLUSIONS microRNA-137 plays an important role in PMs-induced RA acute exacerbation through MAPK signaling pathways and IL-6/COX-II activation. Targeting these mechanisms can potentially be used to develop new therapeutic strategies and prevention of RA inflammation in the future.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin 638, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Miao-Ching Chi
- Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County 613, Taiwan
| | - Jen-Fu Hsu
- Department of Pediatrics, Division of Neonatology, Chang Gung Memorial Hospital, Lin-Kou, New Taipei City 333, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 111, Taiwan;
| | - Ko-Ming Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi City, Chiayi County 613, Taiwan;
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Ming-Hsueh Lee
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi 61363, Taiwan;
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan City 33303, Taiwan
- Correspondence: (C.-W.L.); (J.-F.L.); Tel.: +886-4-2205-3366 (ext. 2128) (C.-W.L.); +886-2-2736-1661 (ext. 5110) (J.-F.L.); Fax: +886-4-22053764 (C.-W.L.)
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (C.-W.L.); (J.-F.L.); Tel.: +886-4-2205-3366 (ext. 2128) (C.-W.L.); +886-2-2736-1661 (ext. 5110) (J.-F.L.); Fax: +886-4-22053764 (C.-W.L.)
| |
Collapse
|
29
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
30
|
Zhang L, Wu H, Zhao M, Lu Q. Identifying the differentially expressed microRNAs in autoimmunity: A systemic review and meta-analysis. Autoimmunity 2020; 53:122-136. [DOI: 10.1080/08916934.2019.1710135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lian Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Central South University, Changsha, China
| |
Collapse
|
31
|
Boxberger N, Hecker M, Zettl UK. Dysregulation of Inflammasome Priming and Activation by MicroRNAs in Human Immune-Mediated Diseases. THE JOURNAL OF IMMUNOLOGY 2019; 202:2177-2187. [PMID: 30962309 DOI: 10.4049/jimmunol.1801416] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Inflammasomes are protein complexes that respond to a wide range of pathogens and cellular damage signals. Their activation prompts the caspase-1-mediated cleavage of the proinflammatory cytokines IL-1β and IL-18. Inflammasome dysregulation has been demonstrated to play a role in a range of diseases involving the adaptive immune system like multiple sclerosis, rheumatic diseases, and type 1 diabetes. Priming and activation of inflammasomes can be modulated by microRNAs (miRNAs), small noncoding RNAs that regulate gene expression posttranscriptionally. miRNAs, such as miR-223-3p, have been demonstrated to directly target the inflammasome components NLRP3, caspase-1, and caspase-8. Other miRNAs like miR-155-5p modulate TLR-, IL-1R-, TNFR-, and IFNAR-mediated signaling pathways upstream of the inflammasomes. In this study, we discuss how a more detailed elucidation of miRNA-driven inflammasome regulation helps in understanding the molecular processes underlying immune-mediated human diseases, holds potential for the identification of biomarkers and may offer novel targets for the development of future therapeutics.
Collapse
Affiliation(s)
- Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, University of Rostock, 18147 Rostock, Germany; and
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, University of Rostock, 18147 Rostock, Germany; and.,Steinbeis Transfer Center for Proteome Analysis, 18057 Rostock, Germany
| | - Uwe K Zettl
- Division of Neuroimmunology, Department of Neurology, University of Rostock, 18147 Rostock, Germany; and
| |
Collapse
|
32
|
Cheng H, Sun M, Wang ZL, Wu Q, Yao J, Ren G, Sun XL. LncRNA RMST-mediated miR-107 transcription promotes OGD-induced neuronal apoptosis via interacting with hnRNPK. Neurochem Int 2019; 133:104644. [PMID: 31852624 DOI: 10.1016/j.neuint.2019.104644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
The long noncoding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) silencing has been demonstrated to protect against ischemic brain injury in vivo and neuron injury in vitro. However, its underlying mechanisms in the progression of ischemic stroke have not been well explored. The expression of RMST in oxygen-glucose deprivation (OGD)-treated HT-22 hippocampal neuron cell line was examined using quantitative Real-Time PCR (qRT-PCR). CCK-8 cell viability and apoptotic cell detection using Annexin V-FITC and PI staining coupled with flow cytometry were performed to determine the pro-apoptotic role of RMST in HT-22 hippocampal neuron cell line. Furthermore, RNA pull-down, RNA immunoprecipitation (RIP), coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and dual-Luciferase reporter assays were performed to determine the mechanism of RMST in OGD-induced HT-22 cell apoptosis. In the results, RMST was highly expressed in OGD-treated HT-22 cells. Altered RMST expression led to marked changes in HT-22 cell proliferation and apoptosis. Mechanistically, RMST indirectly activated p53/miR-107 signaling pathway via interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and fulfilled its pro-apoptotic function in HT-22 cells. In conclusion, our data indicated that the RMST/hnRNPK/p53/miR-107/Bcl2l2 axis plays an important role in regulating neuronal apoptosis.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mei Sun
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhao-Lu Wang
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Yao
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guang Ren
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Su Y, Wang Z, Ye J, Feng T, Wang F, Chi H, Zhou Z, Hu Q, Liu H, Cheng X, Shi H, Teng J, Yang C, Sun Y. Cysteine-Rich Angiogenic Inducer 61 Serves as a Potential Serum Biomarker for the Remission of Adult-Onset Still's Disease. Front Med (Lausanne) 2019; 6:266. [PMID: 31824953 PMCID: PMC6879423 DOI: 10.3389/fmed.2019.00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: Adult-onset Still's disease (AOSD) is a rare, polygenic, systemic autoinflammatory disease. The aim of this study is to evaluate the serum levels of cysteine-rich angiogenic inducer 61 (Cyr61), a secreted, extracellular protein in AOSD patients. Methods: A total of 60 AOSD patients (39 of active phase and 21 of inactive phase), 16 rheumatoid arthritis patients as a disease control, and 34 sex- and age-matched healthy control subjects (HC) were enrolled in the study. The data of the clinical manifestations and laboratory examinations were collected. The serum levels of Cyr61, interleukin (IL)-17, and IL-37 were detected by ELISA assay, and the serum levels of IL-10, IL-1β, IL-6, IL-18, and tumor necrosis factor (TNF)-α were examined by electrochemiluminescence assay. Results: The serum levels of Cyr61 were significantly increased in inactive AOSD than those in active patients and HCs, and the levels of Cyr61 were dramatically increased after treatment. The levels of Cyr61 were inversely correlated with systemic score, the counts of leukocyte and neutrophil, and the levels of inflammatory cytokines (IL-1β, IL-6, and IL-17). Moreover, the levels of Cyr61 were higher in patients without the clinical symptoms of fever, skin rash, sore throat, arthralgia, and lymphadenopathy compared with those in patients with these symptoms. Conclusion: The serum levels of Cyr61 were inversely correlated with disease activity in AOSD patients; thus, we proposed that Cyr61 was a biomarker for the remission of AOSD.
Collapse
Affiliation(s)
- Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tienan Feng
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18:102391. [PMID: 31520804 DOI: 10.1016/j.autrev.2019.102391] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, many epigenetic mechanisms that contribute in the pathogenesis of autoimmune disorders have been revealed. MicroRNAs (miRNAs) are small, non-coding, RNA molecules that bind to messenger RNAs and disrupt the transcription of target genes. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which a plethora of epigenetic changes take place. Current research on RA epigenetics has focused mainly on miRNAs. Genetic variance of some miRNA genes, especially miR-499, might predispose an individual to RA development. Additionally, altered expression of many miRNAs has been discovered in several cells, tissues and body fluids in patients with RA. MiRNAs expression also differs depending on disease's stage and activity. Serum miR-22 and miR-103a might predict RA development in susceptible individuals (pre-RA), while serum miR-16, miR-24, miR-125a and miR-223 levels are altered in early RA (disease duration <12 months) patients compared to established RA or healthy individuals. Moreover, serum miR-223 levels have been associated with RA activity and disease relapse. What is more, serum levels of several miRNAs, including miR-125b and miR-223, could be used to predict response to RA treatment. Finally, miRNA analogs or antagonists have been used as therapeutic regimens in experimental arthritis models and have demonstrated promising results. In conclusion, the research on the miRNA alterations in RA sheds light to several aspects of RA pathogenesis, introduces new biomarkers for RA diagnosis and treatment response prediction and offers the opportunity to discover new, targeted drugs for patients with RA.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NMTS), Athens, Greece; Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Vassiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece; Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
35
|
Yang Q, Yang K, Li Z. MiR‐22 restrains proliferation of rheumatoid arthritis by targeting IL6R and may be concerned with the suppression of NF‐κB pathway. Kaohsiung J Med Sci 2019; 36:20-26. [PMID: 31483954 DOI: 10.1002/kjm2.12124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Qing‐Yi Yang
- Department of Joint OrthopaedicAffiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan China
| | - Kai‐Peng Yang
- Department of bone, People's Hospital of Zouping City Binzhou China
| | - Zhi‐Zhou Li
- Department of OrthopeadicsChian‐Japan Union Hospital of Jilin University Changchun China
| |
Collapse
|
36
|
Abstract
Knowledge of how the joint functions as an integrated unit in health and disease requires an understanding of the stromal cells populating the joint mesenchyme, including fibroblasts, tissue-resident macrophages and endothelial cells. Knowledge of the physiological and pathological mechanisms that involve joint mesenchymal stromal cells has begun to cast new light on why joint inflammation persists. The shared embryological origins of fibroblasts and endothelial cells might shape the behaviour of these cell types in diseased adult tissues. Cells of mesenchymal origin sustain inflammation in the synovial membrane and tendons by various mechanisms, and the important contribution of newly discovered fibroblast subtypes and their associated crosstalk with endothelial cells, tissue-resident macrophages and leukocytes is beginning to emerge. Knowledge of these mechanisms should help to shape the future therapeutic landscape and emphasizes the requirement for new strategies to address the pathogenic stroma and associated crosstalk between leukocytes and cells of mesenchymal origin.
Collapse
|
37
|
Mo D, Liu W, Li Y, Cui W. Long Non-coding RNA Zinc Finger Antisense 1 (ZFAS1) Regulates Proliferation, Migration, Invasion, and Apoptosis by Targeting MiR-7-5p in Colorectal Cancer. Med Sci Monit 2019; 25:5150-5158. [PMID: 31295229 PMCID: PMC6640168 DOI: 10.12659/msm.916619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common tumors, the causes of which remain unclear. Recently, many kinds of long non-coding RNAs (lncRNAs) have been identified to have an important role in the biological function of CRC. However, the effect of lncRNA zinc finger antisense 1 (ZFAS1) on development of CRC is still incompletely clear. Material/Methods Firstly, the expression of ZFAS1 and microRNA (miR)-7-5p in 40 CRC tissues and adjacent tissues was measured by real-time polymerase chain reaction. Then, we detected the cell proliferation, migration, invasion, and apoptosis in CRC cell lines by using Cell Counting Kit-8 assay, colony formation assay, flow analysis, and Transwell assay, respectively. Then, the relationship between ZFAS1 and miR-7-5p was verified by luciferase reporter assay. Finally, rescue experiments were conducted to confirmed that interaction of ZFAS1 and miR-7-5p in vitro. Results Our results showed that ZFAS1 was upregulated in CRC tissues, correlated with overall survival rates, and negatively related to the expression of miR-7-5p. It was verified that miR-7-5p was a direct target of ZFAS1 by bioinformatics analysis and luciferase reporter assay. In addition, knockdown of miR-7-5p inhibited proliferation, migration, and invasion, and promoted apoptosis in CRC cell lines, which could be rescue by miR-7-5p inhibitor. Conclusions Our study indicated that ZFAS1 directly targeted miR-7-5p, and knockdown of it could inhibit tumor growth, migration, invasion, and induce apoptosis in CRC. These data might provide a potent treatment mechanism or promising biomarker for CRC.
Collapse
Affiliation(s)
- Dianjun Mo
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Wenwen Liu
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Yanqiu Li
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| | - Wenbo Cui
- Department of Clinical Laboratory, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China (mainland)
| |
Collapse
|
38
|
Down-regulation of microRNA-142-3p inhibits the aggressive phenotypes of rheumatoid arthritis fibroblast-like synoviocytes through inhibiting nuclear factor-κB signaling. Biosci Rep 2019; 39:BSR20190700. [PMID: 31239367 PMCID: PMC6614573 DOI: 10.1042/bsr20190700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to investigate the regulatory roles of miR-142-3p on the aggressive phenotypes of rheumatoid arthritis (RA) human fibroblast-like synoviocytes (RA-HFLSs), and reveal the potential mechanisms relating with nuclear factor-κB (NF-κB) signaling. miR-142-3p expression was detected in RA synovial tissues and RA-HFLSs by quantitative real-time PCR (qRT-PCR) and Northern blot analysis. RA-HFLSs were transfected with miR-142-3p inhibitor and/or treated with 10 µg/l tumor necrosis factor α (TNF-α). The viability, colony formation, apoptosis, migration, invasion, and the levels of interleukin (IL)-6, and matrix metalloproteinase 3 (MMP-3) were detected. The mRNA expressions of B-cell lymphoma-2 (Bcl-2), Bax, Bad, IL-6, and MMP-3 were detected by qRT-PCR. Moreover, the expression of Bcl-2, IL-1 receptor-associated kinase 1 (IRAK1), Toll-like receptor 4 (TLR4), NF-κB p65, and phosphorylated NF-κB p65 (p-NF-κB p65) were detected by Western blot. The interaction between IRAK1 and miR-142-3p was identified by dual luciferase reporter gene assay. MiR-142-3p was up-regulated in RA synovial tissues and RA-HFLSs. TNF-α activated the aggressive phenotypes of RA-HFLSs, including enhanced proliferation, migration, invasion, and inflammation, and inhibited apoptosis. miR-142-3p inhibitor significantly decreased the cell viability, the number of cell clones, the migration rate, the number of invasive cells, the contents and expression of IL-6 and MMP-3, and increased the apoptosis rate and the expressions of Bax and Bad, and decreased Bcl-2 expression of TNF-α-treated RA-HFLSs. MiR-142-3p inhibitor significantly reversed TNF-α-induced up-regulation of IRAK1, TLR4, and p-NF-κB p65 in TNF-α-treated RA-HFLSs. Besides, IRAK1 was a target of miR-142-3p. The down-regulation of miR-142-3p inhibited the aggressive phenotypes of RA-HFLSs through inhibiting NF-κB signaling.
Collapse
|
39
|
Zakeri Z, Salmaninejad A, Hosseini N, Shahbakhsh Y, Fadaee E, Shahrzad MK, Fadaei S. MicroRNA and exosome: Key players in rheumatoid arthritis. J Cell Biochem 2019; 120:10930-10944. [PMID: 30825220 DOI: 10.1002/jcb.28499] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Rheumatoid arthritis (RA) is known as one of important autoimmune disorders which can lead to joint pain and damage throughout body. Given that internal (ie, genetic and epigenetic alterations) and external factors (ie, lifestyle changes, age, hormones, smoking, stress, and obesity) involved in RA pathogenesis. Increasing evidence indicated that cellular and molecular alterations play critical roles in the initiation and progression of RA. Among various targets and molecular signaling pathways, microRNAs (miRNAs) and their regulatory networks have key roles in the RA pathogenesis. It has been showed that deregulation of many miRNAs involved in different stages of RA. Hence, identification of miRNAs and their signaling pathways in RA, could contribute to new knowledge which help to better treatment of patients with RA. Besides miRNAs, exosomes have been emerged as key messengers in RA pathogenesis. Exsosomes are nanocarriers which could be released from various cells and lead to changing of behaviors recipient cells via targeting their cargos (eg, proteins, messenger RNAs, miRNAs, long noncoding RNAs, DNAs). Here, we summarized several miRNAs involved in RA pathogenesis. Moreover, we highlighted the roles of exosomes in RA pathogenesis.
Collapse
Affiliation(s)
- Zahra Zakeri
- Labafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehalsadat Hosseini
- Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yas Shahbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elyas Fadaee
- Faculty of Medicine, Islamic Azad University of Najafabad, Najafabad, Iran
| | - Mohammad Karim Shahrzad
- Shohada Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Beloukhova MI, Deviatkin AA, Lukashev AN, Zamyatnin AA. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front Genet 2019; 10:570. [PMID: 31258550 PMCID: PMC6587113 DOI: 10.3389/fgene.2019.00570] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world’s population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry V Zaletaev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina V Bure
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina A Alekseeva
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina I Beloukhova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei A Deviatkin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N Lukashev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
41
|
Ormseth MJ, Solus JF, Sheng Q, Ye F, Wu Q, Guo Y, Oeser AM, Allen RM, Vickers KC, Stein CM. Development and Validation of a MicroRNA Panel to Differentiate Between Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus and Controls. J Rheumatol 2019; 47:188-196. [PMID: 31092710 DOI: 10.3899/jrheum.181029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MicroRNA (miRNA) are short noncoding RNA that regulate genes and are both biomarkers and mediators of disease. We used small RNA (sRNA) sequencing and machine learning methodology to develop an miRNA panel to reliably differentiate between rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) and control subjects. METHODS Plasma samples from 167 RA and 91 control subjects who frequency-matched for age, race, and sex were used for sRNA sequencing. TIGER was used to analyze miRNA. DESeq2 and random forest analyses were used to identify a prioritized list of miRNA differentially expressed in patients with RA. Prioritized miRNA were validated by quantitative PCR, and lasso and logistic regression were used to select the final panel of 6 miRNA that best differentiated RA from controls. The panel was validated in a separate cohort of 12 SLE, 32 RA, and 32 control subjects. Panel efficacy was assessed by area under the receiver operative characteristic curve (AUC) analyses. RESULTS The final panel included miR-22-3p, miR-24-3p, miR-96-5p, miR-134-5p, miR-140-3p, and miR-627-5p. The panel differentiated RA from control subjects in discovery (AUC = 0.81) and validation cohorts (AUC = 0.71), seronegative RA (AUC = 0.84), RA remission (AUC = 0.85), and patients with SLE (AUC = 0.80) versus controls. Pathway analysis showed upstream regulators and targets of panel miRNA are associated with pathways implicated in RA pathogenesis. CONCLUSION An miRNA panel identified by a bioinformatic approach differentiated between RA or SLE patients and control subjects. The panel may represent an autoimmunity signature, perhaps related to inflammatory arthritis, which is not dependent on active disease or seropositivity.
Collapse
Affiliation(s)
- Michelle J Ormseth
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA. .,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center.
| | - Joseph F Solus
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Quanhu Sheng
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Fei Ye
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Qiong Wu
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Yan Guo
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Annette M Oeser
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Ryan M Allen
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - Kasey C Vickers
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| | - C Michael Stein
- From the Tennessee Valley Healthcare System, US Department of Veterans Affairs; Department of Medicine, Vanderbilt University Medical Center; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Bioinformatics, University of New Mexico, Albuquerque, New Mexico, USA.,M.J. Ormseth, MD, Tennessee Valley Healthcare System, US Department of Veterans Affairs, and Department of Medicine, Vanderbilt University Medical Center; J.F. Solus, PhD, Department of Medicine, Vanderbilt University Medical Center; Q. Sheng, PhD, Department of Biostatistics, Vanderbilt University Medical Center; F. Ye, PhD, Department of Biostatistics, Vanderbilt University Medical Center; Q. Wu, PhD, Department of Medicine, Vanderbilt University Medical Center; Y. Guo, PhD, Department of Bioinformatics, University of New Mexico; A.M. Oeser, BA, MLAS, CCRP, Department of Medicine, Vanderbilt University Medical Center; R.M. Allen, PhD, Department of Medicine, Vanderbilt University Medical Center; K.C. Vickers, PhD, Department of Medicine, Vanderbilt University Medical Center; C.M. Stein, MBChB, Department of Medicine, Vanderbilt University Medical Center
| |
Collapse
|
42
|
Huang RY, Wu JQ, Liu ZH, Sun SL. MicroRNAs in rheumatoid arthritis: what is the latest with regards to diagnostics? Expert Rev Mol Diagn 2019; 19:363-366. [PMID: 30957579 DOI: 10.1080/14737159.2019.1599716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Run-Yue Huang
- a Section Rheumatology Research , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome , Guangzhou , China
| | - Jia-Qi Wu
- a Section Rheumatology Research , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou , China
| | - Ze-Hao Liu
- a Section Rheumatology Research , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou , China
| | - Si-Long Sun
- c Section Rheumatology Research , BGI Genomics, BGI-Shenzhen , Shenzhen , China
| |
Collapse
|
43
|
Salvi V, Gianello V, Tiberio L, Sozzani S, Bosisio D. Cytokine Targeting by miRNAs in Autoimmune Diseases. Front Immunol 2019; 10:15. [PMID: 30761124 PMCID: PMC6361839 DOI: 10.3389/fimmu.2019.00015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Persistent and excessive cytokine production is a hallmark of autoimmune diseases and may play a role in disease pathogenesis and amplification. Therefore, cytokine neutralization is a useful therapeutic strategy to treat immune-mediated conditions. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in diverse biological processes. Altered miRNA levels are observed in most autoimmune diseases and are recognized to influence autoimmunity through different mechanisms. Here, we review the impact of altered miRNA levels on the expression of cytokines that play a relevant pathogenic role in autoimmunity, namely primary pro-inflammatory cytokines, the IL-17/IL-23 axis, type I interferons and IL-10. Regulation can be either “direct” on the target cytokine, or “indirect,” meaning that one given miRNA post-transcriptionally regulates the expression of a protein that in turn influences the level of the cytokine. In addition, miRNAs associated with extracellular vesicles can regulate cytokine production in neighboring cells, either post-transcriptionally or via the stimulation of innate immune RNA-sensors, such as Toll-like receptors. Because of their tremendous potential as physiological and pathological regulators, miRNAs are in the limelight as promising future biopharmaceuticals. Thus, these studies may lead in the near future to the design and testing of therapeutic miRNAs as next generation drugs to target pathogenic cytokines in autoimmunity.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Gianello
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
44
|
Perez-Sanchez C, Font-Ugalde P, Ruiz-Limon P, Lopez-Pedrera C, Castro-Villegas MC, Abalos-Aguilera MC, Barbarroja N, Arias-de la Rosa I, Lopez-Montilla MD, Escudero-Contreras A, Lopez-Medina C, Collantes-Estevez E, Jimenez-Gomez Y. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum Mol Genet 2019; 27:875-890. [PMID: 29329380 DOI: 10.1093/hmg/ddy008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/30/2017] [Indexed: 12/15/2022] Open
Abstract
Ankylosing spondylitis (AS) remains difficult to diagnose before irreversible damage to sacroiliac joint is noticeable. Circulating microRNAs have demonstrated to serve as diagnostic tools for several human diseases. Here, we analysed plasma microRNAs to identify potential AS biomarkers. Higher expression levels of microRNA (miR)-146a-5p, miR-125a-5p, miR-151a-3p and miR-22-3p, and lower expression of miR-150-5p, and miR-451a were found in AS versus healthy donors. Interestingly, higher miR-146a-5p, miR-125a-5p, miR-151a-3p, miR-22-3p and miR-451a expression was also observed in AS than psoriatic arthritis patients. The areas under the curve, generated to assess the accuracy of microRNAs as diagnostic biomarkers for AS, ranged from 0.614 to 0.781; the six-microRNA signature reached 0.957. Bioinformatics analysis revealed that microRNAs targeted inflammatory and bone remodeling genes, underlying their potential role in this pathology. Indeed, additional studies revealed an association between these six microRNAs and potential target proteins related to AS pathophysiology. Furthermore, miR-146a-5p, miR-125a-5p and miR-22-3p expression was increased in active versus non-active patients. Moreover, miR-125a-5p, miR-151a-3p, miR-150-5p and miR-451a expression was related to the presence of syndesmophytes in AS patients. Overall, this study identified a six-plasma microRNA signature that could be attractive candidates as non-invasive biomarkers for the AS diagnosis, and may help to elucidate the disease pathogenesis.
Collapse
Affiliation(s)
- Carlos Perez-Sanchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Pilar Font-Ugalde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Patricia Ruiz-Limon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Chary Lopez-Pedrera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Maria C Castro-Villegas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Maria C Abalos-Aguilera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Nuria Barbarroja
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Ivan Arias-de la Rosa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Maria D Lopez-Montilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Alejandro Escudero-Contreras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Clementina Lopez-Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Eduardo Collantes-Estevez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| | - Yolanda Jimenez-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Córdoba 14004, Spain
| |
Collapse
|
45
|
Wongjampa W, Ekalaksananan T, Chopjitt P, Chuerduangphui J, Kleebkaow P, Patarapadungkit N, Pientong C. Suppression of miR-22, a tumor suppressor in cervical cancer, by human papillomavirus 16 E6 via a p53/miR-22/HDAC6 pathway. PLoS One 2018; 13:e0206644. [PMID: 30379969 PMCID: PMC6209303 DOI: 10.1371/journal.pone.0206644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function to down-regulate gene expression involving in various cellular processes related to carcinogenesis. Recently, miR-22 was identified as a tumor-suppressing miRNA in many human cancers. However, the regulatory mechanism and the specific function of this miRNA in cervical cancer remain unclear. In the present study, we carried out gene transfection, western blot and quantitative RT-PCR to explore the regulatory mechanism and the functional role of miR-22 in cervical cancer. We verified that miR-22 was down-regulated in cervical cancer tissues and cervical cancer cell lines relative to matched non-tumor tissues and normal human cervical keratinocyte line (HCK1T). By contrast, histone deacetylase 6 (HDAC6) was inversely correlated with miR-22 in both cervical tissues and cancer cell lines. Mechanically, HDAC6 was down-regulated by miR-22 at the post-transcriptional level, via a specific target site within the 3’UTR, identified by a luciferase reporter assay. Moreover, we also showed that the correlation between miR-22 and HDAC6 expression was regulated by an E6/p53 pathway in HCK1Ts expressing HPV16 E6. For functional study, an ectopic expression of miR-22 could inhibit cell proliferation and migration, and could induce apoptosis of cervical cancer cell lines. These findings demonstrated that miR-22 was down-regulated in cervical cancer and inversely collated with its downstream target HDAC6. MiR-22 acts as tumor suppressor by inhibiting proliferation and migration, and by inducing apoptosis of cervical cancer cell lines by targeting the 3’UTR of HDAC6. This newly identified E6/p53/miR-22/HDAC6 regulatory network might be a candidate therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Weerayut Wongjampa
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Peechanika Chopjitt
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon, Thailand
| | - Jureeporn Chuerduangphui
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Pilaiwan Kleebkaow
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Natcha Patarapadungkit
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
46
|
Lin J, He Y, Wang B, Xun Z, Chen S, Zeng Z, Ou Q. Blocking of YY1 reduce neutrophil infiltration by inhibiting IL-8 production via the PI3K-Akt-mTOR signaling pathway in rheumatoid arthritis. Clin Exp Immunol 2018; 195:226-236. [PMID: 30229869 DOI: 10.1111/cei.13218] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2018] [Indexed: 12/21/2022] Open
Abstract
Our previous study revealed that Yin Yang 1(YY1) played an important part in promoting interleukin (IL)-6 production in rheumatoid arthritis (RA). However, whether YY1 has any role in regulation of IL-8 in RA remains unclear. YY1 and IL-8 expression in RA patients were analyzed by real-time polymerase chain reaction (PCR). Ingenuity pathway analysis (IPA) was used to analyze the signaling pathway involved in YY1-induced IL-8 production. The expression of YY1 and proteins involved in the pathway were detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Migration of neutrophils was performed by chemotaxis assay. In this study, we found that high expression of IL-8 was positively associated with YY1 expression in RA. Blocking YY1 expression by YY1-short hairpin (sh)RNA lentivirus reduced IL-8 production. Mechanistically, we showed YY1 activated IL-8 production via the phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. Further, using a co-culture system consisting of peripheral blood mononuclear cells (PBMC) and neutrophils, we found that migration of neutrophils would be inhibited by YY1 RNA interference. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the YY1-shRNA lentivirus led to reduction of IL-8 levels and attenuation of inflammation and neutrophil infiltration in vivo. Our results reveal a role of YY1 involved in neutrophil infiltration in RA via the PI3K/Akt/mTOR/IL-8 signaling pathway. YY1 may be a new therapeutic target for treatment of RA.
Collapse
Affiliation(s)
- J Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Y He
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - B Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Z Xun
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - S Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Z Zeng
- Department of Hematology and Rheumatology, the First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Q Ou
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fujian, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
47
|
Wen X, Chen X, Liang X, Zhao H, Li Y, Sun X, Lu J. The small molecule NSM00191 specifically represses the TNF-α/NF-кB axis in foot and ankle rheumatoid arthritis. Int J Biol Sci 2018; 14:1732-1744. [PMID: 30416388 PMCID: PMC6216029 DOI: 10.7150/ijbs.24232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
The activation of TNF-α/NF-кB signaling is involved in the regulation of a wide range of biological processes, such as cell proliferation, differentiation and apoptosis, eventually causing a number of diseases, such as cancer and inflammation. Here, we found that TNF-α/NF-кB signaling was activated in a large number of blood samples taken from foot and ankle rheumatoid arthritis (RA) patients. By applying a microarray assay to the human synovial sarcoma cell line SW982 and the human fibroblast-like synoviocyte cell line HFLS-RA, as well as in their corresponding p65 knockdown and -overexpressing cells, we identified and verified the activation of many p65 targets, including cytokines (e.g., TNF-α and IL-6), chemokines (e.g., MCP-1 and PANTES), protein receptors (e.g., CD-40 and MHC-1), and inducible enzymes (e.g., COX2). In addition, we subjected microRNAs from foot and ankle RA patients to a microRNA-specific microarray and found that miR-7-5p targeted the 3'-UTR of p65, negatively regulating its expression. By applying an in vitro screen to identify small molecules that specifically inhibited the interaction between TRADD and TNFR2, we found that NSM00191 strongly inhibited the activation of TNF-α/NF-кB signaling in vitro and in vivo, causing the downregulation of NF-кB targets and the decrease of arthritis scores. Collectively, our findings shed new light on the regulation of the TNF-α/NF-кB axis and might provide a new avenue for RA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangxiang Sun
- Department of Orthopaedics, HongHui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Jun Lu
- Department of Orthopaedics, HongHui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
48
|
Zou Y, Xu S, Xiao Y, Qiu Q, Shi M, Wang J, Liang L, Zhan Z, Yang X, Olsen N, Zheng SG, Xu H. Long noncoding RNA LERFS negatively regulates rheumatoid synovial aggression and proliferation. J Clin Invest 2018; 128:4510-4524. [PMID: 30198906 DOI: 10.1172/jci97965] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to synovial aggression and joint destruction in rheumatoid arthritis (RA). The role of long noncoding RNAs (lncRNAs) in RA is largely unknown. Here, we identified a lncRNA, LERFS (lowly expressed in rheumatoid fibroblast-like synoviocytes), that negatively regulates the migration, invasion, and proliferation of FLSs through interaction with heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Under healthy conditions, by binding to the mRNA of RhoA, Rac1, and CDC42 - the small GTPase proteins that control the motility and proliferation of FLSs - the LERFS-hnRNP Q complex decreased the stability or translation of target mRNAs and downregulated their protein levels. But in RA FLSs, decreased LERFS levels induced a reduction of the LERFS-hnRNP Q complex, which reduced the binding of hnRNP Q to target mRNA and therefore increased the stability or translation of target mRNA. These findings suggest that a decrease in synovial LERFS may contribute to synovial aggression and joint destruction in RA and that targeting the lncRNA LERFS may have therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuyan Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nancy Olsen
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Dudics S, Venkatesha SH, Moudgil KD. The Micro-RNA Expression Profiles of Autoimmune Arthritis Reveal Novel Biomarkers of the Disease and Therapeutic Response. Int J Mol Sci 2018; 19:ijms19082293. [PMID: 30081592 PMCID: PMC6121685 DOI: 10.3390/ijms19082293] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints affecting about 0.3–1% of the population in different countries. About 50–60 percent of RA patients respond to presently used drugs. Moreover, the current biomarkers for RA have inherent limitations. Consequently, there is a need for additional, new biomarkers for monitoring disease activity and responsiveness to therapy of RA patients. We examined the micro-RNA (miRNA) profile of immune (lymphoid) cells of arthritic Lewis rats and arthritic rats treated with celastrol, a natural triterpenoid. Experimental and bioinformatics analyses revealed 8 miRNAs (miR-22, miR-27a, miR-96, miR-142, miR-223, miR-296, miR-298, and miR-451) and their target genes in functional pathways important for RA pathogenesis. Interestingly, 6 of them (miR-22, miR-27a, miR-96, miR-142, miR-223, and miR-296) were further modulated by celastrol treatment. Interestingly, serum levels of miR-142, miR-155, and miR-223 were higher in arthritic versus control rats, whereas miR-212 showed increased expression in celastrol-treated rats compared with arthritic rats or control rats. This is the first study on comprehensive miRNA expression profiling in the adjuvant-induced arthritis (AA) model and it also has revealed new miRNA targets for celastrol in arthritis. We suggest that subsets of the above miRNAs may serve as novel biomarkers of disease activity and therapeutic response in arthritis.
Collapse
Affiliation(s)
- Steven Dudics
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA.
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
Wen Z, Chen Y, Long Y, Yu J, Li M. Tumor necrosis factor-alpha suppresses the invasion of HTR-8/SVneo trophoblast cells through microRNA-145-5p-mediated downregulation of Cyr61. Life Sci 2018; 209:132-139. [PMID: 30081007 DOI: 10.1016/j.lfs.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Deficiency in trophoblast invasion is causally linked to the pathogenesis of preeclampsia. Tumor necrosis factor-alpha (TNF-α) shows the ability to suppress the invasiveness of trophoblasts, while cysteine-rich 61 (Cyr61) exerts an opposite function in trophoblast invasion. This study was designed to check the hypothesis that cysteine-rich 61 (Cyr61) may be involved in the anti-invasive activity of TNF-α in trophoblasts. To this end, we examined the effect of TNF-α treatment on Cyr61 expression in HTR-8/SVneo trophoblast cells and investigated the mechanism for the regulation of Cyr61 by TNF-α. Gain-of-function experiments were performed to clarify the role of Cyr61 in TNF-α-dependent suppression of trophoblast invasion. It was found that TNF-α at 1 and 10 ng/mL reduced Cyr61 protein levels by 30 and 80%, respectively, in HTR-8/SVneo cells, but did not affect the mRNA expression of Cyr61. Mechanistically, microRNA (miR)-145-5p was stimulated by TNF-α and negatively regulated the expression of Cyr61 via interaction with its 3'-untranslated region. Functionally, overexpression of miR-145-5p significantly impaired the migration and invasion of HTR-8/SVneo cells. Depletion of miR-145-5p rescued HTR-8/SVneo cells from TNF-α-mediated invasion suppression, which coincided with prevention of Cyr61 downregulation by TNF-α. In addition, overexpression of Cyr61 partially restored the invasion of HTR8/SVneo cells co-transfected with miR-145-5p mimic or exposed to TNF-α. Taken together, miR-145-5p-mediated downregulation of Cyr61 is required for the anti-invasive effect of TNF-α on trophoblasts.
Collapse
Affiliation(s)
- Zhengfang Wen
- Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; Departments of Gynecology and Obstetrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yue Chen
- Department of Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Long
- Department of Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Nanning, China
| | - Mujun Li
- Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|