1
|
Panahipour L, Imani A, dos Santos Sanches N, Kühtreiber H, Mildner M, Gruber R. RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid. Bioengineering (Basel) 2024; 11:1307. [PMID: 39768125 PMCID: PMC11726844 DOI: 10.3390/bioengineering11121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
| | - Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
| | - Natália dos Santos Sanches
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
- Department of Diagnosis and Surgery, Araçatuba Dental School of Sao Paulo, Sao Paulo 16015-050, Brazil
| | - Hannes Kühtreiber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (H.K.); (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (H.K.); (M.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Gao Y, Wang J, Dai W, Li S, Liu Q, Zhao X, Fu W, Xiao Y, Guo L, Fan Y, Zhang X. Collagen-based hydrogels induce hyaline cartilage regeneration by immunomodulation and homeostasis maintenance. Acta Biomater 2024; 186:108-124. [PMID: 39067644 DOI: 10.1016/j.actbio.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Type I collagen (Col I) and hyaluronic acid (HA), derived from the extracellular matrix (ECM), have found widespread application in cartilage tissue engineering. Nevertheless, the potential of cell-free collagen-based scaffolds to induce in situ hyaline cartilage regeneration and the related mechanisms remain undisclosed. Here, we chose Col I and HA to construct Col I hydrogel and Col I-HA composite hydrogel with similar mechanical properties, denoted as Col and ColHA, respectively. Their potential to induce cartilage regeneration was investigated. The results revealed that collagen-based hydrogels could regenerate hyaline cartilage without any additional cells or growth factors. Notably, ColHA hydrogel stood out in this regard. It elicited a moderate activation, recruitment, and reprogramming of macrophages, thus efficiently mitigating local inflammation. Additionally, ColHA hydrogel enhanced stem cell recruitment, facilitated their chondrogenic differentiation, and inhibited chondrocyte fibrosis, hypertrophy, and catabolism, thereby preserving cartilage homeostasis. This study augments our comprehension of cartilage tissue induction theory by enriching immune-related mechanisms, offering innovative prospects for the design of cartilage defect repair scaffolds. STATEMENT OF SIGNIFICANCE: The limited self-regeneration ability and post-injury inflammation pose significant challenges to articular cartilage repair. Type I collagen (Col I) and hyaluronic acid (HA) are extensively used in cartilage tissue engineering. However, their specific roles in cartilage regeneration remain poorly understood. This study aimed to elucidate the functions of Col I and Col I-HA composite hydrogels (ColHA) in orchestrating inflammatory responses and promoting cartilage regeneration. ColHA effectively activated and recruited macrophages, reprogramming them from an M1 to an M2 phenotype, thus alleviating local inflammation. Additionally, ColHA facilitated stem cell homing, induced chondrogenesis, and concurrently inhibited fibrosis, hypertrophy, and catabolism, collectively contributing to the maintenance of cartilage homeostasis. These findings underscore the clinical potential of ColHA for repairing cartilage defects.
Collapse
Affiliation(s)
- Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Wenling Dai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Shikui Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Qingli Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingchen Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| |
Collapse
|
3
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
4
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Qu Y, Wang Y, Wang S, Yu X, He Y, Lu R, Chen S, Meng C, Xu H, Pei W, Ni B, Zhang R, Huang X, You H. A comprehensive analysis of single-cell RNA transcriptome reveals unique SPP1+ chondrocytes in human osteoarthritis. Comput Biol Med 2023; 160:106926. [PMID: 37141654 DOI: 10.1016/j.compbiomed.2023.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Osteoarthritis (OA) has become the most common degenerative disease in the world, which brings a serious economic burden to society and the country. Although epidemiological studies have shown that the occurrence of osteoarthritis is associated with obesity, sex, and trauma, the biomolecular mechanisms for the development and progression of osteoarthritis remain ambiguous. Several studies have drawn a connection between SPP1 and osteoarthritis. SPP1 was first found to be highly expressed in osteoarthritic cartilage, and later more studies have shown that SPP1 is also highly expressed in subchondral bone and synovial in OA patients. However, the biological function of SPP1 remains unclear. Single-cell RNA sequencing (scRNA-seq) is a novel technique that reflects gene expression at the cellular level, making it better depict the state of different cells than ordinary transcriptome data. However, most of the existing chondrocyte scRNA-seq studies focus on the occurrence and development of OA chondrocytes and lack analysis of normal chondrocyte development. Therefore, to better understand the mechanism of OA, scRNA-seq analysis of a larger cell volume containing normal and osteoarthritic cartilage is of great importance. Our study identifies a unique cluster of chondrocytes characterized by high SPP1 expression. The metabolic and biological characteristics of these clusters were further investigated. Besides, in animal models, we found that the expression of SPP1 is spatially heterogeneous in cartilage. Overall, our work provides novel insight into the potential role of SPP1 in OA, which sheds light on understanding the role of SPP1 in OA, promoting the progress of the treatment and prevention in the field of OA.
Collapse
Affiliation(s)
- Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaojun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cheng Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenbin Pei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bowei Ni
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
CD44 mediates hyaluronan to promote the differentiation of human amniotic mesenchymal stem cells into chondrocytes. Biotechnol Lett 2023; 45:411-422. [PMID: 36680638 DOI: 10.1007/s10529-022-03322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES CD44 is the major receptor for hyaluronan (HA), but its effect on HA-induced differentiation of human amnion mesenchymal stem cells into chondrocytes is unclear. This study aimed to investigate the effects and mechanisms of CD44 in HA-induced chondrogenesis. METHODS Immunocytochemistry and toluidine blue staining were used to assess the secretion of type II collagen and aggrecan, respectively. qRT-PCR and western blotting were performed to evaluate the expression of key genes and proteins. RESULTS The expression of aggrecan and type II collagen was downregulated after using the anti-CD44 antibody (A3D8). The transcriptional levels of chondrocytes‑associated genes SRY‑box transcription factor 9, aggrecan, and collagen type II alpha 1 chain were also decreased. Thus, CD44 may mediate HA-induced differentiation of hAMSCs into chondrocytes. Further investigation indicated that expression of phosphorylated (p)‑Erk1/2 and p‑Smad2 decreased following CD44 inhibition. The changes in the expression of p-Erk1/2 and p-Smad2 were consistent after using the ERK1/2 inhibitor (U0126) and agonist (EGF), respectively. After administering the p-Smad2 inhibitor, the expression levels of p-ERK1/2 and p-Smad2 appeared downregulated. The results showed crosstalk between Erk1/2 and Smad2. Moreover, inhibition of p-Erk1/2 and p-Smad2 significantly reduced the accumulation of aggrecan and type II collagen. CONCLUSION These data indicate that CD44 mediates HA-induced differentiation of hAMSCs into chondrocytes by regulating Erk1/2 and Smad2 signaling.
Collapse
|
7
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
8
|
Meng F, Yang Z, Long D, Gu M, Shang M, Zeng A, Wen X, Xue Y, Zhao X, He A. Hyaluronan size alters chondrogenesis of mesenchymal stem cells cultured on tricalcium phosphate-collagen-hyaluronan scaffolds. J Biomed Mater Res A 2021; 110:838-850. [PMID: 34859573 DOI: 10.1002/jbm.a.37332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Hyaluronan (HA) provides a favorable environment for chondrogenesis of bone marrow mesenchymal stem cells (BMSCs). A previous report from our group indicated that addition of HA increases the chondro-inductive capacity of scaffolds. Therefore, this study aimed to investigate whether the Mw of the HA could affect chondrogenesis of BMSCs seeded on TCP-COL-HA scaffolds. Human BMSCs (hBMSCs) and rabbit BMSCs (rBMSCs) were isolated and expanded. TCP-COL scaffolds and TCP-COL-HA scaffolds with two different HA Mws were assessed for their capacity to induce cartilage regeneration from hBMSCs in vitro and in vivo. The results showed that about 96.96% of hBMSCs expressed CD44. Moreover, Hyal-1 and chondrogenic marker genes expressions were increased in hMSCs seeded on TCP-COL-HA scaffolds, and blocking the HA-CD44 interaction with an anti-CD44 antibody reduced the expression levels of Hyal-1 and chondrogenic marker genes. Additionally, TCP-COL-HA scaffolds with 2000 kDa Mw showed greater induction of BMSC chondrogenesis induction compared with those with 80 kDa Mw. Similar results were observed in an ectopic implantation nude mouse model. In a rabbit osteochondral defect repair model, rBMSCs seeded on TCP-COL-HA scaffolds with 2000 kDa Mw showed greater cartilage regeneration than those seeded with 80 kDa Mw. In addition, hBMSC-seeded TCP-COL-HA scaffolds with 2000 kDa Mw showed a significantly higher mechanical strength than those with 80 kDa Mw. Collectively, these results indicate that the Mw of HA could affect chondrogenesis of BMSCs seeded on TCP-COL-HA scaffolds. The TCP-COL-HA scaffolds might be used as allogenic off the shelf products in cartilage tissue engineering in future.
Collapse
Affiliation(s)
- Fangang Meng
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Zibo Yang
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Dianbo Long
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Minghui Gu
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Mei Shang
- Department of Clinical Laboratory, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Anyu Zeng
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xingzhao Wen
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Yueran Xue
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Zhao
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Aishan He
- Department of Joint Surgery/Sports Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| |
Collapse
|
9
|
Idota M, Ishizuka S, Hiraiwa H, Yamashita S, Oba H, Kawamura Y, Sakaguchi T, Haga T, Mizuno T, Kawashima I, Kuriyama K, Imagama S. 4-Methylumbelliferone suppresses catabolic activation in anterior cruciate ligament-derived cells via a mechanism independent of hyaluronan inhibition. J Orthop Surg Res 2021; 16:507. [PMID: 34404442 PMCID: PMC8369759 DOI: 10.1186/s13018-021-02637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The anterior cruciate ligament (ACL) has a key role as a dynamic stabilizer of the knee joints, and ACL dysfunction caused by traumatic or degenerative rupture accelerates osteoarthritis progression. Thus, it is important to prevent the degenerative rupture of the ACL. 4-Methylumbelliferone (4-MU), a pre-approved drug, exerts anti-inflammatory effects in osteoarthritis chondrocytes. It was originally used as an inhibitor of hyaluronan synthesis in chondrocytes. METHODS In this study, we investigated whether 4-MU affects the expression of catabolic factors, such as matrix metalloproteinase (MMP)-1, MMP-3, and interleukin (IL)-6, in ACL-derived cells and ACL explant cultures using immunohistochemistry, real-time RT-qPCR, and capillary western immunoassay. Furthermore, the hyaluronan concentration was evaluated using a colorimetric assay. Statistical analyses were conducted using analysis of variance for multi-group comparisons, followed by Tukey or Tukey-Kramer post hoc test. RESULTS Our results revealed, for the first time, that 4-MU suppressed the IL-β-induced upregulation of pro-catabolic factors, such as MMP-1, MMP-3, and IL-6, in ACL-derived cells. This suppressive effect was also observed in the cultured ligament tissues in ex vivo experiments. 4-MU also reversed an enhanced dependence on glycolysis in IL-1β-activated ACL-derived cells. Furthermore, we found that the suppressive effects of 4-MU were exerted directly and not through the inhibition of hyaluronan synthesis. CONCLUSIONS We conclude that 4-MU could be an effective and useful treatment for knee osteoarthritis, owing to its anti-inflammatory effect on, not only chondrocytes but also on ligament cells.
Collapse
Affiliation(s)
- Masaru Idota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan.
| | - Hideki Hiraiwa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Satoshi Yamashita
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Hiroki Oba
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Yusuke Kawamura
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takefumi Sakaguchi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takahiro Haga
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takafumi Mizuno
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Itaru Kawashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Kanae Kuriyama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| |
Collapse
|
10
|
Salbach-Hirsch J, Rauner M, Hofbauer C, Hofbauer LC. New insights into the role of glycosaminoglycans in the endosteal bone microenvironment. Biol Chem 2021; 402:1415-1425. [PMID: 34323057 DOI: 10.1515/hsz-2021-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The bone microenvironment is a complex tissue in which heterogeneous cell populations of hematopoietic and mesenchymal origin interact with environmental cues to maintain tissue integrity. Both cellular and matrix components are subject to physiologic challenges and can dynamically respond by modifying cell/matrix interactions. When either component is impaired, the physiologic balance is lost. Here, we review the current state of knowledge of how glycosaminoglycans - organic components of the bone extracellular matrix - influence the bone micromilieu. We point out how they interact with mediators of distinct signaling pathways such as the RANKL/OPG axis, BMP and WNT signaling, and affect the activity of bone remodeling cells within the endosteal niche summarizing their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christine Hofbauer
- NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), D-01307 Dresden, Germany
| |
Collapse
|
11
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
12
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Hyaluronic Acid (HA), Platelet-Rich Plasm and Extracorporeal Shock Wave Therapy (ESWT) promote human chondrocyte regeneration in vitro and ESWT-mediated increase of CD44 expression enhances their susceptibility to HA treatment. PLoS One 2019; 14:e0218740. [PMID: 31251756 PMCID: PMC6599220 DOI: 10.1371/journal.pone.0218740] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
Novel strategies have been proposed for articular cartilage damage occurring during osteoarthritis (OA) and -among these- Extracorporeal Shock Wave Therapy (ESWT), intra-articular injections of Platelet-Rich Plasma (PRP) or Hyaluronic Acid (HA) revealed encouraging results. To investigate the possible mechanisms responsible for those clinical benefits, we established primary cultures of human chondrocytes derived from cartilage explants and measured the in vitro effects of ESW, PRP and HA therapies. After molecular/morphological cell characterization, we assessed those effects on the functional activities of the chondrocyte cell cultures, at the protein and molecular levels. ESWT significantly prevented the progressive dedifferentiation that spontaneously occurs during prolonged chondrocyte culture. We then attested the efficiency of all such treatments to stimulate the expression of markers of chondrogenic potential such as SOX9 and COL2A, to increase the Ki67 proliferation index as well as to antagonize the traditional marker of chondrosenescence p16INK4a (known as Cdkn2a). Furthermore, all our samples showed an ESW- and HA-mediated enhancement of migratory and anti-inflammatory activity onto the cytokine-rich environment characterizing OA. Taken together, those results suggest a regenerative effect of such therapies on primary human chondrocytes in vitro. Moreover, we also show for the first time that ESW treatment induces the surface expression of major hyaluronan cell receptor CD44 allowing the increase of COL2A/COL1A ratio upon HA administration. Therefore, this work suggests that ESW-induced CD44 overexpression enhances the in vitro cell susceptibility of human chondrocytes to HA, presumably favouring the repair of degenerated cartilage.
Collapse
|
14
|
Wu RL, Sedlmeier G, Kyjacova L, Schmaus A, Philipp J, Thiele W, Garvalov BK, Sleeman JP. Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells. Sci Rep 2018; 8:14913. [PMID: 30297743 PMCID: PMC6175841 DOI: 10.1038/s41598-018-33337-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
BMP4/7-dependent expression of inhibitor of differentiation/DNA binding (Id) proteins 1 and 3 has been implicated in tumor progression and poor prognosis of malignant melanoma patients. Hyaluronic acid (HA), a pericellular matrix component, supports BMP7 signalling in murine chondrocytes through its receptor CD44. However, its role in regulating BMP signalling in melanoma is not clear. In this study we found that depletion of endogenously-produced HA by hyaluronidase treatment or by inhibition of HA synthesis by 4-methylumbelliferone (4-MU) resulted in reduced BMP4/7-dependent Id1/3 protein expression in mouse melanoma B16-F10 and Ret cells. Conversely, exogenous HA treatment increased BMP4/7-dependent Id1/3 protein expression. Knockdown of CD44 reduced BMP4/7-dependent Id1/3 protein expression, and attenuated the ability of exogenous HA to stimulate Id1 and Id3 expression in response to BMP. Co-IP experiments demonstrated that CD44 can physically associate with the BMP type II receptor (BMPR) ACVR2B. Importantly, we found that coordinate expression of Id1 or Id3 with HA synthases HAS2, HAS3, and CD44 is associated with reduced overall survival of cutaneous melanoma patients. Our results suggest that HA-CD44 interactions with BMPR promote BMP4/7-dependent Id1/3 protein expression in melanoma, contributing to reduced survival in melanoma patients.
Collapse
Affiliation(s)
- Ruo-Lin Wu
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Georg Sedlmeier
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany
| | - Julia Philipp
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany. .,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany.
| |
Collapse
|
15
|
Extracellular regulation of BMP signaling: welcome to the matrix. Biochem Soc Trans 2017; 45:173-181. [DOI: 10.1042/bst20160263] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 01/05/2023]
Abstract
Given its importance in development and homeostasis, bone morphogenetic protein (BMP) signaling is tightly regulated at the extra- and intracellular level. The extracellular matrix (ECM) was initially thought to act as a passive mechanical barrier that sequesters BMPs. However, a new understanding about how the ECM plays an instructive role in regulating BMP signaling is emerging. In this mini-review, we discuss various ways in which the biochemical and physical properties of the ECM regulate BMP signaling.
Collapse
|
16
|
Ishizuka S, Askew EB, Ishizuka N, Knudson CB, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem 2016; 291:12087-104. [PMID: 27129266 DOI: 10.1074/jbc.m115.709683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 01/12/2023] Open
Abstract
Depletion of the cartilage proteoglycan aggrecan is one of the earliest events that occurs in association with osteoarthritis. This loss is often accompanied by a coordinate loss in another glycosaminoglycan, hyaluronan. Chondrocytes experimentally depleted of cell-associated hyaluronan respond by switching to a pro-catabolic metabolism that includes enhanced production of endogenous inflammatory mediators and increased synthesis of matrix metalloproteinases. Hyaluronan turnover is also increased. Together, such a response provides for possible establishment of a self-perpetuating spiral of events that maintains or prolongs the pro-catabolic state. Chondrocytes or cartilage can also be activated by treatment with pro-inflammatory cytokines and mediators such as IL-1β, TNFα, LPS, fibronectin fragments, and hyaluronan oligosaccharides. To determine the mechanism of chondrocyte activation due to hyaluronan loss, a depletion method was required that did not include degrading the hyaluronan. In recent years, several laboratories have used the coumarin derivative, 4-methylumbelliferone, as a potent inhibitor of hyaluronan biosynthesis, due in part to its ability to sequester intracellular UDP-glucuronic acid and inhibition of hyaluronan synthase transcription. However, contrary to our expectation, although 4-methylumbelliferone was indeed an inhibitor of hyaluronan biosynthesis, this depletion did not give rise to an activation of chondrocytes or cartilage. Rather, 4-methylumbelliferone directly and selectively blocked gene products associated with the pro-catabolic metabolic state of chondrocytes and did so through a mechanism preceding and independent of hyaluronan inhibition. These data suggest that 4-methylumbelliferone has additional useful applications to block pro-inflammatory cell activation events but complicates how it is used for defining functions related to hyaluronan.
Collapse
Affiliation(s)
- Shinya Ishizuka
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Emily B Askew
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Naoko Ishizuka
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Cheryl B Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Warren Knudson
- From the Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
17
|
Onodera Y, Teramura T, Takehara T, Fukuda K. Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes. FEBS Open Bio 2015; 5:476-84. [PMID: 26106522 PMCID: PMC4475775 DOI: 10.1016/j.fob.2015.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/12/2015] [Accepted: 05/24/2015] [Indexed: 12/31/2022] Open
Abstract
One important pharmacological function of hyaluronic acid (HA) in chondrocytes is reduction of cellular superoxide generation and accumulation. Here we demonstrated a relationship between HA supplementation and accumulation of Nuclear factor-erythroid-2-related factor 2 (Nrf2), which is a master transcription factor in cellular redox reactions, in cultured chondrocytes derived from bovine joint cartilage. In HA-treated chondrocytes, expression of Nrf2 and its downstream genes was upregulated. In HA-treated chondrocytes, Akt was phosphorylated, and inhibition of Akt activity or suppression of HA receptors CD44 and/or RHAMM with siRNAs prevented HA-mediated Nrf2 accumulation. Furthermore, Nrf2 siRNA inhibited the HA effect on antioxidant enzymes. These results show that HA might contribute to ROS reduction through Nrf2 regulation by activating Akt. Our study suggests a new mechanism for extracellular matrix (ECM)-mediated redox systems in chondrocytes.
Collapse
Affiliation(s)
- Yuta Onodera
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Toshiyuki Takehara
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Kanji Fukuda
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
18
|
SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma. Mol Cancer 2014; 13:260. [PMID: 25471937 PMCID: PMC4265428 DOI: 10.1186/1476-4598-13-260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/24/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signaling is thought to play key roles in regulating the survival and maintenance of cancer stem cells (CSCs), which contribute to disease recurrences and treatment failures in many malignances, including head and neck squamous cell carcinoma (HNSCC). Intracellular BMP signaling is regulated by SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) during cellular development. However, little is known about the role or regulation of BMP signaling in HNSCC CSCs. METHODS Two CSC-like populations, CD44(high)/BMI1(high) and CD44(high)/ALDH(high), were enriched from HNSCC cell lines and evaluated for the expression of SMURF1 by qRT-PCR, flow cytometry, and immunoblotting. The activation status of BMP signaling in these populations was determined by using immunoblotting to detect phosphorylated SMAD1/5/8 (pSMAD1/5/8) levels. Knockdown of SMURF1 transcripts by RNA interference was used to assess the role of SMURF1 in BMP signaling and CSC maintenance. Loss of CSC-like phenotypes following SMURF1 knockdown was determined by changes in CD44(high) levels, cellular differentiation, and reduction in colony formation. RESULTS Populations of enriched CSC-like cells displayed decreased levels of pSMAD1/5/8 and BMP signaling target gene ID1 while SMURF1, CD44, and BMI1 were highly expressed when compared to non-CSC populations. Stable knockdown of SMURF1 expression in CSC-like cells increased pSMAD1/5/8 protein levels, indicating the reactivation of BMP signaling pathways. Decreased expression of SMURF1 also promoted adipogenic differentiation and reduced colony formation in a three-dimensional culture assay, indicating loss of tumorigenic capacity. The role of SMURF1 and inhibition of BMP signaling in maintaining a CSC-like population was confirmed by the loss of a CD44(high) expressing subpopulation in SMURF1 knockdown cells. CONCLUSIONS Our findings suggest that inhibition of BMP signaling potentiates the long-term survival of HNSCC CSCs, and that this inhibition is mediated by SMURF1. Targeting SMURF1 and restoring BMP signaling may offer a new therapeutic approach to promote differentiation and reduction of CSC populations leading to reduced drug resistance and disease recurrence.
Collapse
|
19
|
Signaling pathways in cartilage repair. Int J Mol Sci 2014; 15:8667-98. [PMID: 24837833 PMCID: PMC4057753 DOI: 10.3390/ijms15058667] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/29/2022] Open
Abstract
In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair.
Collapse
|