1
|
Torga T, Suutre S, Kisand K, Aunapuu M, Arend A. Cartilage Collagen Neoepitope C2C Expression in the Articular Cartilage and Its Relation to Joint Tissue Damage in Patients with Knee Osteoarthritis. Biomedicines 2024; 12:1063. [PMID: 38791025 PMCID: PMC11117959 DOI: 10.3390/biomedicines12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Pathological cleavage of type II collagen (Col2) and generation of Col2 neoepitopes can serve as useful molecular markers of the progression of osteoarthritis (OA). One of such potential biomarkers is type II collagen neoepitope C2C. The aim of this study was to correlate the degree of articular cartilage damage in OA patients with C2C expression in histological samples of tissues removed during total knee replacement. Cartilage samples were obtained from 27 patients ranging in age from 55 to 66 years. In each patient, medial and lateral tibia plateau samples were analyzed according to the OARSI histopathology grading system. The C2C expression was evaluated on histological slides by semi-quantitative analysis using ImageJ Fiji 2.14.0 software. Spearman's rank correlation analysis revealed a positive weak correlation (rho = 0.289, p = 0.0356) between the histological grade of tissue damage and the percentage of C2C staining. In addition, a highly significant positive correlation (rho = 0.388, p = 0.0041) was discovered between the osteoarthritis score (combining the histological grade of damage with the OA macroscopic stage) and the percentage of C2C staining in the samples. The C2C expression was detected in all the regions of the articular cartilage (i.e., the superficial zone, mid zone, deep zone and tidemark area, and the zone of calcified cartilage). Our findings imply that local expression of C2C correlates with the articular cartilage damage in OA-affected knees. This confirms that C2C can be used as a prospective marker for assessing pathological changes in the OA course and OA clinical trials.
Collapse
Affiliation(s)
- Taavi Torga
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| | - Siim Suutre
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| | - Kalle Kisand
- Department of Internal Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia;
| | - Marina Aunapuu
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| | - Andres Arend
- Department of Anatomy, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (S.S.); (M.A.); (A.A.)
| |
Collapse
|
2
|
Hannani MT, Thudium CS, Karsdal MA, Ladel C, Mobasheri A, Uebelhoer M, Larkin J, Bacardit J, Struglics A, Bay-Jensen AC. From biochemical markers to molecular endotypes of osteoarthritis: a review on validated biomarkers. Expert Rev Mol Diagn 2024; 24:23-38. [PMID: 38353446 DOI: 10.1080/14737159.2024.2315282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) affects over 500 million people worldwide. OA patients are symptomatically treated, and current therapies exhibit marginal efficacy and frequently carry safety-risks associated with chronic use. No disease-modifying therapies have been approved to date leaving surgical joint replacement as a last resort. To enable effective patient care and successful drug development there is an urgent need to uncover the pathobiological drivers of OA and how these translate into disease endotypes. Endotypes provide a more precise and mechanistic definition of disease subgroups than observable phenotypes, and a panel of tissue- and pathology-specific biochemical markers may uncover treatable endotypes of OA. AREAS COVERED We have searched PubMed for full-text articles written in English to provide an in-depth narrative review of a panel of validated biochemical markers utilized for endotyping of OA and their association to key OA pathologies. EXPERT OPINION As utilized in IMI-APPROACH and validated in OAI-FNIH, a panel of biochemical markers may uncover disease subgroups and facilitate the enrichment of treatable molecular endotypes for recruitment in therapeutic clinical trials. Understanding the link between biochemical markers and patient-reported outcomes and treatable endotypes that may respond to given therapies will pave the way for new drug development in OA.
Collapse
Affiliation(s)
- Monica T Hannani
- ImmunoScience, Nordic Bioscience A/S, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | | | - Jonathan Larkin
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- SynOA Therapeutics, Philadelphia, PA, USA
| | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - André Struglics
- Department of Clinical Sciences, Orthopaedics, Lund University, Lund, Sweden
| | | |
Collapse
|
3
|
Chen X, Xu J, Zhang H, Yu L. A nomogram for predicting osteoarthritis based on serum biomarkers of bone turnover in middle age: A cross-sectional study of PTH and β-CTx. Medicine (Baltimore) 2023; 102:e33833. [PMID: 37335703 DOI: 10.1097/md.0000000000033833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The objective of this study was to investigate the diagnostic model of osteoarthritis by bone turnover markers in Chinese middle-aged subjects. The study was designed as a cross-sectional investigation with 305 participants aged 45 to 64. Radiographs of tibiofemoral knee joints were used for diagnose osteoarthritis. Radiographic grading, evaluated using the Kellgren and Lawrence grading scale (K-L), was scored by 2 experienced observers who were blinded to the source of subjects. An optimal model was developed by logistic regression. And the prognostic performance of the selected model was assessed by the area under the receiver operating characteristic curve. The prevalence of osteoarthritis was 52.29% (n = 137/262) in middle age. β-CTx levels tended to increase according to the K-L grades, whereas PTH levels significantly decrease. levels of 25(OH)D, β-CTx, and PTH were each significantly associated with osteoarthritis risk (P < .05). Based on the estimated parameters of the optimal model, a nomogram was constructed for predicting osteoarthritis. These data suggest that the combination of PTH and β-CTx could significantly improve the prognosis of osteoarthritis in middle age, and that the nomogram can assist primary physicians in the identification of high-risk men.
Collapse
Affiliation(s)
- Xueqiang Chen
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated Zhejiang Chinese Medical University, Huzhou, China
| | - Juntao Xu
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated Zhejiang Chinese Medical University, Huzhou, China
| | - Houjian Zhang
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated Zhejiang Chinese Medical University, Huzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Lixin Yu
- Department of Orthopedic and Traumatology, The 72nd Group Military Hospital of the People's Liberation Army, Huzhou, China
| |
Collapse
|
4
|
Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64:222-238. [PMID: 35716253 DOI: 10.1007/s12016-022-08941-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Elisa Barone
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Antonio Sica
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
5
|
Semenistaja S, Skuja S, Kadisa A, Groma V. Healthy and Osteoarthritis-Affected Joints Facing the Cellular Crosstalk. Int J Mol Sci 2023; 24:4120. [PMID: 36835530 PMCID: PMC9964755 DOI: 10.3390/ijms24044120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint disease that is recognized as the most common type of arthritis. During the last decade, it shows an incremental global rise in prevalence and incidence. The interaction between etiologic factors that mediate joint degradation has been explored in numerous studies. However, the underlying processes that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. During synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and necrotic cells. These "foreign bodies" serve as danger-associated molecular patterns (DAMPs) that trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this review, we explore the cellular and molecular communication networks established between the major joint compartments-the synovial membrane, cartilage, and subchondral bone of normal and OA-affected joints.
Collapse
Affiliation(s)
- Sofija Semenistaja
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Kadisa
- Department of Internal Diseases, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
6
|
Kraus VB, Karsdal MA. Clinical monitoring in osteoarthritis: Biomarkers. Osteoarthritis Cartilage 2022; 30:1159-1173. [PMID: 34536529 PMCID: PMC8924021 DOI: 10.1016/j.joca.2021.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this overview of osteoarthritis (OA) biomarkers is to provide the non-specialist with a toolbox, based on experience acquired by biomarker researchers over many years, to understand biomarkers in general and their use in the OA field. METHODS We provide an update on this subject since the OARSI Primer on osteoarthritis (OA) nearly a decade ago. RESULTS Since the last update, the importance of molecular biomarkers has been increasingly recognized in the field, but no OA-related biomarkers have been adopted for routine use in clinical practice. The current lack of chondroprotective treatments for OA impairs the assessment, validation and qualification of the potential role of biomarkers as tools for monitoring disease status and patient responses to treatment of OA. Yet there is no lack of an evolving compendium of OA-related biomarkers, ever more fit-for-purpose, that could currently facilitate drug development for OA. We provide an abbreviated update and overview of specific soluble OA-related biomarkers for this new OARSI Primer on OA with OA-relevant examples encompassing the concepts of biomarker nomenclature, qualification, interpretation, measurement, reporting requirements, application to research, drug discovery and clinical care, and future needs for biomarker advancement. CONCLUSION Appropriate biomarkers should play a role at all stages of OA diagnosis, prognosis, drug development, and treatment. The future of OA biomarker research and development holds great promise as its foundation is increasingly robust.
Collapse
Affiliation(s)
- V B Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Duke University School of Medicine, Durham, NC, USA.
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
7
|
Angelini F, Widera P, Mobasheri A, Blair J, Struglics A, Uebelhoer M, Henrotin Y, Marijnissen AC, Kloppenburg M, Blanco FJ, Haugen IK, Berenbaum F, Ladel C, Larkin J, Bay-Jensen AC, Bacardit J. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis 2022; 81:666-675. [PMID: 35246457 DOI: 10.1136/annrheumdis-2021-221763] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) patient stratification is an important challenge to design tailored treatments and drive drug development. Biochemical markers reflecting joint tissue turnover were measured in the IMI-APPROACH cohort at baseline and analysed using a machine learning approach in order to study OA-dominant phenotypes driven by the endotype-related clusters and discover the driving features and their disease-context meaning. METHOD Data quality assessment was performed to design appropriate data preprocessing techniques. The k-means clustering algorithm was used to find dominant subgroups of patients based on the biochemical markers data. Classification models were trained to predict cluster membership, and Explainable AI techniques were used to interpret these to reveal the driving factors behind each cluster and identify phenotypes. Statistical analysis was performed to compare differences between clusters with respect to other markers in the IMI-APPROACH cohort and the longitudinal disease progression. RESULTS Three dominant endotypes were found, associated with three phenotypes: C1) low tissue turnover (low repair and articular cartilage/subchondral bone turnover), C2) structural damage (high bone formation/resorption, cartilage degradation) and C3) systemic inflammation (joint tissue degradation, inflammation, cartilage degradation). The method achieved consistent results in the FNIH/OAI cohort. C1 had the highest proportion of non-progressors. C2 was mostly linked to longitudinal structural progression, and C3 was linked to sustained or progressive pain. CONCLUSIONS This work supports the existence of differential phenotypes in OA. The biomarker approach could potentially drive stratification for OA clinical trials and contribute to precision medicine strategies for OA progression in the future. TRIAL REGISTRATION NUMBER NCT03883568.
Collapse
Affiliation(s)
| | - Paweł Widera
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, The Netherlands.,Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.,World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Joseph Blair
- ImmunoScience, Nordic Bioscience, Herlev, Denmark
| | - André Struglics
- Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
| | | | - Yves Henrotin
- Artialis SA, Liège, Belgium.,Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | | | - Margreet Kloppenburg
- Rheumatology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands.,Department of Clinical Epidemiology, Leiden Universitair Medisch Centrum, Leiden, The Netherlands
| | - Francisco J Blanco
- Servicio de Reumatologia, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
| | - Ida K Haugen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Francis Berenbaum
- Institut national de la santé et de la recherche médicale, Sorbonne Université, Paris, France
| | | | | | | | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Jacobs CA, Conley CEW, Kraus VB, Lansdown DA, Lau BC, Li X, Majumdar S, Spindler KP, Lemaster NG, Stone AV. MOntelukast as a potential CHondroprotective treatment following Anterior cruciate ligament reconstruction (MOCHA Trial): study protocol for a double-blind, randomized, placebo-controlled clinical trial. Trials 2022; 23:98. [PMID: 35101085 PMCID: PMC8802473 DOI: 10.1186/s13063-021-05982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND After anterior cruciate ligament (ACL) reconstruction, patient-reported outcomes are improved 10 years post-surgery; however, cytokine concentrations remain elevated years after surgery with over 80% of those with combined ACL and meniscus injuries having posttraumatic osteoarthritis (PTOA) within 10-15 years. The purpose of this multicenter, randomized, placebo-controlled trial is to assess whether a 6-month course of oral montelukast after ACL reconstruction reduces systemic markers of inflammation and biochemical and imaging biomarkers of cartilage degradation. METHODS We will enroll 30 individuals undergoing primary ACL reconstruction to participate in this IRB-approved multicenter clinical trial. This trial will target those at greatest risk of a more rapid PTOA onset (age range 25-50 with concomitant meniscus injury). Patients will be randomly assigned to a group instructed to take 10 mg of montelukast daily for 6 months following ACL reconstruction or placebo. Patients will be assessed prior to surgery and 1, 6, and 12 months following surgery. To determine if montelukast alters systemic inflammation following surgery, we will compare systemic concentrations of prostaglandin E2, monocyte chemoattractant protein-1, and pro-inflammatory cytokines between groups. We will also compare degradative changes on magnetic resonance imaging (MRI) collected 1 and 12 months following surgery between groups with reductions in early biomarkers of cartilage degradation assessed with urinary biomarkers of type II collagen breakdown and bony remodeling. DISCUSSION There is a complex interplay between the pro-inflammatory intra-articular environment, underlying bone remodeling, and progressive cartilage degradation. PTOA affects multiple tissues and appears to be more similar to rheumatoid arthritis than osteoarthritis with respect to inflammation. There is currently no treatment to delay or prevent PTOA after ACL injury. Since there is a larger and more persistent inflammatory response after ACL reconstruction than the initial insult of injury, treatment may need to be initiated after surgery, sustained over a period of time, and target multiple mechanisms in order to successfully alter the disease process. This study will assess whether a 6-month postoperative course of oral montelukast affects multiple PTOA mechanisms. Because montelukast administration can be safely sustained for long durations and offers a low-cost treatment option, should it be proven effective in the current trial, these results can be immediately incorporated into clinical practice. TRIAL REGISTRATION ClinicalTrials.gov NCT04572256 . Registered on October 1, 2020.
Collapse
Affiliation(s)
- Cale A Jacobs
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA.
| | - Caitlin E W Conley
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| | | | | | | | | | | | | | - Nicole G Lemaster
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| | - Austin V Stone
- University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284, USA
| |
Collapse
|
9
|
Zou Z, Luo X, Chen Z, Zhang YS, Wen C. Emerging microfluidics-enabled platforms for osteoarthritis management: from benchtop to bedside. Theranostics 2022; 12:891-909. [PMID: 34976219 PMCID: PMC8692897 DOI: 10.7150/thno.62685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent debilitating age-related joint degenerative disease. It is a leading cause of pain and functional disability in older adults. Unfortunately, there is no cure for OA once the damage is established. Therefore, it promotes an urgent need for early detection and intervention of OA. Theranostics, combining therapy and diagnosis, emerges as a promising approach for OA management. However, OA theranostics is still in its infancy. Three fundamental needs have to be firstly fulfilled: i) a reliable OA model for disease pathogenesis investigation and drug screening, ii) an effective and precise diagnostic platform, and iii) an advanced fabrication approach for drug delivery and therapy. Meanwhile, microfluidics emerges as a versatile technology to address each of the needs and eventually boost the development of OA theranostics. Therefore, this review focuses on the applications of microfluidics, from benchtop to bedside, for OA modelling and drug screening, early diagnosis, and clinical therapy. We first introduce the basic pathophysiology of OA and point out the major unfilled research gaps in current OA management including lack of disease modelling and drug screening platforms, early diagnostic modalities and disease-modifying drugs and delivery approaches. Accordingly, we then summarize the state-of-the-art microfluidics technology for OA management from in vitro modelling and diagnosis to therapy. Given the existing promising results, we further discuss the future development of microfluidic platforms towards clinical translation at the crossroad of engineering and biomedicine.
Collapse
Affiliation(s)
- Zhou Zou
- Department of Biomedical Engineering, Faculty of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaohe Luo
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhengkun Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Currently at Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
10
|
Convill JG, Tawy GF, Freemont AJ, Biant LC. Clinically Relevant Molecular Biomarkers for Use in Human Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13:1511S-1531S. [PMID: 32680434 PMCID: PMC8808945 DOI: 10.1177/1947603520941239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Biomarkers in osteoarthritis (OA) could serve as objective clinical indicators for various disease parameters, and act as surrogate endpoints in clinical trials for disease-modifying drugs. The aim of this systematic review was to produce a comprehensive list of candidate molecular biomarkers for knee OA after the 2013 ESCEO review and discern whether any have been studied in sufficient detail for use in clinical settings. DESIGN MEDLINE and Embase databases were searched between August 2013 and May 2018 using the keywords "knee osteoarthritis," "osteoarthritis," and "biomarker." Studies were screened by title, abstract, and full text. Human studies on knee OA that were published in the English language were included. Excluded were studies on genetic/imaging/cellular markers, studies on participants with secondary OA, and publications that were review/abstract-only. Study quality and bias were assessed. Statistically significant data regarding the relationship between a biomarker and a disease parameter were extracted. RESULTS A total of 80 studies were included in the final review and 89 statistically significant individual molecular biomarkers were identified. C-telopeptide of type II collagen (CTXII) was shown to predict progression of knee OA in urine and serum in multiple studies. Synovial fluid vascular endothelial growth factor concentration was reported by 2 studies to be predictive of knee OA progression. CONCLUSION Despite the clear need for biomarkers of OA, the lack of coordination in current research has led to incompatible results. As such, there is yet to be a suitable biomarker to be used in a clinical setting.
Collapse
Affiliation(s)
- James G Convill
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gwenllian F Tawy
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anthony J Freemont
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leela C Biant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Rousseau JC, Chapurlat R, Garnero P. Soluble biological markers in osteoarthritis. Ther Adv Musculoskelet Dis 2021; 13:1759720X211040300. [PMID: 34616494 PMCID: PMC8488516 DOI: 10.1177/1759720x211040300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, markers research has focused on the structural components of cartilage matrix. Specifically, a second generation of degradation markers has been developed against type II collagen neoepitopes generated by specific enzymes. A particular effort has been made to measure the degradation of minor collagens III and X of the cartilage matrix. However, because clinical data, including longitudinal controlled studies, are very scarce, it remains unclear whether they will be useful as an alternative to or in combination with current more established collagen biological markers to assess patients with osteoarthritis (OA). In addition, new approaches using high-throughput technologies allowed to detect new types of markers and improve the knowledge about the metabolic changes linked to OA. The relative advances coming from phenotype research are a first attempt to classify the heterogeneity of OA, and several markers could improve the phenotype characterization. These phenotypes could improve the selection of patients in clinical trials limiting the size of the studies by selecting patients with OA characteristics corresponding to the metabolic pathway targeted by the molecules evaluated. In addition, the inclusion of rapid progressors only in clinical trials would facilitate the demonstration of efficacy of the investigative drug to reduce joint degradation. The combination of selective biochemical markers appears as a promising and cost-effective approach to fulfill this unmet clinical need. Among the various potential roles of biomarkers in OA, their ability to monitor drug efficacy is probably one of the most important, in association with clinical and imaging parameters. Biochemical markers have the unique property to detect changes in joint tissue metabolism within a few weeks.
Collapse
Affiliation(s)
- Jean-Charles Rousseau
- INSERM Unit 1033, Pavillon F, Hôpital E. Herriot, 5 Place d’Arsonval, 69437 Lyon Cedex 03, France
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM 1033, Lyon, France
| | - Roland Chapurlat
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
- Université de Lyon, Lyon, France
- Hôpital Edouard Herriot, Hospice Civils de Lyon, Lyon, France
| | - Patrick Garnero
- Biochemical Marker Assay Laboratory for Clinical Research (PMO-Lab), Lyon, France
- INSERM UMR 1033, Lyon, France
| |
Collapse
|
12
|
Kraus VB, Karsdal MA. Osteoarthritis: Current Molecular Biomarkers and the Way Forward. Calcif Tissue Int 2021; 109:329-338. [PMID: 32367210 DOI: 10.1007/s00223-020-00701-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The ultimate hope of researchers and patients is a pathway to development of treatments for osteoarthritis to modify the disease process in addition to the symptoms. However, development of disease modifying drugs requires objective endpoints such as measures of joint structure, joint tissue homeostasis and/or joint survival-measures such as provided by imaging biomarkers, molecular biomarkers and joint replacement frequency, respectively. Although biomarkers supporting investigational drug use and drug approval include surrogate endpoints that may not necessarily reflect or directly correlate with the clinical outcome of interest, a formal biomarker qualification process currently exists that is a rigorous three stage process that yields biomarker approvals (or denials) for specific contexts of use. From a cost perspective, biochemical biomarkers are the 'ones to beat'; however, even well-validated biomarkers may not cross the translation gaps for eventual use in healthcare unless they offer an advantage in terms of cost per quality adjusted life year. This review summarizes the case FOR and AGAINST biomarkers in drug development and highlights the current data for a subset of biomarkers in the osteoarthritis research field informing on cartilage homeostasis, joint inflammation and altered subchondral bone remodeling.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Division of Rheumatology, Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke St, Box 104775, Durham, NC, 27701, USA.
| | - Morten A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
13
|
Luo Y, Samuels J, Krasnokutsky S, Byrjalsen I, Kraus VB, He Y, Karsdal MA, Abramson SB, Attur M, Bay-Jensen AC. A low cartilage formation and repair endotype predicts radiographic progression of symptomatic knee osteoarthritis. J Orthop Traumatol 2021; 22:10. [PMID: 33687578 PMCID: PMC7943687 DOI: 10.1186/s10195-021-00572-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Osteoarthritis (OA) is a disease with multiple endotypes. A hallmark of OA is loss of cartilage; however, it is evident that the rate of cartilage loss differs among patients, which may partly be attributed to differential capacity for cartilage repair. We hypothesize that a low cartilage repair endotype exists and that such endotypes are more likely to progress radiographically. The aim of this study is to examine the associations of level of cartilage formation with OA severity and radiographic OA progression. We used the blood-based marker PRO-C2, reflecting type II collagen formation, to assess levels of cartilage formation. Materials and methods The type II collagen propeptide PRO-C2 was measured in the serum/plasma of knee OA subjects from New York University (NYU, n = 106) and a subcohort of the phase III oral salmon calcitonin (sCT) trial SMC021-2301 (SMC, n = 147). Risk of radiographic medial joint space narrowing (JSN) over 24 months was compared between quartiles (very low, low, moderate, and high) of PRO-C2. Associations were adjusted for age, gender, BMI, race, baseline pain levels, and baseline joint space width. Results In both the NYU and SMC cohorts, subjects with low PRO-C2 levels had greater JSN compared with subjects with high PRO-C2. Mean difference in JSN between subjects with very low and high levels of PRO-C2 was 0.65 mm (p = 0.002), corresponding to a 3.4 (1.4–8.6)-fold higher risk of progression. There was no significant effect of sCT treatment, compared with placebo, on JSN over 2 years before stratification based on baseline PRO-C2. However, there were proportionately fewer progressors in the sCT arm of the very low/low PRO-C2 group compared with the moderate/high group (Chi squared = 6.5, p = 0.011). Conclusion Serum/plasma level of type II collagen formation, PRO-C2, may be an objective indicator of a low cartilage repair endotype, displaying radiographic progression and superior response to a proanabolic drug. Level of evidence Level III post hoc exploratory analysis of one longitudinal cohort and a sub-study from one phase III clinical trial.
Collapse
Affiliation(s)
- Yunyun Luo
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Samuels
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | - Svetlana Krasnokutsky
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | | | - Virginia B Kraus
- Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, USA
| | - Yi He
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Steven B Abramson
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | - Mukundan Attur
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | - Anne C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark.
| |
Collapse
|
14
|
Jacobs CA, Mace RA, Greenberg J, Popok PJ, Reichman M, Lattermann C, Burris JL, Macklin EA, Vranceanu AM. Development of a mind body program for obese knee osteoarthritis patients with comorbid depression. Contemp Clin Trials Commun 2021; 21:100720. [PMID: 33553798 PMCID: PMC7859301 DOI: 10.1016/j.conctc.2021.100720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Knee osteoarthritis (OA) is the most common joint disorder in the U.S. and a leading cause of disability. Depression and obesity are highly comorbid among knee OA patients, and the combination of obesity and depression is associated with decreased physical activity, higher pain and disability, and more rapid cartilage degradation. Depression, obesity and OA exacerbate one another and share a common pathophysiology involving systemic inflammation and pro-inflammatory cytokines, reflecting a complex mind-body interaction. Current treatments for knee OA offer little to no benefit over placebo, and do not emphasize mind-body practices or physical activity to target the underlying pathophysiology. Mind-body interventions to lessen depressive symptoms and increase physical activity offer the ability to target biological, mechanical and psychological mechanisms of OA progression. Our long-term goals are to evaluate the mechanisms by which the Relaxation Response Resiliency Program (3RP) delivered via secure telehealth, and adapted for patients with depression, obesity and knee OA (GetActive-OA) promotes increases in physical activity and improved knee health. We hypothesize that the synergistic interaction between mindfulness, adaptive thinking, positive psychology and healthy living skills of the GetActive-OA will slow the progression of symptomatic knee OA by reducing pro-inflammatory cytokine expression and promoting optimal mechanical loading of the cartilage. Here we present the protocol for a mixed methods study that will adapt the 3RP for the needs of knee OA patients with depression and obesity with a focus on increasing physical activity (GetActive-OA), and iteratively maximize the feasibility, credibility and acceptability of the programs and research procedures.
Collapse
Affiliation(s)
- Cale A. Jacobs
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky, 740 S. Limestone, Suite K401, Lexington, 40536-0284, KY, USA
| | - Ryan A. Mace
- Integrated Brain Health Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 1st Floor, Suite 100, Boston, 02114, MA, USA
| | - Jonathan Greenberg
- Integrated Brain Health Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 1st Floor, Suite 100, Boston, 02114, MA, USA
| | - Paula J. Popok
- Integrated Brain Health Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 1st Floor, Suite 100, Boston, 02114, MA, USA
| | - Mira Reichman
- Integrated Brain Health Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 1st Floor, Suite 100, Boston, 02114, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, 850 Boylston Street, Chestnut Hill, 02467, MA, USA
| | - Jessica L. Burris
- Department of Psychology, University of Kentucky, 207K Kastle Hall, Lexington, 40506, KY, USA
| | - Eric A. Macklin
- Integrated Brain Health Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 1st Floor, Suite 100, Boston, 02114, MA, USA
| | - Ana-Maria Vranceanu
- Integrated Brain Health Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, 1 Bowdoin Square, 1st Floor, Suite 100, Boston, 02114, MA, USA
| |
Collapse
|
15
|
Bone phenotypes in rheumatology - there is more to bone than just bone. BMC Musculoskelet Disord 2020; 21:789. [PMID: 33248451 PMCID: PMC7700716 DOI: 10.1186/s12891-020-03804-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis, rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis, all have one clear common denominator; an altered turnover of bone. However, this may be more complex than a simple change in bone matrix and mineral turnover. While these diseases share a common tissue axis, their manifestations in the area of pathology are highly diverse, ranging from sclerosis to erosion of bone in different regions. The management of these diseases will benefit from a deeper understanding of the local versus systemic effects, the relation to the equilibrium of the bone balance (i.e., bone formation versus bone resorption), and the physiological and pathophysiological phenotypes of the cells involved (e.g., osteoblasts, osteoclasts, osteocytes and chondrocytes). For example, the process of endochondral bone formation in chondrocytes occurs exists during skeletal development and healthy conditions, but also in pathological conditions. This review focuses on the complex molecular and cellular taxonomy of bone in the context of rheumatological diseases that alter bone matrix composition and maintenance, giving rise to different bone turnover phenotypes, and how biomarkers (biochemical markers) can be applied to potentially describe specific bone phenotypic tissue profiles.
Collapse
|
16
|
Lin JC, Liu ZG, Liu RR, Xie LW, Xie HL, Cai HG. The increase of osteopontin and β-carboxy-terminal cross-linking telopeptide of type I collagen enhances the risk of hip fracture in the elderly. J Clin Lab Anal 2020; 34:e23204. [PMID: 32406547 PMCID: PMC7246377 DOI: 10.1002/jcla.23204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/17/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hip fracture in the elderly is a health burden worldwide due to its high mortality rate. This study was conducted to determine the possible mechanisms of osteopontin (OPN) and β-carboxy-terminal cross-linking telopeptide of type I collagen (β-CTX) in hip fracture in the elderly. MATERIALS AND METHODS In the study, we recruited 108 elderly patients with hip fracture diagnosed from May 2012 to May 2015 at the Third Hospital of Xiamen and 86 healthy individuals without a history of hip fracture were taken as controls. Serum levels of OPN and β-CTX were then determined. The T and Z values for bone mineral density (BMD) were also measured. Moreover, logistic regression analysis was performed to assess the risk and protective factors for hip fracture in the elderly. RESULTS Serum levels of both OPN and β-CTX were increased in elderly patients with hip fracture. OPN was positively correlated with β-CTX. In addition, the levels of OPN and β-CTX shared a positive association with the age, and a negative association with the BMD, in terms of T and Z values of the hip. In addition, increased BMD and outdoor sports might be protective factors for hip fracture, and an increase in levels of OPN and β-CTX might be associated with a higher risk of hip fracture in the elderly population. DISCUSSION Collectively, increased serum levels of OPN and β-CTX might be correlated with a higher risk of a hip fracture and have predictive values in the occurrence of hip fracture in the elderly.
Collapse
Affiliation(s)
- Jian-Chun Lin
- Department of Orthopaedics, The Third Hospital of Xiamen, Xiamen, China
| | - Zhong-Guo Liu
- Department of Orthopaedics, The Third Hospital of Xiamen, Xiamen, China
| | - Rui-Ren Liu
- Department of Orthopaedics, The Third Hospital of Xiamen, Xiamen, China
| | - Liang-Wen Xie
- Department of Orthopaedics, The Third Hospital of Xiamen, Xiamen, China
| | - Huang-Lin Xie
- Department of Orthopaedics, The Third Hospital of Xiamen, Xiamen, China
| | - He-Guo Cai
- Department of Orthopaedics, The Third Hospital of Xiamen, Xiamen, China
| |
Collapse
|
17
|
Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr Opin Rheumatol 2020; 31:80-89. [PMID: 30461544 DOI: 10.1097/bor.0000000000000567] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW This review focuses on the molecular taxonomy of osteoarthritis from the perspective of molecular biomarkers. We discuss how wet biochemical markers may be used to understand disease pathogenesis and progression and define molecular endotypes of osteoarthritis and how these correspond to clinical phenotypes. RECENT FINDINGS Emerging evidence suggests that osteoarthritis is a heterogeneous and multifaceted disease with multiple causes, molecular endotypes and corresponding clinical phenotypes. Biomarkers may be employed as tools for patient stratification in clinical trials, enhanced disease management in the primary care centres of the future and for directing more rational and targeted osteoarthritis drug development. Proximal molecular biomarkers (e.g synovial fluid) are more likely to distinguish between molecular endotypes because there is less interference from systemic sources of biomarker noise, including comorbidities. SUMMARY In this review, we have focused on the molecular biomarkers of four distinct osteoarthritis subtypes including inflammatory, subchondral bone remodelling, metabolic syndrome and senescent age-related endotypes, which have corresponding phenotypes. Progress in the field of osteoarthritis endotype and phenotype research requires a better understanding of molecular biomarkers that may be used in conjunction with imaging, pain and functional assessments for the design of more effective, stratified and individualized osteoarthritis treatments.
Collapse
|
18
|
Jacobs CA, Vranceanu AM, Thompson KL, Lattermann C. Rapid Progression of Knee Pain and Osteoarthritis Biomarkers Greatest for Patients with Combined Obesity and Depression: Data from the Osteoarthritis Initiative. Cartilage 2020; 11:38-46. [PMID: 29855190 PMCID: PMC6921961 DOI: 10.1177/1947603518777577] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To compare the progression of biochemical biomarkers of osteoarthritis (OA), knee pain, and function between nonobese patients (NON), obese patients without depression (OBESE), and obese patients with comorbid depression (O + D). DESIGN Utilizing the FNIH OA Biomarkers Consortium dataset, we categorized knee OA patients into NON, OBESE, and O + D groups based on body mass index and Center for Epidemiological Studies-Depression (CES-D) scores. Subjective symptoms (Knee injury and Osteoarthritis Outcome Score Quality of Life subscale (KOOS QOL), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) Pain and Physical Function scores, and the Short Form-12 (SF-12) Physical Component Score [PCS]) and objective measures of cartilage degradation and bone remodeling (urinary CTXII and CTXIα) were compared among groups at baseline and 2-year follow-up. RESULTS Of the 600 patients, 282 (47%) were NON, 285 (47.5%) OBESE, and 33 (5.5%) O + D. The O + D group had significantly worse pain and function both at baseline and 2-year follow-up (P < 0.001 for all comparisons) as evidenced by self-reported measures on KOOS QOL, WOMAC Pain, WOMAC Physical Function, and SF-12 PCS. The O + D group also demonstrated significant increases in CTXII (P = 0.01) and CTXIα (P = 0.005), whereas the NON and OBESE groups did not. CONCLUSIONS The combination of inferior knee pain, physical function, and significantly greater increases in biomarkers of cartilage degradation and bony remodelling suggest a more rapid progression for obese OA patients with comorbid depression. The link between systemic disease, inflammatory burden, and progressive cartilage degradation is in line with increasing concerns about a degenerative synovial environment in early osteoarthritic knees that progress to treatment failure with biologic restoration procedures.
Collapse
Affiliation(s)
- Cale A. Jacobs
- Department of Orthopedic Surgery and
Sports Medicine, University of Kentucky, Lexington, KY, USA,Cale A. Jacobs, Department of Orthopedic
Surgery and Sports Medicine, University of Kentucky, 740 S Limestone, Room K426,
Lexington, KY 40536-0284, USA.
| | - Ana-Maria Vranceanu
- Department of Psychology, Harvard
Medical School and Integrated Brain Health Clinical and Research Program,
Massachusetts General Hospital, Boston, MA, USA
| | | | - Christian Lattermann
- Department of Orthopaedic Surgery,
Harvard Medical School and Brigham and Women’s Hospital, Chestnut Hill, MA,
USA
| |
Collapse
|
19
|
Bay-Jensen AC, Engstroem A, Sharma N, Karsdal MA. Blood and urinary collagen markers in osteoarthritis: markers of tissue turnover and disease activity. Expert Rev Mol Diagn 2019; 20:57-68. [PMID: 31847627 DOI: 10.1080/14737159.2020.1704257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: The need for diagnostic markers in osteoarthritis (OA) is acute and immediate, as sensitive and precise tools that monitor disease activity and treatment response are lacking. Collagens - types I, II, and III - are the skeleton of the extracellular matrix of joint tissues. Joint collagens are generally turned over at a low rate, but the balance between formation and degradation is disturbed, leading to the loss of, for example, cartilage.Areas covered: We discuss the markers reflecting collagen turnover and provide examples of how they have been applied in OA research, as well as how we believe these should be used in the future. We have searched PubMed for full-text articles written in English using different combinations of the following terms: OA, biomarker, and collagen. The result is a narrative review that gives examples from the literature.Expert opinion: Collagen markers show promise, as they are direct measures of tissue balance. Until now, collagen markers have mainly been tested in observational cohorts, which may provide insights into the association between the candidate marker and clinical variables; however, these do not advance the development of qualified markers that can be used for drug development or in clinical practice.
Collapse
Affiliation(s)
| | - Amalie Engstroem
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark.,Biomedical institute, University of Copenhagen, Copenhagen, Denmark
| | - Neha Sharma
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark.,Biomedical institute, University of Copenhagen, Copenhagen, Denmark
| | - Morten Asser Karsdal
- Department of Rheumatology, Nordic Bioscience, Biomarkers and Research, Herlev, Denmark
| |
Collapse
|
20
|
Fernández-Puente P, González-Rodríguez L, Calamia V, Picchi F, Lourido L, Camacho-Encina M, Oreiro N, Rocha B, Paz-González R, Marina A, García C, Blanco FJ, Ruiz-Romero C. Analysis of Endogenous Peptides Released from Osteoarthritic Cartilage Unravels Novel Pathogenic Markers. Mol Cell Proteomics 2019; 18:2018-2028. [PMID: 31352363 PMCID: PMC6773562 DOI: 10.1074/mcp.ra119.001554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is a pathology characterized by the loss of articular cartilage. In this study, we performed a peptidomic strategy to identify endogenous peptides (neopeptides) that are released from human osteoarthritic tissue, which may serve as disease markers. With this aim, secretomes of osteoarthritic and healthy articular cartilages obtained from knee and hip were analyzed by shotgun peptidomics. This discovery step led to the identification of 1175 different peptides, corresponding to 101 proteins, as products of the physiological or pathological turnover of cartilage extracellular matrix. Then, a targeted multiple reaction monitoring-mass spectrometry method was developed to quantify the panel of best marker candidates on a larger set of samples (n = 62). Statistical analyses were performed to evaluate the significance of the observed differences and the ability of the neopeptides to classify the tissue. Eight of them were differentially abundant in the media from wounded zones of OA cartilage compared with the healthy tissue (p < 0.05). Three neopeptides belonging to Clusterin and one from Cartilage Oligomeric Matrix Protein showed a disease-dependent decrease specifically in hip OA, whereas two from Prolargin (PRELP) and one from Cartilage Intermediate Layer Protein 1 were significantly increased in samples from knee OA. The release of one peptide from PRELP showed the best metrics for tissue classification (AUC = 0.834). The present study reveals specific neopeptides that are differentially released from knee or hip human osteoarthritic cartilage compared with healthy tissue. This evidences the intervention of characteristic pathogenic pathways in OA and provides a novel panel of peptidic candidates for biomarker development.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers/metabolism
- Cartilage, Articular/cytology
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Case-Control Studies
- Cells, Cultured
- Chromatography, Liquid
- Culture Media, Conditioned/chemistry
- Extracellular Matrix/metabolism
- Female
- Humans
- Male
- Organ Specificity
- Osteoarthritis, Hip/metabolism
- Osteoarthritis, Hip/pathology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Peptides/metabolism
- Proteomics/methods
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Patricia Fernández-Puente
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain.; Agrupación Estratégica CICA - INIBIC, Universidade da Coruña, 15071 A Coruña, Spain
| | - Lucía González-Rodríguez
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Valentina Calamia
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Florencia Picchi
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Lucía Lourido
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - María Camacho-Encina
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Natividad Oreiro
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Beatriz Rocha
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Rocío Paz-González
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain
| | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa, CSIC. Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Carlos García
- Centro de Biología Molecular Severo Ochoa, CSIC. Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Francisco J Blanco
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain.; Departamento de Medicina, Fisioterapia y Ciencias Biomédicas. Universidade da Coruña, 15006 A Coruña, Spain.; RIER-RED de Inflamación y Enfermedades Reumáticas, INIBIC-CHUAC, As Xubias 84, 15006 A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Proteomics Unit-PBR2-ProteoRed/ISCIII, Grupo de Investigación de Reumatología (GIR). Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS. As Xubias, 84, 15006 A Coruña, Spain.; CIBER-BBN Instituto de Salud Carlos III INIBIC-CHUAC As Xubias 84, 15006 A Coruna, Spain.
| |
Collapse
|
21
|
Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: current state and future implications. Clin Exp Rheumatol 2019; 37 Suppl 120:64-72. [PMID: 31621574 PMCID: PMC6936212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
In the most recent years, an extraordinary research effort has emerged to disentangle osteoarthritis heterogeneity, opening new avenues for progressing with therapeutic development and unravelling the pathogenesis of this complex condition. Several phenotypes and endotypes have been proposed albeit none has been sufficiently validated for clinical or research use as yet. This review discusses the latest advances in OA phenotyping including how new modern statistical strategies based on machine learning and big data can help advance this field of research.
Collapse
Affiliation(s)
- Leticia A Deveza
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, NSW, Australia.
| | - Amanda E Nelson
- Department of Medicine, University of North Carolina at Chapel Hill, and Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard F Loeser
- Department of Medicine, University of North Carolina at Chapel Hill, and Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Lindström E, Rizoska B, Tunblad K, Edenius C, Bendele AM, Maul D, Larson M, Shah N, Yoder Otto V, Jerome C, Grabowska U. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J Transl Med 2018. [PMID: 29523155 PMCID: PMC5845353 DOI: 10.1186/s12967-018-1425-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MIV-711 is a highly potent and selective cathepsin K inhibitor. The current article summarizes the therapeutic effects of MIV-711 on joint pathology in rabbits subjected to anterior cruciate ligament transection (ACLT), and the prophylactic effects on joint pathology in dogs subjected to partial medial meniscectomy, two surgical models of osteoarthritis (OA). METHODS Starting 1 week after surgery, rabbits were dosed daily via oral gavage with either MIV-711 or vehicle (n = 7/group) for 7 weeks. The four treatment groups were: (1) sham + vehicle; (2) ACLT + vehicle; (3) ACLT + MIV-711, 30 µmol/kg and (4) ACLT + MIV-711, 100 µmol/kg. Subchondral bone and articular cartilage structures were assessed by µCT, histomorphometry, and scoring. Dogs subjected to partial medial meniscectomy received either MIV-711 (30 µmol/kg) or vehicle (n = 15/group) via oral gavage once daily, starting 1 day before meniscectomy, for 28 days. Cartilage degradation was assessed at the macroscopic and microscopic levels. The exposures of MIV-711 were assessed in both studies and biomarkers reflecting bone resorption (HP-1 in rabbits, CTX-I in dogs) and cartilage degradation (CTX-II) were measured. RESULTS In ACLT rabbits, MIV-711 decreased HP-1 levels by up to 72% (p < 0.001) and CTX-II levels by up to 74% (p < 0.001) compared to ACLT vehicle controls. ACLT surgery significantly reduced the total thickness of the subchondral bone plate and reduced trabecular bone volume in the femur and tibia. These effects were reversed by MIV-711. ACLT resulted in cartilage thickening, which was attenuated by MIV-711. MIV-711 did not affect osteophyte formation or Mankin scores. In dogs, MIV-711 reduced CTX-I and CTX-II levels by 86% (p < 0.001) and 80% (p < 0.001), respectively. Synovial CTX-II levels were reduced by 55-57% (p < 0.001) compared to baseline. MIV-711-treated animals had 25-37% lower macroscopic scores in the femur condyles and 13-33% lower macroscopic scores in the tibial plateaus. CONCLUSIONS MIV-711 prevents subchondral bone loss and partially attenuates cartilage pathology in two animal models of OA. These beneficial effects of MIV-711 on joint pathology are observed in conjunction with decreases in bone and cartilage biomarkers that have been shown to be clinically attainable in human. The data support the further development of MIV-711 for the treatment of OA.
Collapse
|
23
|
Biochemical marker discovery, testing and evaluation for facilitating OA drug discovery and development. Drug Discov Today 2018; 23:349-358. [DOI: 10.1016/j.drudis.2017.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
|
24
|
Development and use of biochemical markers in osteoarthritis: current update. Curr Opin Rheumatol 2018; 30:121-128. [DOI: 10.1097/bor.0000000000000467] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Sobue Y, Kojima T, Kurokouchi K, Takahashi S, Yoshida H, Poole R, Ishiguro N. Prediction of progression of damage to articular cartilage 2 years after anterior cruciate ligament reconstruction: use of aggrecan and type II collagen biomarkers in a retrospective observational study. Arthritis Res Ther 2017; 19:265. [PMID: 29208010 PMCID: PMC5718025 DOI: 10.1186/s13075-017-1471-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We aimed to determine whether synovial fluid (SF) biomarkers can predict the progression of articular cartilage damage as determined by arthroscopic evaluation during and after anterior cruciate ligament (ACL) reconstruction. METHODS Arthroscopic assessment of articular cartilage damage was performed twice in 62 patients, first during ACL reconstruction and then approximately 2 years later during implant removal for ligament fixation. SF levels of the collagenase-generated cleavage neoepitope of type II collagen (C2C) and proteoglycan glycosaminoglycans keratan sulfate (KS), chondroitin-4-sulfate (Δdi-C4S), and chondroitin-6-sulfate (Δdi-C6S) were measured at ACL reconstruction. Associations between baseline biomarker levels and subsequent progression of cartilage damage were determined using receiver operating characteristic analysis and multivariable logistic regression analysis. RESULTS No radiographic changes were observed in any of the patients. Progression of high-grade cartilage damage, observed arthroscopically, was negatively correlated with levels of Δdi-C6S and KS, as well as the ratio of Δdi-C6S to Δdi-C4S (C6S/C4S). Logistic regression analysis revealed significant associations of Δdi-C6S (cut-off: 55.7 nmol/ml, odds ratio (OR) 0.231, 95% confidence interval (CI) 0.061-0.879), KS (cut-off: 10.6 μg/ml, OR 0.114, 95% CI 0.024-0.529), and C6S/C4S ratio (cut-off: 4.6, OR 0.060, 95% CI 0.005-0.737) with the progression of high-grade cartilage damage after adjusting for age, the duration from injury to first surgery, sex, and the number of high-grade lesions (grades III and IV) at baseline. CONCLUSIONS The progression of high-grade cartilage damage was significantly associated with baseline levels of proteoglycan glycosaminoglycan biomarkers; namely, Δdi-C6S, KS, and C6S/C4S ratio.
Collapse
Affiliation(s)
- Yasumori Sobue
- Department of Orthopedic Surgery, Nagoya University School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | - Toshihisa Kojima
- Department of Orthopedic Surgery, Nagoya University School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan.
| | - Kazutoshi Kurokouchi
- Orthopedic Surgery, Mitsubishi Nagoya Hospital, 7-8 Sotodoi, Atsuta, Nagoya, 456-0013, Japan
| | - Shigeo Takahashi
- Orthopedic Surgery, Mitsubishi Nagoya Hospital, 7-8 Sotodoi, Atsuta, Nagoya, 456-0013, Japan
| | - Hiroaki Yoshida
- Orthopedic Surgery, Kamiiida Daiichi General Hospital, 2-70 Kamiiidakita, Kita, Nagoya, 462-0802, Japan
| | - Robin Poole
- Division of Orthopaedics, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| |
Collapse
|
26
|
Morphological and Microstructural Alterations of the Articular Cartilage and Bones during Treadmill Exercises with Different Additional Weight-Bearing Levels. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:8696921. [PMID: 29065659 PMCID: PMC5525086 DOI: 10.1155/2017/8696921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the morphological and microstructural alterations of the articular cartilage and bones during treadmill exercises with different exercise intensities. Sixty 5-week-old female rats were randomly divided into 10 groups: five additional weight-bearing groups (WBx) and five additional weight-bearing with treadmill exercise groups (EBx), which were subjected to additional weight bearing of x% (x = 0, 5, 12, 19, and 26) of the corresponding body weight of each rat for 15 min/day. After 8 weeks of experiment, the rats were humanely sacrificed and their bilateral intact knee joints were harvested. Morphological analysis of the cartilages and microcomputed tomography evaluation of bones were subsequently performed. Results showed that increased additional weight bearing may lead to cartilage damage. No significant difference was observed among the subchondral cortical thicknesses of the groups. The microstructure of subchondral trabecular bone of 12% and 19% additional weight-bearing groups was significantly improved; however, the WB26 and EB26 groups showed low bone mineral density and bone volume fraction as well as high structure model index. In conclusion, effects of treadmill exercise on joints may be associated with different additional weight-bearing levels, and exercise intensities during joint growth and maturation should be selected reasonably.
Collapse
|
27
|
Deveza LA, Kraus VB, Collins JE, Guermazi A, Roemer FW, Bowes M, Nevitt MC, Ladel C, Hunter DJ. Association Between Biochemical Markers of Bone Turnover and Bone Changes on Imaging: Data From the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2017; 69:1179-1191. [PMID: 27723280 DOI: 10.1002/acr.23121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/30/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the relationship between biochemical markers involved in bone turnover and bone features on imaging in knees with osteoarthritis (OA). METHODS We analyzed data from the Foundation for the National Institutes of Health OA Biomarkers Consortium within the Osteoarthritis Initiative (n = 600). Bone marrow lesions (BMLs), osteophytes, and subchondral bone area (mm2 ) and shape (position on 3-D vector) were assessed on magnetic resonance images, and bone trabecular integrity (BTI) was assessed on radiographs. Serum and urinary markers (serum C-terminal crosslinked telopeptide of type I collagen [CTX-I], serum crosslinked N-telopeptide of type I collagen [NTX-I], urinary NTX-I, urinary C-terminal crosslinked telopeptide of type II collagen [CTX-II], and urinary CTX-Iα and CTX-Iβ) were measured. The associations between biochemical and imaging markers at baseline and over 24 months were assessed using regression models adjusted for covariates. RESULTS At baseline, most biochemical markers were associated with BMLs, with C statistics for the presence/absence of any BML ranging from 0.675 to 0.688. At baseline, urinary CTX-II was the marker most consistently associated with BMLs (with odds of having ≥5 subregions affected compared to no BML increasing by 1.92-fold [95% confidence interval (95% CI) 1.25, 2.96] per 1 SD of urinary CTX-II), large osteophytes (odds ratio 1.39 [95% CI 1.10, 1.77]), bone area and shape (highest partial R2 = 0.032), and changes in bone shape over 24 months (partial R2 range 0.008 to 0.024). Overall, biochemical markers were not predictive of changes in BMLs or osteophytes. Serum NTX-I was inversely associated with BTI of the vertical trabeculae (quadratic slope) in all analyses (highest partial R2 = 0.028). CONCLUSION We found multiple significant associations, albeit mostly weak ones. The role of systemic biochemical markers as predictors of individual bone anatomic features of single knees is limited based on our findings.
Collapse
Affiliation(s)
- Leticia A Deveza
- Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | - Jamie E Collins
- Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ali Guermazi
- Boston University School of Medicine, Boston, Massachusetts
| | - Frank W Roemer
- Boston University School of Medicine, Boston, Massachusetts, and University of Erlangen, Nuremberg, Erlangen, Germany
| | | | | | | | - David J Hunter
- Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Pain prediction by serum biomarkers of bone turnover in people with knee osteoarthritis: an observational study of TRAcP5b and cathepsin K in OA. Osteoarthritis Cartilage 2017; 25:858-865. [PMID: 28087412 DOI: 10.1016/j.joca.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate serum biomarkers, tartrate resistant acid phosphatase 5b (TRAcP5b) and cathepsin K (cath-K), indicative of osteoclastic bone resorption, and their relationship to pain and pain change in knee osteoarthritis (OA). METHODS Sera and clinical data were collected from 129 people (97 with 3-year follow-up) with knee OA from the Prediction of Osteoarthritis Progression (POP) cohort. Knee OA-related outcomes in POP included: WOMAC pain, National Health and Nutrition Examination Survey (NHANES) I (pain, aching and stiffness), subchondral sclerosis, and radiographically determined tibiofemoral and patellofemoral OA. Two putative osteoclast biomarkers were measured in sera: TRAcP5b and cath-K. Medial tibia plateaux were donated at knee arthroplasty for symptomatic OA (n = 84) or from 16 post mortem (PM) controls from the Arthritis Research UK (ARUK) Pain Centre joint tissue repository. Osteoclasts were stained for tartrate resistant acid phosphatase (TRAcP) within the subchondral bone of the medial tibia plateaux. RESULTS Serum TRAcP5b activity, but not cath-K-immunoreactivity, was associated with density of TRAcP-positive osteoclasts in the subchondral bone of medial tibia plateaux. TRAcP-positive osteoclasts were more abundant in people with symptomatic OA compared to controls. Serum TRAcP5b activity was associated with baseline pain and pain change. CONCLUSIONS Our observations support a role for subchondral osteoclast activity in the generation of OA pain. Serum TRAcP5b might be a clinically relevant biomarker of disease activity in OA.
Collapse
|
29
|
Lee JW, Kobayashi A, Nakano T. Crystallographic orientation of the c-axis of biological apatite as a new index of the quality of subchondral bone in knee joint osteoarthritis. J Bone Miner Metab 2017; 35:308-314. [PMID: 27026432 DOI: 10.1007/s00774-016-0754-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the preferred orientation of biological apatite (BAp) as a new index of the quality of subchondral bone (SB) in knee joint osteoarthritis (OA). Ten OA and five normal knee joints were obtained. Thickness, quantity and bone mineral density (BMD) of SB were analyzed at the medial condyle of the femur in dry conditions by peripheral quantitative computed tomography. In addition, the preferred crystallographic orientation of the c-axis of BAp was evaluated as bone quality parameter using a microbeam X-ray diffractometer technique. BMD and thickness of SB were significantly increased in OA specimens compared to normal knee specimens (P < 0.01), and the preferred orientation of the c-axis of BAp along the normal direction of SB surface was significantly higher in OA specimens (P < 0.01), reflecting the change in stress of concentration in the pathological portion without cartilage. SB sclerosis in OA results in both proliferation of bone tissues and enhanced degree of preferential alignment of the c-axis of BAp. Our findings could have major implications for the diagnosis of clinical studies, including pathologic elucidation in OA.
Collapse
Affiliation(s)
- Jee-Wook Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702, Korea
| | - Akio Kobayashi
- Department of Orthopaedic Surgery, Osaka City University, Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
30
|
Review of Prospects of Biological Fluid Biomarkers in Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030601. [PMID: 28287489 PMCID: PMC5372617 DOI: 10.3390/ijms18030601] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.).
Collapse
|
31
|
Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus. Sci Rep 2017; 7:42294. [PMID: 28181577 PMCID: PMC5299455 DOI: 10.1038/srep42294] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research.
Collapse
|
32
|
Netzer C, Urech K, Hügle T, Benz RM, Geurts J, Schären S. Characterization of subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis. J Orthop Res 2016; 34:1475-80. [PMID: 27147479 DOI: 10.1002/jor.23281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/29/2016] [Indexed: 02/04/2023]
Abstract
Facet joint osteoarthritis may be a cause of low back pain in degenerative spine diseases including lumbar spinal stenosis. Subchondral bone is regarded as a potential therapeutic target for osteoarthritis treatment. The goal of this study was to characterize subchondral bone histopathology in osteoarthritic facet joints from lumbar spinal stenosis patients. Fifteen patients with degenerative spinal stenosis scheduled for transforaminal lumbar interbody fusion surgery were recruited for this study. Osteoarthritis severity was graded on T1- and T2-weighted MRI images using Weishaupt scoring system. Dissected osteoarthritic facet joints were subjected to histological and immunohistochemistry analyses to study relative abundance of osteoblast, osteoclasts, and macrophages using van Gieson's, tartrate-resistant acid phosphatase and CD68-antibody staining, respectively. Presence of nerve fibers was evaluated by PGP9.5-antibody staining. Differential bone histopathology, independent from radiological osteoarthritis grade, was observed in facet joints. Extensive de novo bone formation was found in subchondral bone tissues of eight of fifteen specimens. Regions of bone formation showed high abundance of blood vessels and CD68-positive macrophages, but were devoid of multinucleated osteoclasts. Additional pathological changes in subchondral marrow spaces, including inflammatory infiltration and enhanced osteoclast activity, were characterized by macrophage-rich tissues. PGP9.5-positive nerve fibers were detected near arterioles, but not in regions displaying bone pathology. Individual histopathological parameters did not associate with clinical features or radiological osteoarthritis severity. Subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis is characterized by marrow infiltration by macrophage-rich tissues and enhanced de novo bone formation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1475-1480, 2016.
Collapse
Affiliation(s)
- Cordula Netzer
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Karin Urech
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Thomas Hügle
- Department of Orthopaedic, Osteoarthritis Research Center Basel, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Robyn Melanie Benz
- Department of Radiology, Musculoskeletal Diagnostics, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland
| | - Jeroen Geurts
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland.,Department of Orthopaedic, Osteoarthritis Research Center Basel, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| |
Collapse
|
33
|
Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, Wang SX, Sandell LJ, Hoffmann SC, Hunter DJ. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 2016; 76:186-195. [PMID: 27296323 DOI: 10.1136/annrheumdis-2016-209252] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/04/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigate a targeted set of biochemical biomarkers as predictors of clinically relevant osteoarthritis (OA) progression. METHODS Eighteen biomarkers were measured at baseline, 12 months (M) and 24 M in serum (s) and/or urine (u) of cases (n=194) from the OA initiative cohort with knee OA and radiographic and persistent pain worsening from 24 to 48 M and controls (n=406) not meeting both end point criteria. Primary analyses used multivariable regression models to evaluate the association between biomarkers (baseline and time-integrated concentrations (TICs) over 12 and 24 M, transposed to z values) and case status, adjusted for age, sex, body mass index, race, baseline radiographic joint space width, Kellgren-Lawrence grade, pain and pain medication use. For biomarkers with adjusted p<0.1, the c-statistic (area under the curve (AUC)), net reclassification index and the integrated discrimination improvement index were used to further select for hierarchical multivariable discriminative analysis and to determine the most predictive and parsimonious model. RESULTS The 24 M TIC of eight biomarkers significantly predicted case status (ORs per 1 SD change in biomarker): sCTXI 1.28, sHA 1.22, sNTXI 1.25, uC2C-HUSA 1.27, uCTXII, 1.37, uNTXI 1.29, uCTXIα 1.32, uCTXIβ 1.27. 24 M TIC of uCTXII (1.47-1.72) and uC2C-Human Urine Sandwich Assay (HUSA) (1.36-1.50) both predicted individual group status (pain worsening, joint space loss and their combination). The most predictive and parsimonious combinatorial model for case status consisted of 24 M TIC uCTXII, sHA and sNTXI (AUC 0.667 adjusted). Baseline uCTXII and uCTXIα both significantly predicted case status (OR 1.29 and 1.20, respectively). CONCLUSIONS Several systemic candidate biomarkers hold promise as predictors of pain and structural worsening of OA.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Elena Losina
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Nevitt
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey N Katz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | | | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St Louis, Missouri, USA
| | - Steven C Hoffmann
- Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
34
|
Bruyère O, Cooper C, Arden N, Branco J, Brandi ML, Herrero-Beaumont G, Berenbaum F, Dennison E, Devogelaer JP, Hochberg M, Kanis J, Laslop A, McAlindon T, Reiter S, Richette P, Rizzoli R, Reginster JY. Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on epidemiology and phenotype of osteoarthritis. Drugs Aging 2016; 32:179-87. [PMID: 25701074 PMCID: PMC4366553 DOI: 10.1007/s40266-015-0243-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Osteoarthritis is a syndrome affecting a variety of patient profiles. A European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and the European Union Geriatric Medicine Society working meeting explored the possibility of identifying different patient profiles in osteoarthritis. The risk factors for the development of osteoarthritis include systemic factors (e.g., age, sex, obesity, genetics, race, and bone density) and local biomechanical factors (e.g., obesity, sport, joint injury, and muscle weakness); most also predict disease progression, particularly joint injury, malalignment, and synovitis/effusion. The characterization of patient profiles should help to better orientate research, facilitate trial design, and define which patients are the most likely to benefit from treatment. There are a number of profile candidates. Generalized, polyarticular osteoarthritis and local, monoarticular osteoarthritis appear to be two different profiles; the former is a feature of osteoarthritis co-morbid with inflammation or the metabolic syndrome, while the latter is more typical of post-trauma osteoarthritis, especially in cases with severe malalignment. Other biomechanical factors may also define profiles, such as joint malalignment, loss of meniscal function, and ligament injury. Early- and late-stage osteoarthritis appear as separate profiles, notably in terms of treatment response. Finally, there is evidence that there are two separate profiles related to lesions in the subchondral bone, which may determine benefit from bone-active treatments. Decisions on appropriate therapy should be made considering clinical presentation, underlying pathophysiology, and stage of disease. Identification of patient profiles may lead to more personalized healthcare, with more targeted treatment for osteoarthritis.
Collapse
Affiliation(s)
- Olivier Bruyère
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart-Tilman B23, 4000, Liège, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Increasing evidence show that bone is a key factor in the development of osteoarthritis. This article reviews the latest results of basic and clinical research on the role of the subchondral bone in osteoarthritis. RECENT FINDINGS Early changes in the subchondral bone can predict subsequent symptoms or disease structural progression. New tools may help clinicians to stratify different osteoarthritis phenotypes with regards to bone remodeling status. SUMMARY The involvement of bone in osteoarthritis has long been thought to be secondary to cartilage damage as an adaptation of the joint. Recent clinical studies with MRI have demonstrated that bone changes could be observed in early stages of the disease, even preceding cartilage lesions. Moreover, there is clear evidence of an association between subchondral bone mineral density and osteoarthritis. The level of bone remodeling plays a critical role under mechanical loading conditions as demonstrated by consistent experimental studies. Yet new clinical biomarkers are being developed to assess the bone phenotype of osteoarthritic patients. This stratification strategy is likely to better identify groups of patients who would benefit from bone-acting drugs to decrease disease progression and improve pain and disability.
Collapse
|
36
|
Bay-Jensen AC, Reker D, Kjelgaard-Petersen CF, Mobasheri A, Karsdal MA, Ladel C, Henrotin Y, Thudium CS. Osteoarthritis year in review 2015: soluble biomarkers and the BIPED criteria. Osteoarthritis Cartilage 2016; 24:9-20. [PMID: 26707988 DOI: 10.1016/j.joca.2015.10.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review and summarize biomarker data published from April 2014 to May 2015 to provide insight to the ongoing work in the field of osteoarthritis (OA). Furthermore, to summarize the BIPED criteria and set it in context of the medical needs of 2015. METHODS PubMed was used as searching machine: Time period 2014/04/01-2015/05/01, MeSH term [Biomarker] AND [Osteoarthritis], Language; English, Full text available. Reviews were excluded. Only papers describing protein based biomarkers measured in human body fluids from OA patients were included. RESULTS Biomarkers of joint tissue turnover, cytokines, chemokines and peptide arrays were measured in different cohorts and studies. Amongst those were previously tested biomarkers such as osteocalcin, Carboxy-terminal cross-linked fragment of type II collagen (CTX-II) and cartilage oligomeric matrix protein (COMP). A majority of the biomarker were classified as I, B or B biomarkers according to the BIPED criteria. Work is continuing on testing biomarkers in OA. There is still a huge, unmet medical need to identify, test, validate and qualify novel and well-known biomarkers. A pre-requisite for this is better characterization and classification of biomarkers to their needs, which may not be reached before higher understanding of OA phenotypes has been gained. In addition, we provide some references to some recent guidelines from Food and Drug Administration (FDA) and European Medicines Agency (EMA) on qualification and usage of biomarkers for drug development and personalized medicine, which may provide value to the field.
Collapse
Affiliation(s)
- A C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - D Reker
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - A Mobasheri
- Faculty of Health and Medical Sciences, University of Surrey, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, United Kingdom; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, Saudi Arabia
| | - M A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - C Ladel
- OA Research & Early Clinical Development, Merck KGaA, Darmstadt, Germany
| | - Y Henrotin
- Bone and Cartilage Research Unit, Arthropole Liège, University of Liège, Institute of Pathology, Liège, Belgium
| | - C S Thudium
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
37
|
Biomarkers for osteoarthritis: Can they be used for risk assessment? A systematic review. Maturitas 2015; 82:36-49. [PMID: 25963100 DOI: 10.1016/j.maturitas.2015.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022]
Abstract
The identification of early biochemical predictors of osteoarthritis (OA) has been the focus of much research over the past few years. However, it still is unclear whether current biochemical markers can be used in prognostic risk assessment of OA. The aim of this systematic review is to evaluate the possible prognostic application of blood and urinary biochemical markers of knee and hip OA. Abstract and full text selection was done by two independent reviewers. A total of 25 relevant publications including 37 biochemical markers of bone and cartilage turnover and inflammation associated with some aspects of OA were reviewed. Most of those biomarkers were studied only once or twice. Due to heterogeneity of both OA-phenotype and determinant among the publications, meta-analysis of the studied biochemical markers was not possible. There was strong evidence for urinary C-terminal telopeptide of collagen type II (uCTX-II) as a prognostic marker for knee OA progression and serum cartilage oligomeric protein (COMP) level as prognostic marker for incidence of knee and hip OA. Evidence for prognostic value of C-reactive protein is still inconclusive. International standardization of future investigations should be pursued to obtain more high-quality, homogenous data on the full spectrum of biochemical OA markers.
Collapse
|