1
|
Zhang Y, Liu W, Lai J, Zeng H. Genetic associations in ankylosing spondylitis: circulating proteins as drug targets and biomarkers. Front Immunol 2024; 15:1394438. [PMID: 38835753 PMCID: PMC11148386 DOI: 10.3389/fimmu.2024.1394438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background Ankylosing spondylitis (AS) is a complex condition with a significant genetic component. This study explored circulating proteins as potential genetic drug targets or biomarkers to prevent AS, addressing the need for innovative and safe treatments. Methods We analyzed extensive data from protein quantitative trait loci (pQTLs) with up to 1,949 instrumental variables (IVs) and selected the top single-nucleotide polymorphism (SNP) associated with AS risk. Utilizing a two-sample Mendelian randomization (MR) approach, we assessed the causal relationships between identified proteins and AS risk. Colocalization analysis, functional enrichment, and construction of protein-protein interaction networks further supported these findings. We utilized phenome-wide MR (phenMR) analysis for broader validation and repurposing of drugs targeting these proteins. The Drug-Gene Interaction database (DGIdb) was employed to corroborate drug associations with potential therapeutic targets. Additionally, molecular docking (MD) techniques were applied to evaluate the interaction between target protein and four potential AS drugs identified from the DGIdb. Results Our analysis identified 1,654 plasma proteins linked to AS, with 868 up-regulated and 786 down-regulated. 18 proteins (AGER, AIF1, ATF6B, C4A, CFB, CLIC1, COL11A2, ERAP1, HLA-DQA2, HSPA1L, IL23R, LILRB3, MAPK14, MICA, MICB, MPIG6B, TNXB, and VARS1) that show promise as therapeutic targets for AS or biomarkers, especially MAPK14, supported by evidence of colocalization. PhenMR analysis linked these proteins to AS and other diseases, while DGIdb analysis identified potential drugs related to MAPK14. MD analysis indicated strong binding affinities between MAPK14 and four potential AS drugs, suggesting effective target-drug interactions. Conclusion This study underscores the utility of MR analysis in AS research for identifying biomarkers and therapeutic drug targets. The involvement of Th17 cell differentiation-related proteins in AS pathogenesis is particularly notable. Clinical validation and further investigation are essential for future applications.
Collapse
Affiliation(s)
- Ye Zhang
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Junda Lai
- Department of Human Life Sciences, Beijing Sport University, Beijing, China
| | - Huiqiong Zeng
- Traditional Chinese Medicine Department of Immunology, Women & Children Health Institute Futian Shenzhen, Shenzhen, China
| |
Collapse
|
2
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
3
|
Li H, Liu Y, Zhou J, Liu S, Liu Y, Yang Y, Wang W, Che Y, Inam M, Guan L. The protective mechanism of a novel polysaccharide from Lactobacillus-fermented Nostoc commune Vauch. on attenuating cadmium-induced kidney injury in mice. Int J Biol Macromol 2023; 226:1444-1454. [PMID: 36442563 DOI: 10.1016/j.ijbiomac.2022.11.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
A novel polysaccharide (NCVP-F) from Lactobacillus-fermented Nostoc commune Vauch. was obtained to investigate its underlying mechanism in cadmium-induced kidney injury. Results indicated that in comparison with NCVP, NCVP-F with lower molecular weight of 365.369 kDa, exhibited higher mole percentage of Man and Glc-UA, whereas slightly lower mole percentage of other monosaccharides. NCVP-F is a α-pyran polysaccharide similar to NCVP. Meanwhile, NCVP-F can more effectively alleviate hepatorenal injury (ALT, AST, TG, BUN and SCr) and kidney tissue lesions in Cd-injured mice model by increasing antioxidant enzyme activity (SOD, GSH and GSH-Px), inhibiting cytokines levels (IL-6, IL-1β, TNF-α and IL-18). In addition, NCVP-F effectively inhibited apoptosis proteins (Bax, cytochrome c, a-caspase-9 and a-caspase-3) and enhanced anti-apoptotic protein (Bcl-2) probably via activating PI3K/AKT/mTOR pathway in the Cd-injury kidney. Furthermore, 16S rRNA sequencing results indicated that NCVP-F better enriched Lachnospiraceae, reduced Muribaculaceae, Alloprevotella and Blautia to regulate Cd-induced gut microbiota disorders, which was probably down-regulated 7 pathways including apoptosis and lipopolysaccharide biosynthesis, and up-regulated 63 pathways, such as carbohydrate metabolism and lipid metabolism. This study suggested that applying functional NCVP-F prepared by biotransformation with low molecular weight might be more beneficial.
Collapse
Affiliation(s)
- Hailong Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yingying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jiaming Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Su Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yue Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yiting Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wanting Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yange Che
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Muhammad Inam
- Department of Animal Sciences, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Pakistan
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Salaffi F, Siragusano C, Alciati A, Cassone G, D’Angelo S, Guiducci S, Favalli EG, Conti F, Gremese E, Iannone F, Caporali R, Sebastiani M, Ferraccioli GF, Lapadula G, Atzeni F. Axial Spondyloarthritis: Reshape the Future-From the "2022 GISEA International Symposium". J Clin Med 2022; 11:jcm11247537. [PMID: 36556152 PMCID: PMC9780899 DOI: 10.3390/jcm11247537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The term "axial spondyloarthritis" (axSpA) refers to a group of chronic rheumatic diseases that predominantly involve the axial skeleton and consist of ankylosing spondylitis, reactive arthritis, arthritis/spondylitis associated with psoriasis (PsA) and arthritis/spondylitis associated with inflammatory bowel diseases (IBD). Moreover, pain is an important and common symptom of axSpA. It may progress to chronic pain, a more complicated bio-psychosocial phenomena, leading to a significant worsening of quality of life. The development of the axSpA inflammatory process is grounded in the complex interaction between genetic (such as HLA B27), epigenetic, and environmental factors associated with a dysregulated immune response. Considering the pivotal contribution of IL-23 and IL-17 in axSpA inflammation, the inhibition of these cytokines has been evaluated as a potential therapeutic strategy. With this context, here we discuss the main pathogenetic mechanisms, therapeutic approaches and the role of pain in axSpA from the 2022 International GISEA/OEG Symposium.
Collapse
Affiliation(s)
- Fausto Salaffi
- Rheumatology Clinic, Ospedale Carlo Urbani, Università Politecnica delle Marche, 60035 Jesi, Italy
| | - Cesare Siragusano
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98125 Messina, Italy
| | - Alessandra Alciati
- Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, Como, and Humanitas Clinical and Research Centre, Rozzano, 20089 Milan, Italy
| | - Giulia Cassone
- Rheumatology Unit, Azienda Ospedaliera Policlinico di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Salvatore D’Angelo
- Rheumatology Institute of Lucania and Rheumatology Department of Lucania, San Carlo Hospital of Potenza, 85100 Potenza, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Ennio Giulio Favalli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, 20122 Milan, Italy
| | - Fabrizio Conti
- Lupus Clinic, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, 00161 Rome, Italy
| | - Elisa Gremese
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, 20122 Milan, Italy
| | - Marco Sebastiani
- Rheumatology Unit, Azienda Ospedaliera Policlinico di Modena, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | | | - Giovanni Lapadula
- Rheumatology Unit, Department of Emergency Surgery and Organ Transplantations, University of Bari, 70121 Bari, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
6
|
Thakur AK, Rana MK, Luthra-Guptasarma M. Resistance to unfolding by acidic pH and resistance to lysosomal degradation explains disease-association of HLA-B27 subtypes. Int Immunopharmacol 2022; 112:109226. [PMID: 36162243 DOI: 10.1016/j.intimp.2022.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Several hypotheses have been proposed to explain the high rate of disease association of HLA-B27 with ankylosing spondylitis (AS), including formation of disulfide-bonded dimers and misfolding of the heavy chain (HC), involving formation of high molecular weight (HMW) multimers. Recently, we have shown that the HMW entities of non-disease associated (non-DA) subtypes cause activation of endosomal-lysosomal pathways, while disease-associated (DA) subtypes of HLA-B27 cause activation of autophagy and unfolded protein response (UPR) pathways. In this paper, we seek an explanation for the failure of these pathways to degrade the HMW entities of DA subtypes of HLA-B27, using a combination of in vitro assays, using extracellular domains of heavy chains (EDHC), as well as in vivo assays, using stable transfectants of the full lengths of heavy chains (FLHC) of DA and non-DA subtypes. Our data shows that both DA and non-DA subtypes form HMW entities. However, non-DA HMW entities display far greater levels of degradation than DA HMW species. Non-DA EDHC display greater loss of structure at lysosomal pH in vitro. This was confirmed by experiments showing that (i) DA FLHCs co-localize with LAMP1, and (ii) induction of autophagy by rapamycin causes significant decrease in levels of non-DA HMW entities, but not that of DA HMW entities. These results point towards lack of facile lysosomal clearance of FLHCs of DA subtypes, suggesting that disease association of HLA-B27 subtypes is correlated with higher persistence of HMW entities in the low pH of lysosomes, with higher potential to trigger immune response.
Collapse
Affiliation(s)
- Amit Kumar Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Manish Kumar Rana
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India.
| |
Collapse
|
7
|
Salmonella Exhibit Altered Cellular Localization in the Presence of HLA-B27 and Codistribute with Endo-Reticular Membrane. J Immunol Res 2022; 2022:9493019. [PMID: 36157878 PMCID: PMC9507774 DOI: 10.1155/2022/9493019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella enteritica (S. enteritica) induce and require unfolded protein response (UPR) pathways for intracellular replication. Salmonella infections can lead to reactive arthritis (ReA), which can exhibit associations with Human Leucocyte Antigen (HLA)-B∗27 : 05. S. enteritica normally reside in a juxtanuclear position to the Golgi apparatus, representing the formation and residence within the Salmonella-containing vacuole (SCV). Changes in cellular localization of infecting Salmonella can alter their ability to replicate. We therefore used isogenic epithelial cell lines expressing physiological levels of HLA-B∗27 : 05 heavy chain (HC) and a control HLA-B allele, HLA-B∗35 : 01.HC to determine any changes in Salmonella localization within epithelial cells. Expression of HLA-B∗27 : 05 but not HLA-B∗35 : 01 was associated with a quantifiable change in S. enteritica cellular distribution away from the Golgi apparatus. Furthermore, the Salmonella requirements for UPR induction and the consequences of the concomitant endoplasmic reticulum (ER) membrane expansion were determined. Using confocal imaging, S. enteritica bacteria exhibited a significant and quantifiable codistribution with endo-reticular membrane as determined by ER tracker staining. Isogenic S. enterica Typhimurium mutant strains, which can infect but exhibit impaired intracellular growth, demonstrated that the activation of the UPR was dependent on an integral intracellular niche. Therefore, these data identify cellular changes accompanying Salmonella induction of the UPR and in the presence of HLA-B27.
Collapse
|
8
|
Lenart I, Truong LH, Nguyen DD, Rasiukienė O, Tsao E, Armstrong J, Kumar P, McHugh K, Pereira BI, Maan BS, Garstka MA, Bowness P, Blake N, Powis SJ, Gould K, Nesbeth D, Antoniou AN. Intrinsic Folding Properties of the HLA-B27 Heavy Chain Revealed by Single Chain Trimer Versions of Peptide-Loaded Class I Major Histocompatibility Complex Molecules. Front Immunol 2022; 13:902135. [PMID: 35958592 PMCID: PMC9359109 DOI: 10.3389/fimmu.2022.902135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Peptide-loaded Major Histocompatibility Complex (pMHC) class I molecules can be expressed in a single chain trimeric (SCT) format, composed of a specific peptide fused to the light chain beta-2 microglobulin (β2m) and MHC class I heavy chain (HC) by flexible linker peptides. pMHC SCTs have been used as effective molecular tools to investigate cellular immunity and represent a promising vaccine platform technology, due to their intracellular folding and assembly which is apparently independent of host cell folding pathways and chaperones. However, certain MHC class I HC molecules, such as the Human Leukocyte Antigen B27 (HLA-B27) allele, present a challenge due to their tendency to form HC aggregates. We constructed a series of single chain trimeric molecules to determine the behaviour of the HLA-B27 HC in a scenario that usually allows for efficient MHC class I molecule folding. When stably expressed, a pMHC SCT incorporating HLA-B27 HC formed chaperone-bound homodimers within the endoplasmic reticulum (ER). A series of HLA-B27 SCT substitution mutations revealed that the F pocket and antigen binding groove regions of the HLA-B27 HC defined the folding and dimerisation of the single chain complex, independently of the peptide sequence. Furthermore, pMHC SCTs can demonstrate variability in their association with the intracellular antigen processing machinery.
Collapse
Affiliation(s)
- Izabela Lenart
- Division of Infection and Immunity/Centre of Rheumatology, University College London, London, United Kingdom
- Centre of Rheumatology, University College London, London, United Kingdom
- Clinical Trials and Regulatory Affairs, Science Pharma, Warsaw, Poland
| | - Linh-Huyen Truong
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- University of Oxford, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford, United Kingdom
| | - Dinh Dung Nguyen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Medical Genetics Department, Medical Genetics centre, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi, Vietnam
| | - Olga Rasiukienė
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Edward Tsao
- Division of Infection and Immunity/Centre of Rheumatology, University College London, London, United Kingdom
| | - Jonathan Armstrong
- School of Medicine and Biological Sciences Research Complex, University of St. Andrews, Scotland, United Kingdom
| | - Pankaj Kumar
- School of Medicine and Biological Sciences Research Complex, University of St. Andrews, Scotland, United Kingdom
| | - Kirsty McHugh
- The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, Oxford University, Oxford, United Kingdom
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Branca I. Pereira
- Division of Infection and Immunity/Centre of Rheumatology, University College London, London, United Kingdom
- Centre of Rheumatology, University College London, London, United Kingdom
- Research and Development Department, Chelsea and Westminster Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Balraj S. Maan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- School of Medical Education, The Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Malgorzata A. Garstka
- Core Research Laboratory, Department of Endocrinology, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Paul Bowness
- The Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, Oxford University, Oxford, United Kingdom
| | - Neil Blake
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Simon J. Powis
- School of Medicine and Biological Sciences Research Complex, University of St. Andrews, Scotland, United Kingdom
| | - Keith Gould
- Wright-Fleming Institute, Imperial College London, London, United Kingdom
| | - Darren Nesbeth
- The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Antony N. Antoniou
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
- *Correspondence: Antony N. Antoniou,
| |
Collapse
|
9
|
Atzeni F, Siragusano C, Masala IF, Antonio C, Valentina P, D'Angelo S. IL-23 in axial spondyloarthritis and psoriatic arthritis: a good fit for biological treatment? Expert Opin Biol Ther 2022; 22:843-853. [PMID: 35722768 DOI: 10.1080/14712598.2022.2090834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Interleukin 23 (IL-23) is a pro-inflammatory cytokine that plays a protective role against bacterial and fungal infections. However, the dysregulation of the IL-23/IL-17 axis provides a solid substrate for the development of various inflammatory diseases, such as psoriatic arthritis (PsA) and ankylosing spondylitis (AS). AREAS COVERED In different clinical trials, several drugs against IL-23 have shown efficacy and safety towards PsA, with excellent results on skin and joint scores. However, the same drugs did not show the same efficacy in AS, suggesting that IL-23 may not be a relevant driver of the pathobiology and clinical symptoms of active axial spondyloarthritis (axSpA). EXPERT OPINION These drugs have shown an excellent efficacy and a good safety profile towards PsA, while in AS the efficacy of the IL-23 blockade is lacking for reasons not yet known. Several hypotheses have been reported, but further studies will be needed for a greater understanding. This suggests the involvement of pathways or mechanisms for the development of SpA that remain unknown. In order to allow a wide use of IL-23 inhibitors, further clinical trials and long-term prospective studies are necessary.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Cesare Siragusano
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Carriero Antonio
- Rheumatology Institute of Lucania (IReL): Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy.,PhD Scholarship in Translational and Clinical Medicine, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Picerno Valentina
- Rheumatology Institute of Lucania (IReL): Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Salvatore D'Angelo
- Rheumatology Institute of Lucania (IReL): Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| |
Collapse
|
10
|
Kocatürk B, Balık Z, Pişiren G, Kalyoncu U, Özmen F, Özen S. Spondyloarthritides: Theories and beyond. Front Pediatr 2022; 10:1074239. [PMID: 36619518 PMCID: PMC9816396 DOI: 10.3389/fped.2022.1074239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Spondyloarthritides (SpA) are a family of interrelated rheumatic disorders with a typical disease onset ranging from childhood to middle age. If left untreated, they lead to a severe decrease in patients' quality of life. A succesfull treatment strategy starts with an accurate diagnosis which is achieved through careful analysis of medical symptoms. Classification criterias are used to this process and are updated on a regular basis. Although there is a lack of definite knowledge on the disease etiology of SpA, several studies have paved the way for understanding plausible risk factors and developing treatment strategies. The significant increase of HLA-B27 positivity in SpA patients makes it a strong candidate as a predisposing factor and several theories have been proposed to explain HLA-B27 driven disease progression. However, the presence of HLA-B27 negative patients underlines the presence of additional risk factors. The current treatment options for SpAs are Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), TNF inhibitors (TNFis), Disease-Modifying Anti-Rheumatic Drugs (DMARDs) and physiotherapy yet there are ongoing clinical trials. Anti IL17 drugs and targeted synthetic DMARDs such as JAK inhibitors are also emerging as treatment alternatives. This review discusses the current diagnosis criteria, treatment options and gives an overview of the previous findings and theories to clarify the possible contributors to SpA pathogenesis with a focus on Ankylosing Spondylitis (AS) and enthesitis-related arthritis (ERA).
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Zeynep Balık
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gaye Pişiren
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Umut Kalyoncu
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seza Özen
- Division of Pediatric Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Munteanu CVA, Chirițoiu GN, Chirițoiu M, Ghenea S, Petrescu AJ, Petrescu ȘM. Affinity proteomics and deglycoproteomics uncover novel EDEM2 endogenous substrates and an integrative ERAD network. Mol Cell Proteomics 2021; 20:100125. [PMID: 34332121 PMCID: PMC8455867 DOI: 10.1016/j.mcpro.2021.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 07/09/2021] [Accepted: 07/25/2021] [Indexed: 02/08/2023] Open
Abstract
Various pathologies result from disruptions to or stress of endoplasmic reticulum (ER) homeostasis, such as Parkinson's disease and most neurodegenerative illnesses, diabetes, pulmonary fibrosis, viral infections and cancers. A critical process in maintaining ER homeostasis is the selection of misfolded proteins by the ER quality-control system (ERQC) for destruction via ER-associated degradation (ERAD). One key protein proposed to act during the first steps of misfolded glycoprotein degradation is the ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2). Therefore, characterization of the EDEM2 associated proteome is of great interest. We took advantage of using melanoma cells overexpressing EDEM2 as a cancer model system, to start documenting at the deglycoproteome level (N-glycosites identification) the emerging link between ER homeostasis and cancer progression. The dataset created for identifying the EDEM2 glyco-clients carrying high mannose/hybrid N-glycans provides a comprehensive N-glycosites analysis mapping over 1000 N-glycosites on more than 600 melanoma glycoproteins. To identify EDEM2-associated proteins we used affinity-proteomics and proteome-wide analysis of sucrose density fractionation in an integrative workflow. Using intensity and spectral count-based quantification, we identify seven new EDEM2 partners, all of which are involved in ERQC and ERAD. Moreover, we defined novel endogenous candidates for EDEM2-dependent ERAD by combining deglycoproteomics, SILAC-based proteomics, and biochemical methods. These included tumor antigens and several ER-transiting endogenous melanoma proteins, including ITGA1 and PCDH2, the expression of which was negatively correlated with that of EDEM2. Tumor antigens are key in the antigen presentation process, whilst ITGA1 and PCDH2 are involved in melanoma metastasis and invasion. EDEM2 could therefore have a regulatory role in melanoma through the modulation of these glycoproteins degradation and trafficking. The data presented herein suggest that EDEM2 is involved in ER homeostasis to a greater extent than previously suggested.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Marioara Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031, Bucharest, Romania.
| |
Collapse
|
12
|
Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, Guggino G. Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front Immunol 2021; 12:637829. [PMID: 33692806 PMCID: PMC7937623 DOI: 10.3389/fimmu.2021.637829] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Interleukin-23 (IL-23) is a pro-inflammatory cytokine composed of two subunits, IL-23A (p19) and IL-12/23B (p40), the latter shared with Interleukin-12 (IL-12). IL-23 is mainly produced by macrophages and dendritic cells, in response to exogenous or endogenous signals, and drives the differentiation and activation of T helper 17 (Th17) cells with subsequent production of IL-17A, IL-17F, IL-6, IL-22, and tumor necrosis factor α (TNF-α). Although IL-23 plays a pivotal role in the protective immune response to bacterial and fungal infections, its dysregulation has been shown to exacerbate chronic immune-mediated inflammation. Well-established experimental data support the concept that IL-23/IL-17 axis activation contributes to the development of several inflammatory diseases, such as PsA, Psoriasis, Psoriatic Arthritis; AS, Ankylosing Spondylitis; IBD, Inflammatory Bowel Disease; RA, Rheumatoid Arthritis; SS, Sjogren Syndrome; MS, Multiple Sclerosis. As a result, emerging clinical studies have focused on the blockade of this pathogenic axis as a promising therapeutic target in several autoimmune disorders; nevertheless, a greater understanding of its contribution still requires further investigation. This review aims to elucidate the most recent studies and literature data on the pathogenetic role of IL-23 and Th17 cells in inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Claudia Schinocca
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Chiara Rizzo
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Serena Fasano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia Grasso
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuliana Guggino
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University Hospital “P. Giaccone”, Palermo, Italy
| |
Collapse
|
13
|
Navid F, Holt V, Colbert RA. The enigmatic role of HLA-B*27 in spondyloarthritis pathogenesis. Semin Immunopathol 2021; 43:235-243. [PMID: 33481054 DOI: 10.1007/s00281-021-00838-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Establishing a clear role for HLA-B*27 in the pathogenesis of spondyloarthritis continues to be challenging. Aberrant properties of the heavy chain as well as a potential role presenting arthritogenic peptides continue to be pursued as plausible mechanisms. Recent studies implicate HLA-B*27 in aberrant bone formation. An unanticipated cell surface interaction between HLA-B*27 and the bone morphogenetic protein pathway receptor subunit ALK2 may augment TGFβ superfamily signaling pathways, increasing responsiveness to Activin A and TGFβ. This has the potential to increase bone formation as well as Th17 T cell development, presenting an attractive model to explain several aspects of axial and peripheral spondyloarthritis. In a separate study, intracellular effects of misfolded HLA-B*27 implicate this mechanism in increased osteoblast mineralization and bone formation. HLA-B*27 expression in early osteoblasts activates unfolded protein response-mediated X-box binding protein-1 mRNA splicing and induction of the retinoic acid receptor-β gene, with downstream increases in expression of tissue non-specific alkaline phosphatase. Increased TNAP expression in osteoblasts was linked to increased mineralization in vitro and bone formation in vivo. In the ongoing search for evidence of arthritogenic peptides, high-throughput TCR (T cell receptor) sequencing has provided evidence for reduced clonal expansion and increased TCR diversity in ankylosing spondylitis. In addition to two common CD8+ TCR sequences identified in one study, similar CD8 and CD4 TCR motifs were found in another study. Further work will be needed to shed light on the nature of the peptide-HLA class I complex recognized by these T cells and its role in disease.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vance Holt
- Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA. .,, Bethesda, USA.
| |
Collapse
|
14
|
Lv B, Yang HL, Peng YD, Wang J, Zeng Z, Li N, Tang YE, Wang Z, Song QS. Cadmium exposure alters expression of protective enzymes and protein processing genes in venom glands of the wolf spider Pardosa pseudoannulata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115847. [PMID: 33130443 DOI: 10.1016/j.envpol.2020.115847] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) pollution is currently the most serious type of heavy metal pollution throughout the world. Previous studies have shown that Cd elevates the mortality of paddy field spiders, but the lethal mechanism remains to be explored profoundly. In the present study, we measured the activities of protective enzymes (acetylcholinesterase, glutathione peroxidase, phenol oxidase) and a heavy metal chelating protein (metallothionein) in the pond wolf spider Pardosa pseudoannulata after Cd exposure. The results indicated that Cd initially increased the enzyme activities and protein concentration of the spider after 10- and 20-day exposure before inhibiting them at 30-day exposure. Further analysis showed that the enzyme activities in the cephalothorax were inhibited to some extent. Since the cephalothorax region contains important venom glands, we performed transcriptome sequencing (RNA-seq) analysis of the venom glands collected from the spiders after long-term Cd exposure. RNA-seq yielded a total of 2826 differentially expressed genes (DEGs), and most of the DEGs were annotated into the process of protein synthesis, processing and degradation. Furthermore, a mass of genes involved in protein recognition and endoplasmic reticulum (ER) -associated protein degradation were down-regulated. The reduction of protease activities supports the view that protein synthesis and degradation in organelles and cytoplasm were dramatically inhibited. Collectively, our outcomes illustrate that Cd poses adverse effects on the expression of protective enzymes and protein, which potentially down-regulates the immune function in the venom glands of the spiders via the alteration of protein processing and degradation in the ER.
Collapse
Affiliation(s)
- Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Hui-Lin Yang
- College of Resources and Environment, Hunan Agriculture University, Changsha, 410128, Hunan, China
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Zeng
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Na Li
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Voruganti A, Bowness P. New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology 2020; 161:94-102. [PMID: 32696457 PMCID: PMC7496782 DOI: 10.1111/imm.13242] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a common immune‐mediated inflammatory arthritis with a strong genetic predisposition. We review recent data from genetic and animal studies highlighting the importance of Type 17 immune responses. Furthermore, the efficacy (or lack thereof) of different anti‐cytokine monoclonal antibodies has highlighted the diversity of Type 17 immune cells and cytokines critical to AS and related spondyloarthritis pathogenesis. Recent studies have strongly implicated the gut microbiome in AS. Finally, we propose that the local metabolic environment of the joint may have a key role in driving AS, and present a novel model of AS pathogenesis.
Collapse
Affiliation(s)
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science (NDORMS), Botnar Research Centre, University of Oxford, Headington, Oxford, UK
| |
Collapse
|
16
|
Jah N, Jobart-Malfait A, Ermoza K, Noteuil A, Chiocchia G, Breban M, André C. HLA-B27 Subtypes Predisposing to Ankylosing Spondylitis Accumulate in an Endoplasmic Reticulum-Derived Compartment Apart From the Peptide-Loading Complex. Arthritis Rheumatol 2020; 72:1534-1546. [PMID: 32270915 DOI: 10.1002/art.41281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE It was previously shown that HLA-B27 subtypes predisposing to spondyloarthritis (SpA), i.e., B*27:02, B*27:05, and B*27:07, displayed an increased propensity to form intracellular oligomers and to accumulate at a high density in cytoplasmic vesicles, as compared to the non-SpA-associated HLA-B*07:02 and HLA-B*27:06. This study was undertaken to characterize the nature and content of HLA-B-containing vesicles and to further examine their relevance to SpA predisposition. METHODS Vesicles containing HLA-B proteins were detected in transfected HeLa cells and in cells from SpA patients or HLA-B27/human β2 -microglobulin (hβ2 m)-transgenic rats, by microscopy. The nature and content of HLA-B-containing vesicles were characterized in colocalization experiments with appropriate markers. RESULTS The SpA-associated HLA-B*27:04 subtype accumulated at higher levels (P < 10-5 ) in cytoplasmic vesicles compared to HLA-B*27:06, from which it differs only by 2 substitutions, reinforcing the correlation between vesicle formation and SpA predisposition. Colocalization studies showed that those vesicles contained misfolded HLA-B heavy chain along with β2 m and endoplasmic reticulum (ER) chaperones (calnexin, calreticulin, BiP, glucose-regulated protein 94-kd) and belonged to the ER but were distinct from the peptide-loading complex (PLC). Similar vesicles were observed in immune cells from HLA-B27+ SpA patients, in greater abundance than in healthy controls (P < 0.01), and in dendritic cells from HLA-B27/hβ2 m transgenic rats, correlating with SpA susceptibility. CONCLUSION Accumulation of misfolded HLA-B heavy chain along with β2 m and ER chaperones into ER-derived vesicles distinct from the PLC is a characteristic feature of HLA-B27 subtypes predisposing to SpA. This phenomenon could contribute to HLA-B27 pathogenicity, via a noncanonical mechanism.
Collapse
Affiliation(s)
- Nadège Jah
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Aude Jobart-Malfait
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ketia Ermoza
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Aurélie Noteuil
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Maxime Breban
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Claudine André
- Université Paris-Saclay, Universite' de Versailles St.-Quentin-en-Yvelines, INSERM (UMR 1173), Montigny-Le-Bretonneux, France, and Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
Xu Y, Fang D. Endoplasmic reticulum-associated degradation and beyond: The multitasking roles for HRD1 in immune regulation and autoimmunity. J Autoimmun 2020; 109:102423. [PMID: 32057541 DOI: 10.1016/j.jaut.2020.102423] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism against ER stress, wherein unfolded/misfolded proteins accumulated in the ER are transported to the cytosol for degradation by the ubiquitin-proteasome system. The ER resident E3 ubiquitin ligase HRD1 has been identified as a key ERAD factor that directly catalyzes ubiquitin conjugation onto the unfolded or misfolded proteins for proteasomal degradation. The abnormally increased HRD1 expression was discovered in rheumatoid synovial cells, providing the first evidence for HRD1 dysregulation involved in human inflammatory pathogenesis. Further studies shown that inflammatory cytokines involved in rheumatoid pathogenesis including IL-1β, TNF-α, IL-17 and IL-26 induce HRD1 expression. Recent studies using mice with tissue-specific targeted deletion of HRD1 gene have revealed important functions of HRD1 in immune regulation and inflammatory diseases. HRD1 has been shown critical for dendritic cell expression of antigens to both CD4 and CD8 T cells. Both TCR and costimulatory receptor CD28 signaling induces HRD1 expression, which promotes T cell clonal expansion and IL-2 production. Together with the fact that HRD1 is required for maintaining the stability of regulatory T cell (Treg) stability, HRD1 appears to fine tone T cell immunity. In addition, HRD1 is involved in humoral immune response by regulating early B cell development and maintaining B cell survival upon recognition of specific antigen. HRD1 appears to target its substrates for ubiquitination through, either ERAD-dependent or -independent, at least two distinct molecular mechanisms in a cell or tissue specific manner to achieve its physiological functions. Dysregulation of HRD1 expression and/or it functions are involved in autoimmune inflammatory diseases in particular rheumatoid arthritis and lupus. Here, we review current findings on the mechanism of HRD1 protein in immune regulation and the involvement of HRD1 in the pathogenesis of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Abstract
Major histocompatibility complex (MHC) class I molecules function to present pathogen derived peptides to cytotoxic T cells and act as ligands for Natural Killer cells, thus alerting the immune system to the presence of invading pathogens. However, some MHC class I molecules, most notably HLA-B27, can be strongly associated with autoimmune diseases. In addition, the MHC class I pathway is a target for numerous viral evasion strategies Understanding not only the antigen presenting functions, but also the biosynthesis and the degradation pathways of MHC class I molecules has therefore become important in determining their role in pathogen and autoimmune related diseases. Here, we describe how using epitope tagged MHC class I molecules can aid in the analysis of MHC class I molecule biosynthesis and degradation as well as complementary studies using conventional conformationally specific antibodies. Coupled together with pharmacological manipulation which can target both biosynthetic and degradative pathways, this offers a powerful tool in analyzing MHC class I molecules.
Collapse
|
20
|
Liu Q, Körner H, Wu H, Wei W. Endoplasmic reticulum stress in autoimmune diseases. Immunobiology 2019; 225:151881. [PMID: 31879042 DOI: 10.1016/j.imbio.2019.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
If the body's immune system is disordered and begins to attack "self" and therefore, its own tissues this is considered to be an autoimmune pathology. The specific mechanisms vary between the different diseases and have not always been elucidated but chronic, non-resolving inflammation is a common theme in the pathogenesis of autoimmune diseases. Interestingly, it has been shown that development and occurrence of various inflammatory responses are closely correlated to endoplasmic reticulum stress. Therefore, this review discusses the current progress of research about the relationship between autoimmune diseases and endoplasmic reticulum stress, specifically the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
21
|
Xi Y, Jiang T, Chaurasiya B, Zhou Y, Yu J, Wen J, Shen Y, Ye X, Webster TJ. Advances in nanomedicine for the treatment of ankylosing spondylitis. Int J Nanomedicine 2019; 14:8521-8542. [PMID: 31806960 PMCID: PMC6831987 DOI: 10.2147/ijn.s216199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a complex disease characterized by inflammation and ankylosis primarily at the cartilage–bone interface. The disease is more common in young males and risk factors include both genetic and environmental. While the pathogenesis of AS is not completely understood, it is thought to be an immune-mediated disease involving inflammatory cellular infiltrates, and human leukocyte antigen-B27. Currently, there is no specific diagnostic technique available for this disease; therefore conventional diagnostic approaches such as clinical symptoms, laboratory tests and imaging techniques are used. There are various review papers that have been published on conventional treatment approaches, and in this review work, we focus on the more promising nanomedicine-based treatment modalities to move this field forward.
Collapse
Affiliation(s)
- Yanhai Xi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tingwang Jiang
- Department of Immunology and Microbiology, Institution of Laboratory Medicine of Changshu, Changshu, Jiangsu 215500, People's Republic of China
| | - Birendra Chaurasiya
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanyan Zhou
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiangmin Yu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiankun Wen
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaojian Ye
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
22
|
Antoniou AN, Lenart I, Kriston-Vizi J, Iwawaki T, Turmaine M, McHugh K, Ali S, Blake N, Bowness P, Bajaj-Elliott M, Gould K, Nesbeth D, Powis SJ. Salmonella exploits HLA-B27 and host unfolded protein responses to promote intracellular replication. Ann Rheum Dis 2018; 78:74-82. [PMID: 30355574 PMCID: PMC6317449 DOI: 10.1136/annrheumdis-2018-213532] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Objective Salmonella enterica infections can lead to Reactive Arthritis (ReA), which can exhibit an association with human leucocyte antigen (HLA)-B*27:05, a molecule prone to misfolding and initiation of the unfolded protein response (UPR). This study examined how HLA-B*27:05 expression and the UPR affect the Salmonella life-cycle within epithelial cells. Methods Isogenic epithelial cell lines expressing two copies of either HLA-B*27:05 and a control HLA-B*35:01 heavy chain (HC) were generated to determine the effect on the Salmonella infection life-cycle. A cell line expressing HLA-B*27:05.HC physically linked to the light chain beta-2-microglobulin and a specific peptide (referred to as a single chain trimer, SCT) was also generated to determine the effects of HLA-B27 folding status on S. enterica life-cycle. XBP-1 venus and AMP dependent Transcription Factor (ATF6)-FLAG reporters were used to monitor UPR activation in infected cells. Triacin C was used to inhibit de novo lipid synthesis during UPR, and confocal imaging of ER tracker stained membrane allowed quantification of glibenclamide-associated membrane. Results S. enterica demonstrated enhanced replication with an altered cellular localisation in the presence of HLA-B*27:05.HC but not in the presence of HLA-B*27:05.SCT or HLA-B*35:01. HLA-B*27:05.HC altered the threshold for UPR induction. Salmonella activated the UPR and required XBP-1 for replication, which was associated with endoreticular membrane expansion and lipid metabolism. Conclusions HLA-B27 misfolding and a UPR cellular environment are associated with enhanced Salmonella replication, while Salmonella itself can activate XBP-1 and ATF6. These data provide a potential mechanism linking the life-cycle of Salmonella with the physicochemical properties of HLA-B27 and cellular events that may contribute to ReA pathogenesis. Our observations suggest that the UPR pathway maybe targeted for future therapeutic intervention.
Collapse
Affiliation(s)
- Antony Nicodemus Antoniou
- The Advanced Centre for Biochemical Engineering, University College London, London, UK .,Division of Infection and Immunity/Centre of Rheumatology, University College London, London, UK.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne, UK
| | | | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, Medical Research Council, University College London, London, UK
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Mark Turmaine
- Division of Biosciences, University College London, London, UK
| | - Kirsty McHugh
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Sadfer Ali
- The Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Neil Blake
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Mona Bajaj-Elliott
- Great Ormond Street, Institute of Child Health, University College London, London, UK
| | - Keith Gould
- Wright-Fleming Institute, Imperial College London, London, UK
| | - Darren Nesbeth
- The Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Simon J Powis
- School of Medicine and Biological Sciences Research Complex, University of St Andrews, London, UK
| |
Collapse
|
23
|
Colbert RA, Navid F, Gill T. The role of HLA-B*27 in spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 31:797-815. [PMID: 30509441 DOI: 10.1016/j.berh.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
The mechanism by which HLA-B*27 predisposes to spondyloarthritis remains unresolved. Arthritogenic peptides have not been defined in humans and are not involved in experimental models of spondyloarthritis. Aberrant properties of HLA-B*27 can activate the IL-23/IL-17 axis in HLA-B*27 transgenic rats and humans. In HLA-B*27-independent rodent models, spondyloarthritis can be driven by IL-23 triggering entheseal-resident CD4-/CD8- T cells or CD4+ Th17 T cells. These findings point toward noncanonical mechanisms linking HLA-B*27 to the disease and provide a potential explanation for HLA-B*27-negative spondyloarthritis. Gut microbial dysbiosis may be important in the development of spondyloarthritis. HLA-B*27-induced changes in gut microbiota are complex and suggest an ecological model of dysbiosis in rodents. The importance of the IL-23/IL-17 axis in ankylosing spondylitis has been demonstrated by studies showing efficacy of IL-17. Although deciphering the precise role(s) of HLA-B*27 in disease requires further investigation, considerable progress has been made in understanding this complex relationship.
Collapse
Affiliation(s)
- Robert A Colbert
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS Intramural Research Program, NIH, USA.
| |
Collapse
|
24
|
Powis SJ, Colbert RA. Editorial: HLA-B27: The Story Continues to Unfold. Arthritis Rheumatol 2018; 68:1057-9. [PMID: 26749536 DOI: 10.1002/art.39566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
Affiliation(s)
| | - Robert A Colbert
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
25
|
Navid F, Layh-Schmitt G, Sikora KA, Cougnoux A, Colbert RA. The Role of Autophagy in the Degradation of Misfolded HLA-B27 Heavy Chains. Arthritis Rheumatol 2018; 70:746-755. [PMID: 29342507 PMCID: PMC6101661 DOI: 10.1002/art.40414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine whether autophagy is involved in the degradation of misfolded HLA-B27 in experimental spondyloarthritis. METHODS Bone marrow-derived macrophages from HLA-B27/human β2 -microglobulin (hβ2 m)-transgenic rats were incubated in the presence or absence of interferon-γ and proteasome or autophagy inhibitors. Immunoprecipitation, immunoblotting, and immunofluorescence analysis were used to measure HLA-B27 heavy chains and autophagy. Autophagy was induced using rapamycin. Macrophages from HLA-B7/hβ2 m-transgenic and wild-type rats were used as controls. RESULTS HLA-B27-expressing macrophages showed phosphatidylethanolamine-conjugated microtubule-associated protein 1 light chain 3B levels similar to those in both control groups, before and after manipulation of autophagy. Blocking autophagic flux with bafilomycin resulted in the accumulation of misfolded HLA-B27 dimers and oligomers as well as monomers, which was comparable with the results of blocking endoplasmic reticulum-associated degradation (ERAD) with the proteasome inhibitor bortezomib. HLA-B7 monomers also accumulated after blocking each degradation pathway. The ubiquitin-to-heavy chain ratio was 2-3-fold lower for HLA-B27 than for HLA-B7. Activation of autophagy with rapamycin rapidly eliminated ~50% of misfolded HLA-B27, while folded HLA-B27 or HLA-B7 monomeric heavy chains were minimally affected. CONCLUSION This study is the first to demonstrate that both autophagy and ERAD play roles in the elimination of excess HLA class I heavy chains expressed in transgenic rats. We observed no evidence that HLA-B27 expression modulated the autophagy pathway. Our results suggest that impaired ubiquitination of HLA-B27 may play a role in the accumulation of misfolded disulfide-linked dimers, the elimination of which can be enhanced by activation of autophagy. Manipulation of the autophagy pathway should be further investigated as a potential therapeutic target in spondyloarthritis.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892 USA
| | | | - Keith A. Sikora
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892 USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, 20892 USA
| | - Robert A. Colbert
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892 USA
| |
Collapse
|
26
|
A high performance bench scale process for isolation from inclusion bodies, refolding and dimerisation of a thiol-engineered recombinant therapeutic protein. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Guiliano DB, North H, Panayoitou E, Campbell EC, McHugh K, Cooke FGM, Silvestre M, Bowness P, Powis SJ, Antoniou AN. Polymorphisms in the F Pocket of HLA-B27 Subtypes Strongly Affect Assembly, Chaperone Interactions, and Heavy-Chain Misfolding. Arthritis Rheumatol 2017; 69:610-621. [PMID: 27723268 DOI: 10.1002/art.39948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/29/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE HLA-B27 is associated with the inflammatory spondyloarthritides (SpA), although subtypes HLA-B*27:06 and HLA-B*27:09 are not. These subtypes differ from the HLA-B*27:05 disease-associated allele primarily at residues 114 and 116 of the heavy chain, part of the F pocket of the antigen-binding groove. Dimerization of HLA-B27 during assembly has been implicated in disease onset. The purpose of this study was to investigate the factors that influence differences in dimerization between disease-associated and non-disease-associated HLA-B27 alleles. METHODS HLA-B*27:05 and mutants resembling the HLA-B*27:06 and 09 subtypes were expressed in the rat C58 T cell line, the human CEM T cell line and its calnexin-deficient variant CEM.NKR. Immunoprecipitation, pulse-chase experiments, flow cytometry, and immunoblotting were performed to study the assembly kinetics, heavy-chain dimerization, and chaperone associations. RESULTS By expressing HLA-B*27:05, 06-like, and 09 alleles on a restrictive rat transporter associated with antigen processing background, we demonstrate that a tyrosine expressed at p116, either alone or together with an aspartic acid residue at p114, inhibited HLA-B27 dimerization and increased the assembly rate. F-pocket residues altered the associations with chaperones of the early major histocompatibility complex class I folding pathway. Calnexin was demonstrated to participate in endoplasmic reticulum (ER) stress-mediated degradation of dimers, whereas the oxidoreductase ERp57 does not appear to influence dimerization. CONCLUSION Residues within the F pocket of the peptide-binding groove, which differ between disease-associated and non-disease-associated HLA-B27 subtypes, can influence the assembly process and heavy-chain dimerization, events which have been linked to the initiation of disease pathogenesis.
Collapse
Affiliation(s)
| | - Helen North
- NHS Blood and Transplant, Colindale Blood Centre, London, UK
| | - Eleni Panayoitou
- NHS North West Surrey Clinical Commissioning Group, Weybridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Over the past 5 years, advances in high-throughput techniques and studies involving large cohorts of patients have led to considerable advances in the identification of novel genetic associations and immune pathways involved in ankylosing spondylitis (AS). These discoveries include genes encoding cytokine receptors, transcription factors, signalling molecules and transport proteins. Although progress has been made in understanding the functions and potential pathogenic roles of some of these molecules, much work remains to be done to comprehend their complex interactions and therapeutic potential in AS. In this Review, we outline the current knowledge of AS pathogenesis, including genetic risk associations, HLA-B27-mediated pathology, perturbations in antigen-presentation pathways and the contribution of the type 3 immune response.
Collapse
|
29
|
Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Sci Rep 2017; 7:40301. [PMID: 28074929 PMCID: PMC5225481 DOI: 10.1038/srep40301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 01/21/2023] Open
Abstract
Protein N-glycosylation (PNG) is crucial for protein folding and enzymatic activities, and has remarkable diversity among eukaryotic species. Little is known of how unique PNG mechanisms arose and evolved in eukaryotes. Here we demonstrate a picture of onset and evolution of PNG components in Golgi apparatus that shaped diversity of eukaryotic protein N-glycan structures, with an emphasis on roles that domain emergence and combination played on PNG evolution. 23 domains were identified from 24 known PNG genes, most of which could be classified into a single clan, indicating a single evolutionary source for the majority of the genes. From 153 species, 4491 sequences containing the domains were retrieved, based on which we analyzed distribution of domains among eukaryotic species. Two domains in GnTV are restricted to specific eukaryotic domains, while 10 domains distribute not only in species where certain unique PNG reactions occur and thus genes harboring these domains are supoosed to be present, but in other ehkaryotic lineages. Notably, two domains harbored by β-1,3 galactosyltransferase, an essential enzyme in forming plant-specific Lea structure, were present in separated genes in fungi and animals, suggesting its emergence as a result of domain shuffling.
Collapse
|
30
|
Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Jamshidi AR, Nicknam MH. Ankylosing spondylitis M-CSF-derived macrophages are undergoing unfolded protein response (UPR) and express higher levels of interleukin-23. Mod Rheumatol 2016; 27:862-867. [DOI: 10.1080/14397595.2016.1259716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran, and
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran, and
| | - Ahmad Reza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran, and
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Chen L, Shi H, Yuan J, Bowness P. Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression. Ann Rheum Dis 2016; 76:593-601. [DOI: 10.1136/annrheumdis-2016-209512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/12/2022]
Abstract
ObjectiveAssociation of position 97 (P97) residue polymorphisms in human leucocyte antigen (HLA)-B, including HLA-B*27, with ankylosing spondylitis (AS) has recently been reported. We studied the effect of P97 variations on cell surface expression of the AS-associated HLA-B*27 and HLA-B*51, and the AS-protective HLA-B*7.MethodsFlow cytometry was used to measure surface expression of HLA-B*27 in C1R/HeLa cells expressing HLA-B*27 (N97) and six mutants at P97 (N97T, N97S, N97V, N97R, N97W and N97D). Transporter associated with antigen processing-deficient T2, tapasin-deficient 220, β2m-deficient HCT15 and endoplasmic reticulum aminopeptidase 1 or β2m-clustered regularly interspaced short palindromic repeats/Cas9-knockout HeLa cells were used to provide evidence for specific protein interactions. Surface expression of HLA-B*7/HLA-B*51 P97 mutants was also studied.ResultsMutation of HLA-B*27 P97 to the AS risk residue threonine increased cell surface free heavy chain (FHC) expression. Protective residues (serine or valine) and non-AS-associated residues (arginine or tryptophan) did not alter FHC expression. The N97D mutation reduced expression of conventional and FHC forms of HLA-B*27. Differences in FHC expression levels between HLA-B*27, HLA-B*27-N97T and HLA-B*27-N97D were dependent on the presence of functional β2m. HLA-B*7, which has an AS-protective serine at P97, expressed lower levels of FHC than HLA-B*27 or HLA-B*51. Introduction of asparagine at P97 of both HLA-B*7 and HLA-B*51 increased FHC expression.ConclusionsThe nature of P97 residue affects surface expression of HLA-B*27, B*7 and B*51, with AS-associated residues giving rise to higher FHC expression levels. The association of P97 amino acid polymorphisms with AS could be, at least in part, explained by its effect on HLA-B*27 FHC cell surface expression.
Collapse
|
32
|
Smith JA. The role of the unfolded protein response in axial spondyloarthritis. Clin Rheumatol 2015; 35:1425-31. [DOI: 10.1007/s10067-015-3117-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/08/2015] [Indexed: 11/28/2022]
|
33
|
Słomińska-Wojewódzka M, Sandvig K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015; 20:9816-46. [PMID: 26023941 PMCID: PMC6272441 DOI: 10.3390/molecules20069816] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.
Collapse
Affiliation(s)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|