1
|
Xu L, Yang R, Cao Y, Wang M, Yang X. Risk factors of diffuse alveolar hemorrhage in Chinese patients with systemic lupus erythematosus. Sci Rep 2023; 13:22381. [PMID: 38104153 PMCID: PMC10725482 DOI: 10.1038/s41598-023-49978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to investigate the frequency and features of diffuse alveolar hemorrhage (DAH) in Chinese patients with systemic lupus erythematosus (SLE) and evaluate the association of DAH with the features. A total of 943 patients with SLE were categorized into two groups: 896 patients without DAH and 47 patients with DAH. The demographic data, clinical and laboratory findings, and SLE disease activity index 2000 of all patients were statistically analyzed. The DAH frequency in patients with SLE was 4.98%, and the mortality rate of DAH was 42.55%. The clinical features with statistical differences between the two groups were analyzed by multivariate logistic regression, and the results suggested that shorter disease duration [odds ratio (OR): 0.972, 95% confidence interval (CI) 0.946, 0.998], younger age (OR: 0.867, 95% CI 0.764, 0.984), moderate (OR: 25.949, 95% CI 3.316, 203.065) or severe (OR: 24.904, 95% CI 2.675, 231.859) anemia, abnormally elevated levels of urine protein (OR: 10.839, 95% CI 1.351, 86.938) and serum creatinine (OR: 14.534, 95% CI 5.012, 42.142), interstitial lung disease (OR: 6.569, 95% CI 2.053, 21.021), and infection (OR: 8.890, 95% CI 3.580, 22.077) were independent risk factors for the occurrence of DAH in patients with SLE. Moderate or severe anemia was highly suggestive of DAH.
Collapse
Affiliation(s)
- Lishan Xu
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Yang
- Follow-Up Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meihua Wang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xuwei Yang
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Naithani U, Jain P, Sachan A, Khare P, Gabrani R. MicroRNA as a potential biomarker for systemic lupus erythematosus: pathogenesis and targeted therapy. Clin Exp Med 2023; 23:4065-4077. [PMID: 37921874 DOI: 10.1007/s10238-023-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with hyperactive innate and adaptive immune systems that cause dermatological, cardiovascular, renal, and neuropsychiatric problems in patients. SLE's multifactorial nature and complex pathogenesis present significant challenges in its clinical classification. In addition, unpredictable treatment responses in patients emphasize the need for highly specific and sensitive SLE biomarkers that can assist in understanding the exact pathogenesis and, thereby, lead to the identification of novel therapeutic targets. Recent studies on microRNA (miRNA), a non-coding region involved in the regulation of gene expression, indicate its importance in the development of the immune system and thus in the pathogenesis of various autoimmune disorders such as SLE. miRNAs are fascinating biomarker prospects for SLE categorization and disease monitoring owing to their small size and high stability. In this paper, we have discussed the involvement of a wide range of miRNAs in the regulation of SLE inflammation and how their modulation can be a potential therapeutic approach.
Collapse
Affiliation(s)
- Urshila Naithani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Priyanjal Jain
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Aastha Sachan
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Prachi Khare
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India.
| |
Collapse
|
3
|
Nag S, Mitra O, Tripathi G, Samanta S, Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S, Rustagi S, Adhikari S, Mohanty A, León‐Figueroa DA, Rodriguez‐Morales AJ, Barboza JJ, Sah R. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e1121. [PMID: 38156400 PMCID: PMC10755504 DOI: 10.1002/iid3.1121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Oishi Mitra
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Garima Tripathi
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Souvik Samanta
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Bikramjit Bhattacharya
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Department of Applied MicrobiologyVellore Institute of Technology (VIT)Tamil NaduIndia
| | - Priti Chandane
- Department of BiochemistrySchool of Life SciencesUniversity of HyderabadHyderabadTelanganaIndia
| | - Sourav Mohanto
- Department of PharmaceuticsYenepoya Pharmacy College & Research CentreYenepoya (Deemed to be University)MangaluruKarnatakaIndia
| | - Vino Sundararajan
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Sumira Malik
- Amity Institute of BiotechnologyAmity University JharkhandRanchiJharkhandIndia
- University Centre for Research and DevelopmentUniversity of Biotechnology, Chandigarh University, GharuanMohaliPunjab
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | | | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | | | - Alfonso J. Rodriguez‐Morales
- Clinical Epidemiology and Biostatistics, School of MedicineUniversidad Científica del SurLimaPeru
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityBeirutLebanon
| | | | - Ranjit Sah
- Department of Clinical MicrobiologyInstitute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
4
|
Kempińska-Podhorodecka A, Abramczyk J, Cielica E, Huła B, Maciejowska H, Banales J, Milkiewicz P, Milkiewicz M. Effect of Low Testosterone Levels on the Expression of Proliferator-Activated Receptor Alpha in Female Patients with Primary Biliary Cholangitis. Cells 2023; 12:2273. [PMID: 37759496 PMCID: PMC10526765 DOI: 10.3390/cells12182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Sex-dependent patterns in chronic immune-mediated cholangiopathies, like primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), remain poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α), expressed in immune cells, plays a key role in innate defence. In this study, the relationship between PPAR-α expression in peripheral blood mononuclear cells (PBMCs), serum androgen levels, IFNγ production, and sex-dependent tendencies during the development of PBC and PSC was investigated. We confirmed that normal cholangiocytes respond to PPAR-α and inhibit the lipopolysaccharide-induced expression of IL-6, IL-1b, and TNFα. Compared with PSC patients, PPAR-α was downregulated, while IFNγ was upregulated, in the PBMCs of PBC patients. When the analysis was conducted on females only, there was no difference in PPAR-α, but IFNγ was elevated in females with PBC compared with those with PSC. Serum testosterone concentrations in females with PBC were below the normal range (regardless of age) and correlated positively with PPAR-α and negatively with IFNγ. While PPAR-α has been reported to be a target of miR-155 and miR-21, no correlations with these microRNAs were observed in the PBMCs. However, a positive correlation between miR-21 and IFNγ was observed. Our results showed suppressed PPAR-α expression accompanied by reduced testosterone levels in women with PBC, which should elicit interest in the role of testosterone in PBC development.
Collapse
Affiliation(s)
- Agnieszka Kempińska-Podhorodecka
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.K.-P.); (J.A.); (E.C.); (B.H.); (H.M.); (M.M.)
| | - Joanna Abramczyk
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.K.-P.); (J.A.); (E.C.); (B.H.); (H.M.); (M.M.)
| | - Eliza Cielica
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.K.-P.); (J.A.); (E.C.); (B.H.); (H.M.); (M.M.)
| | - Bartosz Huła
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.K.-P.); (J.A.); (E.C.); (B.H.); (H.M.); (M.M.)
| | - Hanna Maciejowska
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.K.-P.); (J.A.); (E.C.); (B.H.); (H.M.); (M.M.)
| | - Jesus Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, 20014 San Sebastian, Spain;
- Department of Biochemistry and Genetics, School of Science, University of Navarra, 31009 Pamplona, Spain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Małgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.K.-P.); (J.A.); (E.C.); (B.H.); (H.M.); (M.M.)
| |
Collapse
|
5
|
Chen SY, Wang CT, Chen CY, Kuo PY, Wang CR, Shiau AL, Chang CH, Wu CL. Galectin-3 Mediates NETosis and Acts as an Autoantigen in Systemic Lupus Erythematosus-Associated Diffuse Alveolar Haemorrhage. Int J Mol Sci 2023; 24:ijms24119493. [PMID: 37298447 DOI: 10.3390/ijms24119493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with enhanced NETosis and impaired degradation of neutrophil extracellular traps (NETs). Galectin-3 is a β-galactoside binding protein and is associated with neutrophil functions as well as involved in mediating autoimmune disorders. In this study, we plan to examine the associations of galectin-3 with the pathogenesis of SLE and NETosis. Galectin-3 expression levels were determined in peripheral blood mononuclear cells (PBMCs) of SLE patients for the association with lupus nephritis (LN) or correlation of SLE disease activity index 2000 (SLEDAI-2K). NETosis was observed in human normal and SLE and murine galectin-3 knockout (Gal-3 KO) neutrophils. Gal-3 KO and wild-type (WT) mice induced by pristane were used to evaluate disease signs, including diffuse alveolar haemorrhage (DAH), LN, proteinuria, anti-ribonucleoprotein (RNP) antibody, citrullinated histone 3 (CitH3) levels, and NETosis. Galectin-3 levels are higher in PBMCs of SLE patients compared with normal donors and positively correlated with LN or SLEDAI-2K. Gal-3 KO mice have higher percent survival and lower DAH, LN proteinuria, and anti-RNP antibody levels than WT mice induced by pristane. NETosis and citH3 levels are reduced in Gal-3 KO neutrophils. Furthermore, galectin-3 resides in NETs while human neutrophils undergo NETosis. Galectin-3-associated immune complex deposition can be observed in NETs from spontaneously NETotic cells of SLE patients. In this study, we provide clinical relevance of galectin-3 to the lupus phenotypes and the underlying mechanisms of galectin-3-mediated NETosis for developing novel therapeutic strategies targeting galectin-3 for SLE.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Chung-Teng Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pin-Yu Kuo
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Chrong-Reen Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Zhongxiao Road 539, East District, Chiayi 60002, Taiwan
| | - Cheng-Hsi Chang
- Department of Cardiovascular Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Zhongxiao Road 539, East District, Chiayi 60002, Taiwan
| |
Collapse
|
6
|
Zhu W, Wu C, Zhou Z, Zhang G, Luo L, Liu Y, Huang Z, Ai G, Zhao Z, Zhong W, Liu Y, Zeng G. Acetate attenuates hyperoxaluria-induced kidney injury by inhibiting macrophage infiltration via the miR-493-3p/MIF axis. Commun Biol 2023; 6:270. [PMID: 36922584 PMCID: PMC10017675 DOI: 10.1038/s42003-023-04649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that acetate treatment may improve the renal function in hyperoxaluria rat model. However, its underlying mechanisms remain largely unknown. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we find the oral administration of 5% acetate reduced the elevated serum creatinine, urea, and protected against hyperoxaluria-induced renal injury and fibrosis with less infiltrated macrophages in the kidney. Treatment of acetate in renal tubular epithelial cells in vitro decrease the macrophages recruitment which might have reduced the oxalate-induced renal tubular cells injury. Mechanism dissection suggests that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of miR-493-3p by increasing H3K9 and H3K27 acetylation at its promoter region. The miR-493-3p can suppress the expression of macrophage migration inhibitory factor (MIF), thus inhibiting the macrophages recruitment and reduced oxalate-induced renal tubular cells injury. Importantly, results from the in vivo rat model also demonstrate that the effects of acetate against renal injury were weakened after blocking the miR-493-3p by antagomir treatment. Together, these results suggest that acetate treatment ameliorates the hyperoxaluria-induced renal injury via inhibiting macrophages infiltration with change of the miR-493-3p/MIF signals. Acetate could be a new therapeutic approach for the treatment of oxalate nephropathy.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Chengjie Wu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
- Breast Center, Department of General Surgery, Southern Medical University Nanfang Hospital, 510230, Guangzhou, Guangdong, China
| | - Zhen Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital Southeast University, 210009, Nanjing, Jiangsu, China
| | - Lianmin Luo
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yang Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhicong Huang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guoyao Ai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhijian Zhao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Wen Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Hu C, Zhen Y, Ma Z, Zhao L, Wu H, Shu C, Pang B, Yu J, Xu Y, Zhang X, Wang XY, Yi H. Polyamines from myeloid-derived suppressor cells promote Th17 polarization and disease progression. Mol Ther 2023; 31:569-584. [PMID: 36307990 PMCID: PMC9931554 DOI: 10.1016/j.ymthe.2022.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells that play an important role in diseases. MDSCs promote Th17 differentiation and aggravate systemic lupus erythematosus (SLE) progression by producing arginase-1 to metabolize arginine. However, the metabolic regulators remain unknown. Here, we report that MDSC derivative polyamines can promote Th17 differentiation via miR-542-5p in vitro. Th17 polarization was enhanced in response to polyamine treatment or upon miR-542-5p overexpression. The TGF-β/SMAD3 pathway was shown to be involved in miR-542-5p-facilitated Th17 differentiation. Furthermore, miR-542-5p expression positively correlated with the levels of polyamine synthetases in peripheral blood mononuclear cells of patients with SLE as well as disease severity. In humanized SLE model mice, MDSC depletion decreased the levels of Th17 cells, accompanied by reduced expression of miR-542-5p and these polyamine synthetases. In addition, miR-542-5p expression positively correlated with the Th17 level and disease severity in both patients and humanized SLE mice. Together, our data reveal a novel molecular pathway by which MDSC-derived polyamine metabolism enhances Th17 differentiation and aggravates SLE.
Collapse
Affiliation(s)
- Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun 130021, China; Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun 130021, China
| | - Li Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun 130021, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin Zhang
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun 130021, China.
| |
Collapse
|
8
|
Tan L, Shi G, Zhao J, Xia X, Li D, Wang S, Liang J, Hou Y, Dou H. MDSCs participate in the pathogenesis of diffuse pulmonary hemorrhage in murine lupus through mTOR-FoxO1 signaling. Biochem Biophys Rep 2022; 32:101351. [PMID: 36164563 PMCID: PMC9507990 DOI: 10.1016/j.bbrep.2022.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Junyu Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Saiwen Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
9
|
Kitai H, Kato N, Ogami K, Komatsu S, Watanabe Y, Yoshino S, Koshi E, Tsubota S, Funahashi Y, Maeda T, Furuhashi K, Ishimoto T, Kosugi T, Maruyama S, Kadomatsu K, Suzuki HI. Systematic characterization of seed overlap microRNA cotargeting associated with lupus pathogenesis. BMC Biol 2022; 20:248. [PMID: 36357926 PMCID: PMC9650897 DOI: 10.1186/s12915-022-01447-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Combinatorial gene regulation by multiple microRNAs (miRNAs) is widespread and closely spaced target sites often act cooperatively to achieve stronger repression ("neighborhood" miRNA cotargeting). While miRNA cotarget sites are suggested to be more conserved and implicated in developmental control, the pathological significance of miRNA cotargeting remains elusive. RESULTS Here, we report the pathogenic impacts of combinatorial miRNA regulation on inflammation in systemic lupus erythematosus (SLE). In the SLE mouse model, we identified the downregulation of two miRNAs, miR-128 and miR-148a, by TLR7 stimulation in plasmacytoid dendritic cells. Functional analyses using human cell lines demonstrated that miR-128 and miR-148a additively target KLF4 via extensively overlapping target sites ("seed overlap" miRNA cotargeting) and suppress the inflammatory responses. At the transcriptome level, "seed overlap" miRNA cotargeting increases susceptibility to downregulation by two miRNAs, consistent with additive but not cooperative recruitment of two miRNAs. Systematic characterization further revealed that extensive "seed overlap" is a prevalent feature among broadly conserved miRNAs. Highly conserved target sites of broadly conserved miRNAs are largely divided into two classes-those conserved among eutherian mammals and from human to Coelacanth, and the latter, including KLF4-cotargeting sites, has a stronger association with both "seed overlap" and "neighborhood" miRNA cotargeting. Furthermore, a deeply conserved miRNA target class has a higher probability of haplo-insufficient genes. CONCLUSIONS Our study collectively suggests the complexity of distinct modes of miRNA cotargeting and the importance of their perturbations in human diseases.
Collapse
Affiliation(s)
- Hiroki Kitai
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Noritoshi Kato
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shintaro Komatsu
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Eri Koshi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yoshio Funahashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Present Address: Yoshio Funahashi, Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501 Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Present Address: Takuji Ishimoto, Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195 Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
10
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
11
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
12
|
Hsieh YT, Chou YC, Kuo PY, Tsai HW, Yen YT, Shiau AL, Wang CR. Down-regulated miR-146a expression with increased neutrophil extracellular traps and apoptosis formation in autoimmune-mediated diffuse alveolar hemorrhage. J Biomed Sci 2022; 29:62. [PMID: 36028828 PMCID: PMC9413930 DOI: 10.1186/s12929-022-00849-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidences have suggested an important role of microRNAs (miRNAs) in regulating cell death processes including NETosis and apoptosis. Dysregulated expression of miRNAs and increased formation of neutrophil extracellular traps (NETs) and apoptosis participate in autoimmune-mediated diffuse alveolar hemorrhage (DAH), mostly associated with pulmonary capillaritis in systemic lupus erythematosus (SLE) patients. In particular, besides the inhibition of apoptosis, miR-146a can control innate and acquired immune responses, and regulate the toll-like receptor pathway through targeting TRAF6 to reduce the expression of pro-inflammatory cytokines/chemokines like IL-8, a NETosis inducer. METHODS Expression of miR-146a, TRAF6 and NETs were examined in peripheral blood neutrophils (PBNs) and lung tissues from SLE-associated DAH patients, and in neutrophils and pristane-induced DAH lung tissues from C57BL/6 mice. To assess NETs formation, we examined NETosis-related DNAs morphology and crucial mediators including protein arginine deiminase 4 and citrullinated Histone 3. Expression of miR-146a and its endogenous RNA SNHG16 were studied in HL-60 promyelocytic cells and MLE-12 alveolar cells during NETosis and apoptosis processes, respectively. MiR-146a-overexpressed and CRISPR-Cas13d-mediated SNHG16-silenced HL-60 cells were investigated for NETosis. MiR-146a-overexpressed MLE-12 cells were analyzed for apoptosis. Pristane-injected mice received intra-pulmonary miR-146a delivery to evaluate therapeutic efficacy in DAH. RESULTS In DAH patients, there were down-regulated miR-146a levels with increased TRAF6 expression and PMA/LPS-induced NETosis in PBNs, and down-regulated miR-146a levels with increased TRAF6, high-mobility group box 1 (HMGB1), IL-8, NETs and apoptosis expression in lung tissues. HMGB1-stimulated mouse neutrophils had down-regulated miR-146a levels with increased TRAF6, IL-8 and NETs expression. PMA-stimulated HL-60 cells had down-regulated miR-146a levels with enhanced NETosis. MiR-146a-overexpressed or SNHG16-silenced HL-60 cells showed reduced NETosis. Apoptotic MLE-12 cells had down-regulated miR-146a expression and increased HMGB1 release, while miR-146a-overexpressed MLE-12 cells showed reduced apoptosis and HMGB1 production. There were down-regulated miR-146a levels with increased TRAF6, HMGB1, IL-8, NETs and apoptosis expression in mouse DAH lung tissues. Intra-pulmonary miR-146a delivery could suppress DAH by reducing TRAF6, IL-8, NETs and apoptosis expression. CONCLUSIONS Our results demonstrate firstly down-regulated pulmonary miR-146a levels with increased TRAF6 and IL-8 expression and NETs and apoptosis formation in autoimmune-mediated DAH, and implicate a therapeutic potential of intra-pulmonary miR-146a delivery.
Collapse
Affiliation(s)
- Yu-Tung Hsieh
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Pin-Yu Kuo
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Departments of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Yen
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chrong-Reen Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Gao X, Song Y, Du P, Yang S, Cui H, Lu S, Hu L, Liu L, Jia S, Zhao M. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol 2022; 106:108578. [DOI: 10.1016/j.intimp.2022.108578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 12/31/2022]
|
14
|
Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics' Toolbox. Biomedicines 2022; 10:915. [PMID: 35453665 PMCID: PMC9029477 DOI: 10.3390/biomedicines10040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-RNA (miRNAs) are short non-coding RNAs of about 18-20 nucleotides in length and are implicated in many cellular processes including proliferation, development, differentiation, apoptosis and cell signaling. Furthermore, it is well known that miRNA expression is frequently dysregulated in many cancers. Therefore, this review will highlight the various mechanisms by which microRNAs are dysregulated in cancer. Further highlights include the abundance of molecular genetics tools that are currently available to study miRNA function as well as their advantages and disadvantages with a special focus on various CRISPR/Cas systems This review provides general workflows and some practical considerations when studying miRNA function thus enabling researchers to make informed decisions in regards to the appropriate molecular genetics tool to be utilized for their experiments.
Collapse
Affiliation(s)
- Adam Azlan
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Khor Kang Zi
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Aliaa Arina Rosli
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mot Yee Yik
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Prinses Máxima Centrum Voor Kinderoncologie Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Emmanuel Jairaj Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
15
|
Shen Y, Qu B, Shen N. Expanding Roles of Noncoding RNAs in the Pathogenesis of Systemic Lupus Erythematosus. Curr Rheumatol Rep 2022; 24:64-75. [PMID: 35239107 DOI: 10.1007/s11926-022-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The exact pathogenesis of systemic lupus erythematosus (SLE) remains unclear. Accumulating finds have indicated the roles of the non-coding RNAs (ncRNAs) acting as novel epigenetic regulatory elements in the dysfunction of the immune system in SLE. This review will introduce recent studies on how ncRNAs are involved in the development of SLE. RECENT FINDINGS Recent advances in ncRNAs biology have greatly expanded our understanding of epigenetic regulation of immune responses and inflammation, and increasing evidence suggests ncRNAs are important players in SLE development. Identifications of abnormal expression patterns of ncRNAs and relevant biological impacts in lupus patients have revealed their potential as novel biomarkers and therapeutic targets for SLE. The dysregulation of ncRNAs contributes to the immunopathogenesis of SLE. Clarifying the functions and mechanisms of SLE-associated ncRNAs provides new opportunities for disease biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Yiwei Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Bo Qu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Nan Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China.
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
| |
Collapse
|
16
|
MiR-30d Participates in Vincristine-Induced Neuropathic Pain by Down-Regulating GAD67. Neurochem Res 2021; 47:481-492. [PMID: 34623561 DOI: 10.1007/s11064-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Vincristine is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy(CIPN), which brings patients a great disease burden and associated economic pressure. The mechanism under CIPN remains mostly unknown. The previous study has shown that cell-type-specific spinal synaptic plasticity in the dorsal horn plays a pivotal role in neuropathic pain. Downregulation of GABA transmission, which mainly acts as an inhibitory pathway, has been reported in the growing number of research. Our present study found that GAD67, responsible for > 90% of basal GABA synthesis, is down-regulated, while its relative mRNA remains unchanged in vincristine-induced neuropathy. Considering microRNAs (miRNAs) as a post-transcription modifier by degrading targeted mRNA or repressing mRNA translation, we performed genome-wide miRNA screening and revealed that miR-30d might contribute to GAD67 down-regulation. Further investigation confirmed that miR-30d could affect the fluorescence activity of GAD67 by binding to the 3 'UTR of the GAD67 gene, and intrathecal injection of miR-30d antagomir increased the expression of GAD67, partially rescued vincristine-induced thermal hyperalgesia and mechanical allodynia. In summary, our study revealed the molecule interactions of GAD67 and miR-30d in CIPN, which has not previously been discussed in the literature. The results give more profound insight into understanding the CIPN mechanism and hopefully helps pain control.
Collapse
|
17
|
Abstract
Epigenetic modifications have been well documented in autoimmune diseases. MicroRNAs (miRNAs), in particular, have long intrigued scientists in the field of autoimmunity. Owing to its central role in the development of the immune system, microRNA-155 (miR-155) is deeply involved in systemic lupus erythematosus (SLE). Despite the advancements made in treating SLE, the disease still remains incurable. Therefore, recent attention has been drawn to the manipulation of epigenetics in the development of curative treatments. In fact, it is a widely held view that miRNA-targeted therapy is a new glimmer of hope in the treatment of autoimmune diseases. However, the duplicity of miRNAs should not be overlooked. A single miRNA can target several mRNAs, and some mRNAs may possess opposing functions. In this review, we highlight the role of miR-155 as a biomarker and review its functions in SLE patients and animal models while discussing possible reasons behind inconsistencies across studies.
Collapse
|
18
|
Yang Z, Yan L, Cao H, Gu Y, Zhou P, Shi M, Li G, Jiao X, Li N, Li X, Sun K, Shao F. Erythropoietin Protects against Diffuse Alveolar Hemorrhage in Mice by Regulating Macrophage Polarization through the EPOR/JAK2/STAT3 Axis. THE JOURNAL OF IMMUNOLOGY 2021; 206:1752-1764. [PMID: 33811103 DOI: 10.4049/jimmunol.1901312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
Macrophages play an important role in the pathogenesis of systemic lupus erythematosus-associated diffuse alveolar hemorrhage (DAH). The immunomodulation of macrophage responses might be a potential approach for the prevention and treatment of DAH. Erythropoietin (EPO) could regulate macrophage bioactivities by binding to the EPO receptor expressing on macrophages. This study assessed the effects of EPO on DAH protection using an immune-mediated DAH murine model with macrophages as the major contributor. A DAH murine model was established in female C57BL/6 mice by an i.p. injection of pristane. We found that EPO administration alleviates DAH by reducing pulmonary macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. EPO drove macrophages to the anti-inflammatory phenotype in the primary murine bone marrow-derived macrophages and macrophages cell line RAW 264.7 with LPS, IFN-γ, and IL-4 in vitro. Moreover, EPO treatment increases the expression of EPOR and decreases the expression of miR-494-3p, resulting in increased phosphorylation of JAK2 and STAT3. In conclusion, EPO can be a potential therapeutic agent in DAH by reducing cell apoptosis and regulating macrophage polarization through the EPOR/JAK2/STAT3 axis. Further studies are also needed to validate the direct target of miR-494-3p in regulating JAK2/STAT3 signaling transduction.
Collapse
Affiliation(s)
- Zhongnan Yang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.,Department of Urology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China; and
| | - Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China; and
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Na Li
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangnan Li
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China; and
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China;
| |
Collapse
|
19
|
Chen YC, Chou YC, Hsieh YT, Kuo PY, Yang ML, Chong HE, Wu CL, Shiau AL, Wang CR. Targeting Intra-Pulmonary P53-Dependent Long Non-Coding RNA Expression as a Therapeutic Intervention for Systemic Lupus Erythematosus-Associated Diffuse Alveolar Hemorrhage. Int J Mol Sci 2021; 22:ijms22136948. [PMID: 34203338 PMCID: PMC8268786 DOI: 10.3390/ijms22136948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diffuse alveolar hemorrhage (DAH) in systemic lupus erythematosus (SLE) is associated with significant mortality, requiring a thorough understanding of its complex mechanisms to develop novel therapeutics for disease control. Activated p53-dependent apoptosis with dysregulated long non-coding RNA (lncRNA) expression is involved in the SLE pathogenesis and correlated with clinical activity. We examined the expression of apoptosis-related p53-dependent lncRNA, including H19, HOTAIR and lincRNA-p21 in SLE-associated DAH patients. Increased lincRNA-p21 levels were detected in circulating mononuclear cells, mainly in CD4+ and CD14+ cells. Higher expression of p53, lincRNA-p21 and cell apoptosis was identified in lung tissues. Lentivirus-based short hairpin RNA (shRNA)-transduced stable transfectants were created for examining the targeting efficacy in lncRNA. Under pristane stimulation, alveolar epithelial cells had increased p53, lincRNA-p21 and downstream Bax levels with elevated apoptotic ratios. After pristane injection, C57/BL6 mice developed DAH with increased pulmonary expression of p53, lincRNA-p21 and cell apoptosis. Intra-pulmonary delivery of shRNA targeting lincRNA-p21 reduced hemorrhage frequencies and improved anemia status through decreasing Bax expression and cell apoptosis. Our findings demonstrate increased p53-dependent lncRNA expression with accelerated cell apoptosis in the lungs of SLE-associated DAH patients, and show the therapeutic potential of targeting intra-pulmonary lncRNA expression in a pristane-induced model of DAH.
Collapse
Affiliation(s)
- Yi-Cheng Chen
- Department of Internal Medicine, Medical College and Hospital, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-C.C.); (H.-E.C.)
- Department of Medical Research, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi 600566, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan 70403, Taiwan;
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Yu-Tung Hsieh
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.H.); (P.-Y.K.); (M.-L.Y.); (A.-L.S.)
| | - Pin-Yu Kuo
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.H.); (P.-Y.K.); (M.-L.Y.); (A.-L.S.)
| | - Mei-Lin Yang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.H.); (P.-Y.K.); (M.-L.Y.); (A.-L.S.)
| | - Hao-Earn Chong
- Department of Internal Medicine, Medical College and Hospital, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-C.C.); (H.-E.C.)
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Medical College, Tainan 70403, Taiwan;
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.H.); (P.-Y.K.); (M.-L.Y.); (A.-L.S.)
| | - Chrong-Reen Wang
- Department of Internal Medicine, Medical College and Hospital, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-C.C.); (H.-E.C.)
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan 70403, Taiwan; (Y.-T.H.); (P.-Y.K.); (M.-L.Y.); (A.-L.S.)
- Correspondence: ; Tel.: +886-6-235-3535 (ext. 5366)
| |
Collapse
|
20
|
Schell SL, Rahman ZSM. miRNA-Mediated Control of B Cell Responses in Immunity and SLE. Front Immunol 2021; 12:683710. [PMID: 34079558 PMCID: PMC8165268 DOI: 10.3389/fimmu.2021.683710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Loss of B cell tolerance is central to autoimmune diseases such as systemic lupus erythematosus (SLE). As such, the mechanisms involved in B cell development, maturation, activation, and function that are aberrantly regulated in SLE are of interest in the design of targeted therapeutics. While many factors are involved in the generation and regulation of B cell responses, miRNAs have emerged as critical regulators of these responses within the last decade. To date, miRNA involvement in B cell responses has largely been studied in non-autoimmune, immunization-based systems. However, miRNA profiles have also been strongly associated with SLE in human patients and these molecules have proven critical in both the promotion and regulation of disease in mouse models and in the formation of autoreactive B cell responses. Functionally, miRNAs are small non-coding RNAs that bind to complementary sequences located in target mRNA transcripts to mediate transcript degradation or translational repression, invoking a post-transcriptional level of genetic regulation. Due to their capacity to target a diverse range of transcripts and pathways in different immune cell types and throughout the various stages of development and response, targeting miRNAs is an interesting potential therapeutic avenue. Herein, we focus on what is currently known about miRNA function in both normal and SLE B cell responses, primarily highlighting miRNAs with confirmed functions in mouse models. We also discuss areas that should be addressed in future studies and whether the development of miRNA-centric therapeutics may be a viable alternative for the treatment of SLE.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
21
|
Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the Role of miR-155 in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:669382. [PMID: 34025671 PMCID: PMC8137895 DOI: 10.3389/fimmu.2021.669382] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding conserved RNAs containing 19 to 24 nucleotides that are regulators of post-translational modifications and are involved in the majority of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. Autoimmune diseases are characterized by immune system dysregulation, which ultimately leads to destructive responses to self-antigens. A large body of literature suggests that autoimmune diseases and immune dysregulation are associated with different miRNA expression changes in the target cells and tissues of adaptive or innate immunity. miR-155 is identified as a critical modulator of immune responses. Recently conducted studies on the expression profile of miR-155 suggest that the altered expression and function of miR-155 can mediate vulnerability to autoimmune diseases and cause significant dysfunction of the immune system.
Collapse
Affiliation(s)
- Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vafashoar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Khalvandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
23
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
24
|
Schett G, Tanaka Y, Isaacs JD. Why remission is not enough: underlying disease mechanisms in RA that prevent cure. Nat Rev Rheumatol 2021; 17:135-144. [PMID: 33303993 DOI: 10.1038/s41584-020-00543-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/04/2023]
Abstract
Cure is the aspirational aim for the treatment of all diseases, including chronic inflammatory conditions such as rheumatoid arthritis (RA); however, it has only been during the twenty-first century that remission, let alone cure, has been a regularly achievable target in RA. Little research has been carried out on how to cure RA, and the term 'cure' still requires definition for this disease. Even now, achieving a cure seems to be a rare occurrence among individuals with RA. Therefore, this Review is aimed at addressing the obstacles to the achievement of cure in RA. The differences between remission and cure in RA are first defined, followed by a discussion of the underlying factors (referred to as drivers) that prevent the achievement of cure in RA by triggering sustained immune activation and effector cytokine production. Such drivers include adaptive immune system activation, mesenchymal tissue priming and so-called 'remote' (non-immune and non-articular) factors. Strategies to target these drivers are also presented, with an emphasis on the development of strategies that could complement currently used cytokine inhibition and thereby improve the likelihood of curing RA.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum fur Immuntherapie, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Sun X, Kang Y, Xue S, Zou J, Xu J, Tang D, Qin H. In vivo therapeutic success of MicroRNA-155 antagomir in a mouse model of pulmonary fibrosis induced by bleomycin. Korean J Intern Med 2021; 36:S160-S169. [PMID: 32506869 PMCID: PMC8009162 DOI: 10.3904/kjim.2019.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/07/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS MicroRNAs (miRNAs) play critical regulatory roles in the pathogenesis of pulmonary fibrosis. The aim of this study was to explore whether miRNA antagomirs could serve as potential therapeutic agents in interstitial lung diseases. METHODS A mouse model of pulmonary fibrosis was established by intratracheal injection of bleomycin (BLM). Using microarray analysis, up-regulated miRNAs were identified during the development of pulmonary fibrosis. miR-155 was chosen as the candidate miRNA. Fifteen mice were then randomized into the following three groups: BLM + antagomiR-155 group, treated with BLM plus intravenously injected with antagomiR-155; BLM group, treated with intratracheal BLM plus phosphate-buffered saline (PBS); and a control group, treated with PBS only. Lung tissues were collected for histopathological analysis, hydroxyproline measurement, and Western blotting. Enzyme-linked immunosorbent assays were used for the measurement of cytokines associated with pulmonary fibrosis. RESULTS Histological changes and hydroxyproline levels induced by BLM were significantly inhibited by antagomiR-155. The levels of interleukin 4 (IL-4) and transforming growth factor-β (TGF-β) expression were increased after BLM treatment. However, miR-155 silencing decreased the expression of IL-4, TGF-β, and interferon-γ. TGF-β-activated kinase 1/mitogen-activated protein kinase kinase kinase 7 (MAP3K7)-binding protein 2 (TAB2) of the mitogen-activated protein kinase (MAPK) signaling pathway, was activated by BLM and inhibited by in vivo silencing of miR-155 via antagomiR-155. CONCLUSION In vivo treatment with antagomiR-155 alleviated the pathological changes induced by BLM and may be a promising therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoyuan Sun
- Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Kang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shan Xue
- Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Zou
- Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiabo Xu
- Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Daoqiang Tang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Qin
- Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Correspondence to Hui Qin, M.D. Department of Respiratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No 160, Pujian Road, Shanghai 200127, China Tel: +86-68383101 Fax: +86-2168383101 E-mail:
| |
Collapse
|
26
|
Li L. The Role of MicroRNAs in Vitiligo: Regulators and Therapeutic Targets. Ann Dermatol 2020; 32:441-451. [PMID: 33911786 PMCID: PMC7875238 DOI: 10.5021/ad.2020.32.6.441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023] Open
Abstract
Vitiligo is an acquired skin disorder clinically characterized by the progressive appearance of white maculae due to a loss of functioning epidermal melanocytes. Studies have shown that microRNAs (miRNAs) modulate cellular differentiation, proliferation and apoptosis, including immune cell and melanocyte development and functions. The role of miRNAs in the pathogenesis of several immune-related diseases has been explored. Novel approaches to target miRNAs have recently emerged allowing modulation of miRNAs levels in diverse pathological processes, thus making them promising targets for molecular-based diagnostics and therapy. Here, we report the present status of research on miRNAs expression and functional alterations in vitiligo, in order to more fully understand the role of these molecules in vitiligo pathology.
Collapse
Affiliation(s)
- Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
27
|
Yi L, Chen Y, Jin Q, Deng C, Wu Y, Li H, Liu T, Li Y, Yang Y, Wang J, Lv Q, Zhang L, Xie M. Antagomir-155 Attenuates Acute Cardiac Rejection Using Ultrasound Targeted Microbubbles Destruction. Adv Healthc Mater 2020; 9:e2000189. [PMID: 32548962 DOI: 10.1002/adhm.202000189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Antagomir-155 is an artificial inhibitor of miRNA-155, which is expected to be a promising therapeutic target to attenuate acute cardiac rejection (ACR). However, its vulnerability of being degraded by endogenous nuclease and potential off-target effect make the authors seek for a more suitable way to delivery it. In attribution of efficiency and safety, ultrasound targeted microbubbles destruction (UTMD) turns out to be an appropriate method to deliver gene to target tissues. Here, cationic microbubbles to deliver antagomir-155 downregulating miRNA-155 in murine allograft hearts triggered by UTMD are synthesized. The viability of this therapy is verified by fluorescent microscopy. The biodistribution of antagomir-155 is analyzed by optical imaging system. The results show antagomir-155 delivered by UTMD which significantly decreases the levels of miR-155. Also, this therapy downregulates the expression of cytokines and inflammation infiltration. And allograft survival time is significantly prolonged. Therefore, antagomir-loaded microbubbles trigged by UTMD may provide a novel platform for ACR target treatment.
Collapse
Affiliation(s)
- Luyang Yi
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yihan Chen
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Qiaofeng Jin
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Cheng Deng
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Ya Wu
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Huiling Li
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Tianshu Liu
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yuman Li
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Yali Yang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Jing Wang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Qing Lv
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Li Zhang
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| | - Mingxing Xie
- Department of UltrasoundUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology 1277 Jiefang Avenue Wuhan 430022 China
- Hubei Province Key Laboratory of Molecular Imaging 13 Hangkong Road Wuhan 430030 China
| |
Collapse
|
28
|
Roles of peroxisome proliferator-activated receptor α in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 2020; 327:109176. [PMID: 32534989 DOI: 10.1016/j.cbi.2020.109176] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a progressively aggravated liver disease with high incidence in alcoholics. Ethanol-induced fat accumulation and the subsequent lipopolysaccharide (LPS)-driven inflammation bring liver from reversible steatosis, to irreversible hepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and plays pivotal roles in the regulation of fatty acid homeostasis as well as the inflammation control in the liver. It has been well documented that PPARα activity and/or expression are downregulated in liver of mice exposed to ethanol, which is thought to be one of the prime contributors to ethanol-induced steatosis, hepatitis and fibrosis. This article summarizes the current evidences from in vitro and animal models for the critical roles of PPARα in the onset and progression of ALD. Importantly, it should be noted that the expression of PPARα in human liver is reported to be similar to that in mice, and PPARα expression is downregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), a disease sharing many similarities with ALD. Therefore, clinical trials investigating the expression of PPARα in the liver of ALD patients and the efficacy of strong PPARα agonists for the prevention and treatment of ALD are warranted.
Collapse
|
29
|
Hong SM, Liu C, Yin Z, Wu L, Qu B, Shen N. MicroRNAs in Systemic Lupus Erythematosus: a Perspective on the Path from Biological Discoveries to Clinical Practice. Curr Rheumatol Rep 2020; 22:17. [PMID: 32405712 DOI: 10.1007/s11926-020-00895-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs) play essential roles in immune abnormalities and organ damage of systemic lupus erythematosus (SLE). Current findings have indicated potential clinical applications of miRNAs for combating SLE. Here, we review recent evidence which support the notions that miRNAs can be novel biomarkers and therapeutic agents for SLE. RECENT FINDINGS Following years of the studies of the expression patterns of miRNAs in both peripheral blood cells and body fluids, such as plasma and urine, several miRNAs or miRNA combinations have been associated with disease activity and specific organ damage. In depth analysis reveals complex and multiple roles of certain miRNAs in the pathogenesis of SLE. Manipulating miRNA expression shows in vivo therapeutic effects in lupus mouse models. MiRNAs contribute to the immune disorders and organ damage in SLE. MiRNA based biomarkers and therapies have the potential to be viable options for the treatment of SLE.
Collapse
Affiliation(s)
- Soon-Min Hong
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Can Liu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Lingling Wu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Bo Qu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China. .,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
| | - Nan Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China. .,Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China. .,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
| |
Collapse
|
30
|
Gao X, Liu L, Min X, Jia S, Zhao M. Non-Coding RNAs in CD4 + T Cells: New Insights Into the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:568. [PMID: 32308657 PMCID: PMC7145980 DOI: 10.3389/fimmu.2020.00568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for CD4+ T cell differentiation and functions. By directly or indirectly regulating immune gene expression, ncRNAs give flexible instructions to guide the biological processes of CD4+ T cells and play a vital role in maintaining immune homeostasis. However, the dysfunction of ncRNAs alters the gene expression profiles, disturbs the normal biological processes of CD4+ T cells, and leads to the functional changes of CD4+ T cells, which is an underlying cause of systemic lupus erythematosus (SLE). In this review, we focus on the recent advances in the roles of ncRNAs in CD4+ T cell functions and differentiation, as well as their potential applications in the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Xiaofei Gao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Limin Liu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoli Min
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Effects of AntagomiRs on Different Lung Diseases in Human, Cellular, and Animal Models. Int J Mol Sci 2019; 20:ijms20163938. [PMID: 31412612 PMCID: PMC6719072 DOI: 10.3390/ijms20163938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION MiRNAs have been shown to play a crucial role among lung cancer, pulmonary fibrosis, tuberculosis (TBC) infection, and bronchial hypersensitivity, thus including chronic obstructive pulmonary disease (COPD) and asthma. The oncogenic effect of several miRNAs has been recently ruled out. In order to act on miRNAs turnover, antagomiRs have been developed. MATERIALS AND METHODS The systematic review was conducted under the PRISMA guidelines (registration number is: CRD42019134173). The PubMed database was searched between 1 January 2000 and 30 April 2019 under the following search strategy: (((antagomiR) OR (mirna antagonists) OR (mirna antagonist)) AND ((lung[MeSH Terms]) OR ("lung diseases"[MeSH Terms]))). We included original articles, published in English, whereas exclusion criteria included reviews, meta-analyses, single case reports, and studies published in a language other than English. RESULTS AND CONCLUSIONS A total of 68 articles matching the inclusion criteria were retrieved. Overall, the use of antagomiR was seen to be efficient in downregulating the specific miRNA they are conceived for. The usefulness of antagomiRs was demonstrated in humans, animal models, and cell lines. To our best knowledge, this is the first article to encompass evidence regarding miRNAs and their respective antagomiRs in the lung, in order to provide readers a comprehensive review upon major lung disorders.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
32
|
Zhu W, Liu Y, Lan Y, Li X, Luo L, Duan X, Lei M, Liu G, Yang Z, Mai X, Sun Y, Wang L, Lu S, Ou L, Wu W, Mai Z, Zhong D, Cai C, Zhao Z, Zhong W, Liu Y, Sun Y, Zeng G. Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMedicine 2019; 45:231-250. [PMID: 31202812 PMCID: PMC6642359 DOI: 10.1016/j.ebiom.2019.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/19/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Epidemiological evidence of over 9000 people suggests that daily intake of vinegar whose principal bioactive component is acetic acid is associated with a reduced risk of nephrolithiasis. The underlying mechanism, however, remains largely unknown. METHODS We examined the in vitro and in vivo anti-nephrolithiasis effects of vinegar and acetate. A randomized study was performed to confirm the effects of vinegar in humans. FINDINGS We found individuals with daily consumption of vinegar compared to those without have a higher citrate and a lower calcium excretion in urine, two critical molecules for calcium oxalate (CaOx) kidney stone in humans. We observed that oral administration of vinegar or 5% acetate increased citrate and reduced calcium in urinary excretion, and finally suppressed renal CaOx crystal formation in a rat model. Mechanism dissection suggested that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of microRNAs-130a-3p, -148b-3p and -374b-5p by increasing H3K9, H3K27 acetylation at their promoter regions. These miRNAs can suppress the expression of Nadc1 and Cldn14, thus enhancing urinary citrate excretion and reducing urinary calcium excretion. Significantly these mechanistic findings were confirmed in human kidney tissues, suggesting similar mechanistic relationships exist in humans. Results from a pilot clinical study indicated that daily intake of vinegar reduced stone recurrence, increased citrate and reduced calcium in urinary excretion in CaOx stone formers without adverse side effects. INTERPRETATION Vinegar prevents renal CaOx crystal formation through influencing urinary citrate and calcium excretion via epigenetic regulations. Vinegar consumption is a promising strategy to prevent CaOx nephrolithiasis occurrence and recurrence. FUND: National Natural Science Foundations of China and National Natural Science Foundation of Guangdong Province.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Yang Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Yu Lan
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Xiaohang Li
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Lianmin Luo
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Xiaolu Duan
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Ming Lei
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Guanzhao Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Zhou Yang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Xin Mai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Yan Sun
- Department of Urology, People's Hospital of Changzhi, Shanxi 046000, China
| | - Li Wang
- Department of Urology, People's Hospital of Changzhi, Shanxi 046000, China
| | - Suilin Lu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Lili Ou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Wenqi Wu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Zanlin Mai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Dongliang Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Chao Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Zhijian Zhao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Wen Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Yin Sun
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China; Department of Radiation Oncology, University of Rochester Medical Center, Rochester 14646, NY, USA.
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, Guangdong, China.
| |
Collapse
|
33
|
Xu T, Li L, Hu HQ, Meng XM, Huang C, Zhang L, Qin J, Li J. MicroRNAs in alcoholic liver disease: Recent advances and future applications. J Cell Physiol 2018; 234:382-394. [PMID: 30076710 DOI: 10.1002/jcp.26938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is characterized by hepatocyte damage, inflammatory cell activation, and increased intestinal permeability leading to the clinical manifestations of alcoholic hepatitis. Selected members of the family of microRNAs (miRNAs) are affected by alcohol, resulting in an abnormal miRNA profile in the liver and circulation in ALD. Increasing evidence suggests that miRNAs that regulate inflammation, lipid metabolism and promote cancer are affected by excessive alcohol administration in mouse models of ALD. This communication highlights recent findings in miRNA expression and functions as they relate to the pathogenesis of ALD. The cell-specific distribution of miRNAs, as well as the significance of circulating extracellular miRNAs, is discussed as potential biomarkers. Finally, the prospects of miRNA-based therapies are evaluated in ALD.
Collapse
Affiliation(s)
- Tao Xu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Li Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Qing Hu
- Health Management Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jian Qin
- Anhui Joyfar Pharmaceutical Institute Co., Ltd., Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drug, School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Lam IKY, Chow JX, Lau CS, Chan VSF. MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 2018; 431:201-212. [PMID: 29859876 DOI: 10.1016/j.canlet.2018.05.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are endogenous small, non-coding RNAs that regulate genome expression at the post-transcriptional level. They are involved in a wide range of physiological processes including the maintenance of immune homeostasis and normal function. Accumulating evidence from animal studies show that alterations in pan or specific miRNA expression would break immunological tolerance, leading to autoimmunity. Differential miRNA expressions have also been documented in patients of many autoimmune disorders. In this review, we highlight the evidence that signifies the critical role of miRNAs in autoimmunity, specifically on their regulatory roles in the pathogenesis of several rheumatic diseases including systemic lupus erythematosus, rheumatoid arthritis and spondyloarthritis. The potential of miRNAs as biomarkers and therapeutic targets is also discussed. Manipulation of dysregulated miRNAs in vivo through miRNA delivery or inhibition offers promise for new therapeutic strategies in treating rheumatic diseases.
Collapse
Affiliation(s)
- Ian Kar Yin Lam
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jia Xin Chow
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chak Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Vera Sau Fong Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
35
|
The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018; 2018:4126106. [PMID: 29854836 PMCID: PMC5964414 DOI: 10.1155/2018/4126106] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.
Collapse
|
36
|
Yang J, Yang X, Yang J, Li M. Hydroxychloroquine Inhibits the Differentiation of Th17 Cells in Systemic Lupus Erythematosus. J Rheumatol 2018; 45:818-826. [DOI: 10.3899/jrheum.170737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
Objective.Hydroxychloroquine (HCQ) is a commonly used medicine for the treatment of systemic lupus erythematosus (SLE), and Th17 cells are closely related to the pathogenesis of SLE. However, the role and mechanism of HCQ on Th17 cell differentiation in SLE is not clearly understood. Here, we investigate the effect of HCQ on Th17 cell differentiation bothin vitroand in patients with SLE.Methods.Twenty-five patients with SLE were divided into 2 treatment groups: prednisone alone and HCQ plus prednisone. Interleukin 17 (IL-17) expression was analyzed by ELISA and real-time (RT)-PCR. Th17 were measured in patients with SLE by flow cytometry before and after HCQ treatment.In vitro, naive T cells were cultured in Th17-inducing conditions with or without HCQ. Cell differentiation and IL-17 expression were analyzed. Finally, transcriptome sequencing identified differential gene expression between naive T cells and induced Th17 cells.Results.In patients, HCQ plus prednisone treatment inhibited IL-17 production, gene expression, and Th17 cell differentiation.In vitro, HCQ inhibited Th17 cell proliferation and differentiation, as well as IL-17 production. Five microRNA were significantly different in Th17 cells compared with naive T cells, and HCQ treatment reversed this effect.In vivo, microRNA-590 (miR-590) was verified and was significantly decreased in Th17 cells, compared with naive T cells from lupus-prone mice. Moreover, miR-590 was increased in patients treated with HCQ plus prednisone.Conclusion.HCQ inhibited Th17 cell differentiation and IL-17 production bothin vitroand in patients with SLE. Our study provides additional evidence for HCQ as a treatment for SLE.
Collapse
|
37
|
Li Y, Duo Y, Bi J, Zeng X, Mei L, Bao S, He L, Shan A, Zhang Y, Yu X. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int J Nanomedicine 2018; 13:1241-1256. [PMID: 29535520 PMCID: PMC5841950 DOI: 10.2147/ijn.s158290] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION MicroRNA-155 (miR-155) is an oncogenic microRNA, which is upregulated in many human cancers including colorectal cancer (CRC). Overexpression of miR-155 has been found to regulate several cancer-related pathways, and therefore, targeting miR-155 may be an effective strategy for cancer therapy. However, effective and safe delivery of anti-miR-155 to tumors remains challenging for the clinical applications of anti-miR-155-based therapeutics. METHODS In this study, we explored the expression of miR-155 and the transcription factor nuclear factor kappa B (NF-κB) in CRC tissues and cell lines, and the possible relationship between miR-155 and NF-κB. We further report on anti-miR-155-loaded mesoporous silica nanoparticles (MSNs) modified with polymerized dopamine (PDA) and AS1411 aptamer (MSNs-anti-miR-155@PDA-Apt) for the targeted treatment of CRC. RESULTS Results showed that miR-155 is overexpressed in CRC tissues and cell lines, and there is a positive feedback loop between NF-κB and miR-155. Compared to the control groups, MSNs-anti-miR-155@PDA-Apt could efficiently downregulate miR-155 expression in SW480 cells and achieve significantly high targeting efficiency and enhanced therapeutic effects in both in vivo and in vitro experiments. Furthermore, inhibition of miR-155 by MSNs-anti-miR-155@PDA-Apt can enhance the sensitivity of SW480 to 5-fluorouracil chemotherapy. CONCLUSION Thus, our results suggested that MSNs-anti-miR-155@PDA-Apt is a promising nanoformulation for CRC treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
- Department of Emergency, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yanhong Duo
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
- Key Laboratory of Plant Cell Activities and Stress Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangang Bi
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Xiaowei Zeng
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518020, China
| | - Lin Mei
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518020, China
| | - Shiyun Bao
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Lisheng He
- Department of Pathology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Aijun Shan
- Department of Emergency, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Xiaofang Yu
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518020, China
| |
Collapse
|
38
|
Dysregulation of miR-155-5p and miR-200-3p and the Anti-Non-Bilayer Phospholipid Arrangement Antibodies Favor the Development of Lupus in Three Novel Murine Lupus Models. J Immunol Res 2017; 2017:8751642. [PMID: 29349090 PMCID: PMC5733947 DOI: 10.1155/2017/8751642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/08/2017] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by deregulated activation of T and B cells, autoantibody production, and consequent formation of immune complexes. Liposomes with nonbilayer phospholipid arrangements (NPA), induced by chlorpromazine, procainamide, or manganese, provoke a disease resembling human lupus when administered to mice. These mice produce anti-NPA IgM and IgG antibodies and exhibit an increased number of TLR-expressing spleen cells and a modified gene expression associated with TICAM1-dependent TLR-4 signaling (including IFNA1 and IFNA2) and complement activation. Additionally, they showed a diminished gene expression related to apoptosis and NK cell activation. We hypothesized that such gene expression may be affected by miRNAs and so miRNA expression was studied. Twelve deregulated miRNAs were found. Six of them were common to the three lupus-like models. Their validation by qRT-PCR and TaqMan probes, including miR-342-3p, revealed that miR-155-5p and miR-200a-3p expression was statistically significant. Currently described functions for these miRNAs in autoimmune diseases such as SLE reveal their participation in inflammation, interferon production, germinal center responses, and antibody maturation. Taking into account these findings, we propose miR-155-5p and miR-200a-3p, together with the anti-NPA antibodies, as key players in the murine lupus-like models and possible biomarkers of the human SLE.
Collapse
|
39
|
Novel insights of microRNAs in the development of systemic lupus erythematosus. Curr Opin Rheumatol 2017; 29:450-457. [DOI: 10.1097/bor.0000000000000420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Leiss H, Salzberger W, Jacobs B, Gessl I, Kozakowski N, Blüml S, Puchner A, Kiss A, Podesser BK, Smolen JS, Stummvoll GH. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus. PLoS One 2017; 12:e0181015. [PMID: 28719617 PMCID: PMC5515414 DOI: 10.1371/journal.pone.0181015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/13/2023] Open
Abstract
Objective We herein examine the role of endogenous miR155 in the development of systemic manifestations in pristane induced lupus. Materials and methods Systemic lupus in miR155-deficient and wild type mice was induced upon injection of pristane and analyzed after 8 months, PBS-injected mice served as controls. Glomerulonephritis and pneumonitis were quantified using the kidney biopsy score and a newly adapted histomorphometric image analysis system; lung tissue was further analyzed by tissue cytometry. Serum levels of anti-dsDNA, anti-histone and anti-chromatin antibodies were measured by ELISA. Frequencies of B cells, activated and regulatory CD4+ T cells as well as Th1, Th2, Th17 cells were measured by flow cytometry. RT-qPCR was used to measure expression levels of interferon-signature and T-cell subset related as well as miR155-associated genes. Results After induction of lupus, miR155-deficient mice had significant less pulmonary involvement (perivascular inflammatory area in mm2/mm2 lung area 0.00092±0.00015 vs. 0.0027±0.00075, p = 0.0347) and renal disease (glomerular activity score 1.95±0.19 vs 3±0.26, p = 0.0029) compared to wild types. MiR155-deficient mice had significantly lower serum levels of disease-associated auto-antibodies and decreased frequencies of activated CD4+CD25+ (Foxp3-) cells. Upon restimulation, CD4+ cells showed a less pronounced Th2 and Th17 and a slightly decreased Th1 response in mir155-deficient mice. Pristane-treated wild types showed significantly up-regulated expression of genes related to the INF-signature (MX1, IP10, IRF7, ISG15). Conclusions MiR155-deficient mice had less severe organ involvement, lower serum auto-antibody levels, a less prominent T cell response and lower expressions of genes jointly responsible for disease development. Thus, antagonizing miR155 might be a future approach in treating SLE.
Collapse
Affiliation(s)
- Harald Leiss
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Wilhelm Salzberger
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Jacobs
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Irina Gessl
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | - Stephan Blüml
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Antonia Puchner
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Josef S. Smolen
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Georg H. Stummvoll
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
mir-500-Mediated GAD67 Downregulation Contributes to Neuropathic Pain. J Neurosci 2017; 36:6321-31. [PMID: 27277808 DOI: 10.1523/jneurosci.0646-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the interactions between synaptic dysfunction and the genes that are involved in persistent pain remain elusive. In the present study, we found that neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection significantly impaired the function of GABAergic synapses of spinal dorsal horn neurons via the reduction of the GAD67 expression. We also found that mir-500 expression was significantly increased and involved in the modulation of GAD67 expression via targeting the specific site of Gad1 gene in the dorsal horn. In addition, knock-out of mir-500 or using mir-500 antagomir rescued the GABAergic synapses in the spinal dorsal horn neurons and attenuated the sensitized pain behavior in the rats with neuropathic pain. To our knowledge, this is the first study to investigate the function significance and the underlying molecular mechanisms of mir-500 in the process of neuropathic pain, which sheds light on the development of novel therapeutic options for neuropathic pain. SIGNIFICANCE STATEMENT Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the underlying molecular mechanisms remain elusive. The present study illustrates for the first time a mir-500-mediated mechanism underlying spinal GABAergic dysfunction and sensitized pain behavior in neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection, which sheds light on the development of novel therapeutic options for neuropathic pain.
Collapse
|
42
|
Wang JY, Fang M, Boye A, Wu C, Wu JJ, Ma Y, Hou S, Kan Y, Yang Y. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma. Oncotarget 2017; 8:84958-84973. [PMID: 29156696 PMCID: PMC5689586 DOI: 10.18632/oncotarget.17709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/02/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy.
Collapse
Affiliation(s)
- Ji Yu Wang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Meng Fang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Alex Boye
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Jia Jun Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Ying Ma
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Shu Hou
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yue Kan
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Yan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
43
|
Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y. A comparative study of the characterization of miR-155 in knockout mice. PLoS One 2017; 12:e0173487. [PMID: 28278287 PMCID: PMC5344489 DOI: 10.1371/journal.pone.0173487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
miR-155 is one of the most important miRNAs and plays a very important role in numerous biological processes. However, few studies have characterized this miRNA in mice under normal physiological conditions. We aimed to characterize miR-155 in vivo by using a comparative analysis. In our study, we compared miR-155 knockout (KO) mice with C57BL/6 wild type (WT) mice in order to characterize miR-155 in mice under normal physiological conditions using many evaluation methods, including a reproductive performance analysis, growth curve, ultrasonic estimation, haematological examination, and histopathological analysis. These analyses showed no significant differences between groups in the main evaluation indices. The growth and development were nearly normal for all mice and did not differ between the control and model groups. Using a comparative analysis and a summary of related studies published in recent years, we found that miR-155 was not essential for normal physiological processes in 8-week-old mice. miR-155 deficiency did not affect the development and growth of naturally ageing mice during the 42 days after birth. Thus, studying the complex biological functions of miR-155 requires the further use of KO mouse models.
Collapse
Affiliation(s)
- Dong Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Yongchun Cui
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Bin Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Xiaokang Luo
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Bo Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Yue Tang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Yan Y, Wang R, Guan W, Qiao M, Wang L. Roles of microRNAs in cancer associated fibroblasts of gastric cancer. Pathol Res Pract 2017; 213:730-736. [PMID: 28554761 DOI: 10.1016/j.prp.2017.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 01/17/2023]
Abstract
Cancer associated fibroblasts (CAFs) are a key component of the tumor microenvironment (TME). They play critical roles in the occurrence and development of gastric cancer (GC) through controlling various cytokines secretion and direct cell-to-cell interaction. However, the underlying mechanism of CAFs in tumor progression has not been entirely elucidated. MicroRNAs (miRNAs) as important factors have a central role in the interplay between tumor cell and TME. Recent studies also highlight that the aberrant expression of miRNAs in CAFs is involved in multiple functions in tumorigenesis and malignant process of GC. In this article, we shortly introduce the miRNAs biogenesis and provide an overview of the mechanisms and emerging roles of CAFs-related miRNAs. Focusing on these miRNAs as potential therapeutic targets may bring better treatment effect on GC and other diseases.
Collapse
Affiliation(s)
- Yu Yan
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Ruifen Wang
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Wenbin Guan
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Meng Qiao
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Lifeng Wang
- Department of Pathology, Xin Hua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
45
|
Doria A, Gershwin ME, Selmi C. From old concerns to new advances and personalized medicine in lupus: The end of the tunnel is approaching. J Autoimmun 2016; 74:1-5. [DOI: 10.1016/j.jaut.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
46
|
Yuan K, Zhang X, Lv L, Zhang J, Liang W, Wang P. Fine-tuning the expression of microRNA-155 controls acetaminophen-induced liver inflammation. Int Immunopharmacol 2016; 40:339-346. [PMID: 27673475 DOI: 10.1016/j.intimp.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/31/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
Treatment of acetaminophen (APAP) in overdose can cause a potentially serious and fatal liver injury. MicroRNA-155 (miR-155), a multifunctional microRNA, is known to mediate inflammatory responses via regulating various target genes. In this study, we aimed to study the role of miR-155 in APAP-induced liver injury, using miR-155-/- mice and miR-155 in vivo intervention. We noted that miR-155 expression was significantly increased in liver and blood after APAP treatment. Knockout of miR-155 deteriorated APAP-induced liver damage, with the elevated serum levels of AST and ALT. The levels of various inflammatory mediators, such as TNF-α and IL-6, were markedly augmented in livers in the absence of miR-155. Moreover, miR-155 deficiency aberrantly activated NF-kappa-B signaling via enhancing p65 and IKKε expression. Finally, in vivo administration of miR-155 agomir attenuated APAP-induced liver damage, reduced the serum levels of AST and ALT, and dampened the NF-kB signaling. In conclusion, our data demonstrated that miR-155 protects the mice against APAP-induced liver damage via mediating NF-KB signaling pathway, suggesting that miR-155 might be a potential pharmaceutic target for treatment of APAP-induced liver inflammation.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Vascular Surgery, South Campus, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xue Zhang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, China
| | - Lei Lv
- Department of Vascular Surgery, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jiwei Zhang
- Department of Vascular Surgery, South Campus, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Wei Liang
- Department of Vascular Surgery, South Campus, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Peng Wang
- Department of Vascular Surgery, South Campus, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| |
Collapse
|
47
|
Christmann RB, Wooten A, Sampaio-Barros P, Borges CL, Carvalho CRR, Kairalla RA, Feghali-Bostwick C, Ziemek J, Mei Y, Goummih S, Tan J, Alvarez D, Kass DJ, Rojas M, de Mattos TL, Parra E, Stifano G, Capelozzi VL, Simms RW, Lafyatis R. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res Ther 2016; 18:155. [PMID: 27377409 PMCID: PMC4932708 DOI: 10.1186/s13075-016-1054-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from patients with SSc-ILD. A chronic lung fibrotic murine model was used. METHODS RNA was isolated from lung tissue of 12 patients with SSc-ILD and 5 controls. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and peripheral blood mononuclear cells (PBMC) were isolated from healthy controls and patients with SSc-ILD. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DNA Intelligent Analysis (DIANA)-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. RESULTS Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q < 0.25). DIANA-miRPath revealed 57 Kyoto Encyclopedia of Genes and Genomes pathways related to the most dysregulated miRNA. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts only mildly expressed miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. CONCLUSIONS miRNA are dysregulated in the lungs and PBMC of patients with SSc-ILD. Based on mRNA-miRNA interaction analysis and pathway tools, miRNA may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD.
Collapse
Affiliation(s)
- Romy B Christmann
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA.
| | - Alicia Wooten
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Percival Sampaio-Barros
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carlos R R Carvalho
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ronaldo A Kairalla
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Jessica Ziemek
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Yu Mei
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Salma Goummih
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Jiangning Tan
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | - Diana Alvarez
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | - Daniel J Kass
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | - Mauricio Rojas
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | | | - Edwin Parra
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giuseppina Stifano
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Vera L Capelozzi
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert W Simms
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Robert Lafyatis
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA.,University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| |
Collapse
|
48
|
miRNAs in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:9557-72. [PMID: 25927578 PMCID: PMC4463604 DOI: 10.3390/ijms16059557] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) were first discovered as regulatory RNAs that controlled the timing of the larval development of Caenorhabditis elegans. Since then, nearly 30,000 mature miRNA products have been found in many species, including plants, warms, flies and mammals. Currently, miRNAs are well established as endogenous small (~22 nt) noncoding RNAs, which have functions in regulating mRNA stability and translation. Owing to intensive investigations during the last decade, miRNAs were found to play essential roles in regulating many physiological and pathological processes. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by elevated autoantibodies against nuclear antigens and excessive inflammatory responses affecting multiple organs. Although efforts were taken and theories were produced to elucidate the pathogenesis of SLE, we still lack sufficient knowledge about the disease for developing effective therapies for lupus patients. Recent advances indicate that miRNAs are involved in the development of SLE, which gives us new insights into the pathogenesis of SLE and might lead to the finding of new therapeutic targets. Here, we will review recent discoveries about how miRNAs are involved in the pathogenesis of SLE and how it can promote the development of new therapy.
Collapse
|