1
|
Ye H, Wu X, Shen Y, Zhao L, Zhang H, Yang J, Li F, Zhang F, Zhang K, Chen J, Shui X. Exosomal lncRNA TUG1 derived from BMSC ameliorate collagen-induced arthritis via BLIMP1-mediated Th17/Treg balance. Int Immunopharmacol 2024; 142:113072. [PMID: 39241514 DOI: 10.1016/j.intimp.2024.113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Aberrant differentiation of Th17 cells has been identified as a critical factor in the development of rheumatoid arthritis (RA). BLIMP1 plays a key role in regulating plasma cell differentiation, T helper cell differentiation and Treg cell differentiation. Treatment with exosome injection or bone marrow mesenchymal stem cell (BMSC) transplantation reduce joint damage in RA. But the precise regulatory mechanisms remain unclear. METHODS We injected BMSC-derived exosomes into RA mice, and then performed histological analysis on mouse ankle joints. We cultured CD4+ T cells in vitro, then added exosomes with or without si-TUG1 and induced the differentiation of Th17 cells and Treg cells, and then we used flow cytometry to detect the ratio of Th17 cells and Treg cells. Furthermore, we injected exosomes into sh-NC or sh-BLIMP1-treated RA mice, and then performed histological analysis on the ankle joints. RESULT The results of our study demonstrate that exosome treatment decreased the proportion of differentiated Th17 cells, while increasing the proportion of Treg cells. And we observed that the Exo si-TUG1 group had an increased proportion of Th17 cells and a decreased proportion of Treg cells. We observed an increase in BLIMP1 expression in both the peripheral blood of mice and in CD4+ T cells cultured in vitro in the Exo group. Conversely, the Exo si-TUG1 group showed a decrease in BLIMP1 expression. Notably, inhibiting BLIMP1 expression led to the reversal of the therapeutic effects of exosomes. CONCLUSION Our findings suggest that BMSC-derived exosomes promote the expression of BLIMP1 through Lnc TUG1-carrying exosomes, which may modulate the balance between Th17 cells and Treg cells. This mechanism ultimately alleviates damage caused by RA, suggesting that BMSC-derived exosomes enriched in Lnc TUG1 hold promise as a potential therapeutic approach for treating RA.
Collapse
Affiliation(s)
- Hantao Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Xuanzhang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yang Shen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Lin Zhao
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jianxin Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Fengyu Zhang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kaiying Zhang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China.
| | - Xiaolong Shui
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Liu T, Wang M, Li L, Wu T, Ji H, Zheng M, Tang L, Gan W, Wen Z, Yuan F. Mitophagy drives maldifferentiation of tissue-resident memory T cells in patients with rheumatoid arthritis. Scand J Rheumatol 2024:1-10. [PMID: 39544132 DOI: 10.1080/03009742.2024.2420432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To investigate the function of mitophagy in instructing T-cell differentiation of patients with rheumatoid arthritis (RA). METHOD The mRNA and protein levels of optic atrophy protein-1 were detected in T cells from 94 RA patients and 37 age- and sex-matched healthy individuals by quantitative polymerase chain reaction and Western blotting. The impact of mitophagy on the differentiation of T cells was determined by flow cytometry. The therapeutic effect of targeting mitophagy was explored in humanized RA chimeras. RESULTS Our study showed that T cells exerted high levels of mitophagy in RA patients. Since multiple T-cell subtypes play crucial roles in RA, we determined that mitophagy had a significant impact on the differentiation of tissue-resident memory T (Trm) cells, but not Th1 or Th17 cells. Importantly, we demonstrated that inhibiting mitophagy significantly reduced the number of Trm cells and downregulated inflammatory responses, as evidenced by diminished levels of T cell receptor β, interferon-γ, and interleukin-17A, in the humanized RA chimeras. CONCLUSIONS Mitophagy is elevated in RA T cells, leading to maldifferentiation of Trm cells in RA patients. Since these findings were obtained from clinical patients, mitophagy may be a potential therapeutic target for RA treatment.
Collapse
Affiliation(s)
- T Liu
- Department of Rheumatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| | - M Wang
- Division of Research Center, Suzhou Blood Center, Suzhou, PR China
| | - L Li
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, PR China
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, PR China
| | - T Wu
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, PR China
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, PR China
| | - H Ji
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, PR China
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, PR China
| | - M Zheng
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, PR China
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, PR China
| | - L Tang
- Division of Research Center, Suzhou Blood Center, Suzhou, PR China
| | - W Gan
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Suzhou, PR China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, PR China
| | - Z Wen
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, PR China
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, PR China
| | - F Yuan
- Department of Rheumatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, PR China
| |
Collapse
|
3
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
4
|
Huang Y, Yue S, Qiao J, Dong Y, Liu Y, Zhang M, Zhang C, Chen C, Tang Y, Zheng J. Identification of diagnostic genes and drug prediction in metabolic syndrome-associated rheumatoid arthritis by integrated bioinformatics analysis, machine learning, and molecular docking. Front Immunol 2024; 15:1431452. [PMID: 39139563 PMCID: PMC11320606 DOI: 10.3389/fimmu.2024.1431452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Interactions between the immune and metabolic systems may play a crucial role in the pathogenesis of metabolic syndrome-associated rheumatoid arthritis (MetS-RA). The purpose of this study was to discover candidate biomarkers for the diagnosis of RA patients who also had MetS. Methods Three RA datasets and one MetS dataset were obtained from the Gene Expression Omnibus (GEO) database. Differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms including Least Absolute Shrinkage and Selection Operator (LASSO) regression and Random Forest (RF) were employed to identify hub genes in MetS-RA. Enrichment analysis was used to explore underlying common pathways between MetS and RA. Receiver operating characteristic curves were applied to assess the diagnostic performance of nomogram constructed based on hub genes. Protein-protein interaction, Connectivity Map (CMap) analyses, and molecular docking were utilized to predict the potential small molecule compounds for MetS-RA treatment. qRT-PCR was used to verify the expression of hub genes in fibroblast-like synoviocytes (FLS) of MetS-RA. The effects of small molecule compounds on the function of RA-FLS were evaluated by wound-healing assays and angiogenesis experiments. The CIBERSORT algorithm was used to explore immune cell infiltration in MetS and RA. Results MetS-RA key genes were mainly enriched in immune cell-related signaling pathways and immune-related processes. Two hub genes (TYK2 and TRAF2) were selected as candidate biomarkers for developing nomogram with ideal diagnostic performance through machine learning and proved to have a high diagnostic value (area under the curve, TYK2, 0.92; TRAF2, 0.90). qRT-PCR results showed that the expression of TYK2 and TRAF2 in MetS-RA-FLS was significantly higher than that in non-MetS-RA-FLS (nMetS-RA-FLS). The combination of CMap analysis and molecular docking predicted camptothecin (CPT) as a potential drug for MetS-RA treatment. In vitro validation, CPT was observed to suppress the cell migration capacity and angiogenesis capacity of MetS-RA-FLS. Immune cell infiltration results revealed immune dysregulation in MetS and RA. Conclusion Two hub genes were identified in MetS-RA, a nomogram for the diagnosis of RA and MetS was established based on them, and a potential therapeutic small molecule compound for MetS-RA was predicted, which offered a novel research perspective for future serum-based diagnosis and therapeutic intervention of MetS-RA.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Orthopedics, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Songkai Yue
- Department of Orthopedics, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Jinhan Qiao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghui Dong
- Department of Orthopedics, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yunke Liu
- Department of Orthopedics, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Meng Zhang
- Department of Orthopedics, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Cheng Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Jia Zheng
- Department of Orthopedics, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Chang MJ, Feng QF, Hao JW, Zhang YJ, Zhao R, Li N, Zhao YH, Han ZY, He PF, Wang CH. Deciphering the molecular landscape of rheumatoid arthritis offers new insights into the stratified treatment for the condition. Front Immunol 2024; 15:1391848. [PMID: 38983856 PMCID: PMC11232074 DOI: 10.3389/fimmu.2024.1391848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Background For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.
Collapse
Affiliation(s)
- Min-Jing Chang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Qi-Fan Feng
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Jia-Wei Hao
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Ya-Jing Zhang
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| | - Nan Li
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Yu-Hui Zhao
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Zi-Yi Han
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Wang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, China
| |
Collapse
|
7
|
Ding Q, Xu Q, Hong Y, Zhou H, He X, Niu C, Tian Z, Li H, Zeng P, Liu J. Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis. Front Immunol 2024; 15:1399856. [PMID: 38962008 PMCID: PMC11219584 DOI: 10.3389/fimmu.2024.1399856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. Methods scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. Results By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. Conclusion Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.
Collapse
Affiliation(s)
- Qiang Ding
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Qingyuan Xu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Yini Hong
- Gynecology Department, The First People’s Hospital of Guangzhou, Guangzhou, China
| | - Honghai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyu He
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Chicheng Niu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Zhao Tian
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Hao Li
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Ping Zeng
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Jinfu Liu
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| |
Collapse
|
8
|
Lu J, Zhou H, Chen Y, Xia X, Yang J, Ma J, Tian J, Wang S. Tfh cell-derived small extracellular vesicles exacerbate the severity of collagen-induced arthritis by enhancing B-cell responses. J Autoimmun 2024; 146:103235. [PMID: 38696926 DOI: 10.1016/j.jaut.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuxuan Chen
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Xia J, Gao H, Tang J, Jiang R, Xiao L, Sheng H, Lin J. A novel diagnostic model based on lncRNA PTPRE expression, neutrophil count and red blood cell distribution width for diagnosis of seronegative rheumatoid arthritis. Clin Exp Med 2024; 24:86. [PMID: 38662200 PMCID: PMC11045583 DOI: 10.1007/s10238-024-01343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Diagnosis of seronegative rheumatoid arthritis (SNRA) is difficult due to the lack of diagnostic markers. The study aims to construct a novel diagnostic model based on long noncoding RNAs (lncRNAs) expression and laboratory indicators to provide a new idea for diagnostic methods of SNRA. Differentially expressed lncRNAs in peripheral blood cells of RA patients were screened through eukaryotic long noncoding RNA sequencing and validated by quantitative real-time PCR. Meanwhile, the correlation between lncRNAs expression and laboratory indicators was analyzed. The diagnostic value was evaluated by receiver operating characteristic curve analysis. Finally, combined with laboratory indicators, a diagnostic model for SNRA was constructed based on logistic regression and visualized by nomogram. Expression of ADGRE5, FAM157A, PTPN6 and PTPRE in peripheral blood was significantly increased in RA than healthy donors. Meanwhile, we analyzed the relationship between lncRNAs and erythrocyte sedimentation rate, C-reactive protein and CD4 + T cell-related cytokines and transcription factors. Results showed that FAM157A and PTPN6 were positively related to RORγt, and negatively related to GATA3. Moreover, PTPRE has potential discrimination ability between SNRA and healthy donor (AUC = 0.6709). Finally, we constructed a diagnostic model based on PTPRE, neutrophil count and red blood cell distribution width (RDW). The AUC of the model was 0.939 and well-fitted calibration curves. Decision curve analysis indicated the model had better predict performance in SNRA diagnosis. Our study constructed a novel diagnostic model based on PTPRE, neutrophil count and RDW which may serve as a potential tool for the diagnosis of SNRA.
Collapse
Affiliation(s)
- Jinfang Xia
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huali Gao
- Department of Orthopedic Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renquan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lianbo Xiao
- Department of Orthopedic Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinpiao Lin
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Cao X, Wang Z, Jiao Y, Diao W, Geng Q, Zhao L, Wang Z, Wang X, Zhang M, Xu J, Wang B, Deng T, Xiao C. Dihydroartemisinin alleviates erosive bone destruction by modifying local Treg cells in inflamed joints: A novel role in the treatment of rheumatoid arthritis. Int Immunopharmacol 2024; 130:111795. [PMID: 38447418 DOI: 10.1016/j.intimp.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Zhaoran Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Yi Jiao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenya Diao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zihan Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Xing Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Jiahe Xu
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.
| | - Bailiang Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
11
|
Gao Y, Zhang Y, Liu X. Rheumatoid arthritis: pathogenesis and therapeutic advances. MedComm (Beijing) 2024; 5:e509. [PMID: 38469546 PMCID: PMC10925489 DOI: 10.1002/mco2.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the unresolved synovial inflammation for tissues-destructive consequence, which remains one of significant causes of disability and labor loss, affecting about 0.2-1% global population. Although treatments with disease-modifying antirheumatic drugs (DMARDs) are effective to control inflammation and decrease bone destruction, the overall remission rates of RA still stay at a low level. Therefore, uncovering the pathogenesis of RA and expediting clinical transformation are imminently in need. Here, we summarize the immunological basis, inflammatory pathways, genetic and epigenetic alterations, and metabolic disorders in RA, with highlights on the abnormality of immune cells atlas, epigenetics, and immunometabolism. Besides an overview of first-line medications including conventional DMARDs, biologics, and small molecule agents, we discuss in depth promising targeted therapies under clinical or preclinical trials, especially epigenetic and metabolic regulators. Additionally, prospects on precision medicine based on synovial biopsy or RNA-sequencing and cell therapies of mesenchymal stem cells or chimeric antigen receptor T-cell are also looked forward. The advancements of pathogenesis and innovations of therapies in RA accelerates the progress of RA treatments.
Collapse
Affiliation(s)
- Ying Gao
- Department of RheumatologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yunkai Zhang
- Naval Medical CenterNaval Medical UniversityShanghaiChina
| | - Xingguang Liu
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
12
|
Zhang J, Cai H, Sun W, Wu W, Nan Y, Ni Y, Wu X, Chen M, Xu H, Wang Y. Endoplasmic reticulum aminopeptidase 2 regulates CD4 + T cells pyroptosis in rheumatoid arthritis. Arthritis Res Ther 2024; 26:36. [PMID: 38273310 PMCID: PMC10810225 DOI: 10.1186/s13075-024-03271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease with a complex pathogenesis that has not yet been fully elucidated, and T-cell pyroptosis is an important pathogenetic factor in RA. This study aimed to investigate the role of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the pyroptosis of CD4+ T cells in RA and the specific molecular mechanism. METHODS Peripheral venous blood was collected from human subjects, and CD4+ T cells were isolated and activated to measure the level of pyroptosis and ERAP2 expression. Pyroptosis levels were assessed using immunofluorescence, flow cytometry, qRT-PCR, and Western blotting. Changes in pyroptosis levels were observed upon knockdown or overexpression of ERAP2. To detect activated Caspase-1 in tissues, chimeric mice were engrafted with human synovial tissue and reconstituted with human CD4+ T cells. CD4 + T cells were treated with GLI1 antagonists and SMO receptor agonists to detect changes in pyroptosis levels. RESULTS CD4+ T cell levels undergoing pyroptosis were found to be elevated in the blood and synovium of RA patients. The gene and protein expression of ERAP2 were significantly higher in CD4+ T cells from RA patients. Deletion of ERAP2 suppressed pyroptosis of these cells, attenuated the activation of Caspase-1 in tissue T cells, and reduced tissue inflammatory responses. Reciprocally, overexpression of ERAP2 triggered inflammasome assembly, activated Caspase-1, and induced pyroptosis in CD4+ T cells. Mechanistically, ERAP2 inhibits the Hedgehog signaling pathway and upregulates the expression of nucleotide-binding oligomerization segment-like receptor family 3(NLRP3), cleaved Caspase-1, and Gasdermin D to promote pyroptosis in CD4+ T cells. CONCLUSIONS Taken together, our results identify a novel mechanism by which ERAP2 regulates RA development and document the effect of the ERAP2/Hedgehog signaling axis on pyroptosis of CD4+ T cells from RA patients.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Ma X, Liu D, Yu W, Han C. Alleviation of Rheumatoid Arthritis by Inducing IDO Expression with Trichinella spiralis Recombinant Protein 43. J Immunol Res 2024; 2024:8816919. [PMID: 38268530 PMCID: PMC10807947 DOI: 10.1155/2024/8816919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/14/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Rheumatoid arthritis (RA) represents the autoimmune disorder that shows aggressive arthritis as the main symptom. It is difficult to treat and can lead to joint deformation and function loss. At present, Trichinella spiralis (T. spiralis) antigen has attracted much attention because it plays a role in host immune regulatory mechanisms. Therefore, we selected T. spiralis recombinant protein 43 (Tsp43) to treat the bovine collagen type II (BCII)-induced mice RA model and explored its therapeutic mechanisms. This work first verified that Tsp43 could promote the expression of indoleamine 2, 3-dioxygenase (IDO) in dendritic cells (DCs) in vitro. Then, we randomized BALB/c mice (8 weeks old) into six groups, including control, phosphate buffer saline (PBS), BCII, BCII + heat inactivated Tsp43 (HiTsp43), BCII + Tsp43, and BCII + Tsp43 + 1-methyl-troptophan (1-MT) groups. To determine the therapeutic effect of Tsp43 on the BCII-induced mice RA model, relevant cytokines in each group and pathological changes in ankle joints were detected. To explore the mechanisms of Tsp43 on the BCII-induced mice RA model, we checked the expression of IDO in each group, CD4+T cell proliferation, and apoptosis. Collectively, Tsp43 decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression in BCII-induced mice RA model and recovered the ankle injury to a certain extent. Tsp43 promoted high expression of IDO, caused expression of related apoptotic proteins in CD4+T cells, and caused apoptosis in CD4+T cells. In addition, Tsp43 reduced the proliferation of CD4+T cells. However, these effects can be inhibited by 1-MT (IDO inhibitor). These results suggested that Tsp43 played an important role in the treatment of arthritis by inhibiting the proliferation of CD4+T cells and inducing CD4+T cells apoptosis through the high expression of IDO. The purpose of this experiment was to provide a new idea for the treatment of RA and lay a foundation for the development of parasite-derived drugs for the treatment of RA.
Collapse
Affiliation(s)
- Xiao Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory of Zoonosis, Harbin, China
| | - Dongming Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory of Zoonosis, Harbin, China
| | - Wenhao Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory of Zoonosis, Harbin, China
| | - Caixia Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory of Zoonosis, Harbin, China
| |
Collapse
|
14
|
Xiong LJ, Tian YF, Zhai CT, Li W. Application and Effectiveness of Chinese Medicine in Regulating Immune Checkpoint Pathways. Chin J Integr Med 2023; 29:1045-1056. [PMID: 37580466 DOI: 10.1007/s11655-023-3743-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/16/2023]
Abstract
Immunotherapy targeting immune checkpoint molecules has emerged as a key approach in cancer treatment, representing the forefront of antitumor research. However, studies on immune checkpoint molecules have mainly focused on targeted therapies. Chinese medicine (CM) research as a complementary medicine has revealed that immune checkpoint molecules also undergo disease-specific changes in the context of autoimmune diseases. This review article presents a comprehensive analysis of CM studies on immune checkpoint molecules in the last 5 years, with a focus on their role in different diseases and treatment modalities. CM research predominantly utilizes oral administration of herbal plant extracts or acupuncture techniques, which stimulate the immune system by activating specific acupoints through temperature and needling. In this study, we analyzed the modulation and mechanisms of immune checkpoint molecules associated with different coinhibitory and costimulatory molecules, and reviewed the immune functions of related molecules and CM studies in treating autoimmune diseases and tumors. By summarizing the characteristics and research value of CM in regulating immune checkpoint molecules, this review aims to provide a useful reference for future studies in this field.
Collapse
Affiliation(s)
- Luo-Jie Xiong
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yue-Feng Tian
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
| | - Chun-Tao Zhai
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Wei Li
- Second Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| |
Collapse
|
15
|
Jhun J, Moon J, Kwon JY, Cho KH, Lee SY, Na HS, Cho ML, Min JK. Small heterodimer partner interacting leucine zipper protein (SMILE) ameliorates autoimmune arthritis via AMPK signaling pathway and the regulation of B cell activation. Cell Commun Signal 2023; 21:98. [PMID: 37143079 PMCID: PMC10161652 DOI: 10.1186/s12964-023-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 05/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes joint swelling and inflammation and can involve the entire body. RA is characterized by the increase of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor, and the over-activation of T lymphocytes and B lymphocytes, which may lead to severe chronic inflammation of joints. However, despite numerous studies the pathogenesis and treatment of RA remain unresolved. This study investigated the use of small heterodimer partner-interacting leucine zipper protein (SMILE) overexpression to treat a mouse model of RA. SMILE is an insulin-inducible corepressor through adenosine monophosphate-activated kinase (AMPK) signaling pathway. The injection of a SMILE overexpression vector to mice with collagen induced-arthritis resulted in a milder clinical pathology and a reduced incidence of arthritis, less joint tissue damage, and lower levels of Th17 cells and plasma B cells in the spleen. Immunohistochemistry of the joint tissue showed that SMILE decreased B-cell activating factor (BAFF) receptor (BAFF-R), mTOR, and STAT3 expression but increased AMPK expression. In SMILE-overexpressing transgenic mice with collagen antibody-induced arthritis (CAIA), a decrease in the arthritis score and reductions in tissue damage, the number of B cells, and antibody production were observed. The treatment of immune cells in vitro with curcumin, a known SMILE-inducing agent, led to decreases in plasma B cells, germinal center B cells, IL-17-producing B cells, and BAFF-R-positive B cells. Taken together, our findings demonstrate the therapeutic potential of SMILE in RA, based on its inhibition of B cell activation mediated by the AMPK/mTOR and STAT3 signaling pathway and BAFF-R expression. Video abstract.
Collapse
Affiliation(s)
- JooYeon Jhun
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeonghyeon Moon
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, 06511, CT, USA
| | - Ji Ye Kwon
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
| | - Keun-Hyung Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seang Yoon Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Sik Na
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Mi-La Cho
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Jun-Ki Min
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea.
| |
Collapse
|
16
|
Yamada H. The Search for the Pathogenic T Cells in the Joint of Rheumatoid Arthritis: Which T-Cell Subset Drives Autoimmune Inflammation? Int J Mol Sci 2023; 24:ijms24086930. [PMID: 37108093 PMCID: PMC10138952 DOI: 10.3390/ijms24086930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting systemic synovial tissues, leading to the destruction of multiple joints. Its etiology is still unknown, but T-cell-mediated autoimmunity has been thought to play critical roles, which is supported by experimental as well as clinical observations. Therefore, efforts have been made to elucidate the functions and antigen specificity of pathogenic autoreactive T cells, which could be a therapeutic target for disease treatment. Historically, T-helper (Th)1 and Th17 cells are hypothesized to be pathogenic T cells in RA joints; however, lines of evidence do not fully support this hypothesis, showing polyfunctionality of the T cells. Recent progress in single-cell analysis technology has led to the discovery of a novel helper T-cell subset, peripheral helper T cells, and attracted attention to the previously unappreciated T-cell subsets, such as cytotoxic CD4 and CD8 T cells, in RA joints. It also enables a comprehensive view of T-cell clonality and function. Furthermore, the antigen specificity of the expanded T-cell clones can be determined. Despite such progress, which T-cell subset drives inflammation is yet known.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Clinical Immunology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Min HK, Kim SH, Won JY, Kim KW, Lee JY, Lee SH, Kim HR. Dasatinib, a selective tyrosine kinase inhibitor, prevents joint destruction in rheumatoid arthritis animal model. Int J Rheum Dis 2023; 26:718-726. [PMID: 36808837 DOI: 10.1111/1756-185x.14627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
AIM We aimed to evaluate the preventive role of the tyrosine kinase inhibitor dasatinib in an animal model of rheumatoid arthritis (RA). METHODS DBA/1J mice were injected with bovine type II collagen to induce arthritis (collagen-induced arthritis [CIA]). There were four experimental groups of mice, namely negative control (non-CIA), vehicle-treated CIA, dasatinib-pretreated CIA, and dasatinib-treated CIA. After collagen immunization, arthritis progression in the mice was clinically scored twice weekly for 5 weeks. Flow cytometry was used to evaluate in vitro CD4+ T-cell differentiation and ex vivo mast cell/CD4+ T-cell differentiation. Osteoclast formation was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and by estimating the resorption pit area. RESULTS We found that the clinical arthritis histological scores were lower in the dasatinib pretreatment group than in the vehicle and dasatinib post-treatment groups. Flow cytometry showed that FcεR1+ cells were downregulated and regulatory T cells were upregulated in splenocytes of the dasatinib pretreatment group compared with those in the vehicle group. Additionally, there was a decline in IL-17+ CD4+ T-cell differentiation and an increase in CD4+ CD24high Foxp3+ T-cell differentiation with in vitro dasatinib treatment of human CD4+ T cells. The number of TRAP+ osteoclasts and the area of the resorption were decreased in the bone marrow cells derived from dasatinib-pretreated mice compared with those derived from vehicle group. CONCLUSION Dasatinib protected against arthritis in an animal model of RA by regulating the differentiation of regulatory T cells and IL-17+ CD4+ T cells and inhibiting osteoclastogenesis, indicating the therapeutic potential of dasatinib in the treatment of early RA.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | | | | | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Hu Y, Xu B, He J, Shan H, Zhou G, Wang D, Bai L, Shang H, Nie L, Pan F, Lan HY, Wang Q. Hypermethylation of Smad7 in CD4 + T cells is associated with the disease activity of rheumatoid arthritis. Front Immunol 2023; 14:1104881. [PMID: 36845150 PMCID: PMC9947360 DOI: 10.3389/fimmu.2023.1104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background Smad7 is protective in a mouse model of rheumatoid arthritis. Here we investigated whether Smad7-expressing CD4+ T cells and the methylation of Smad7 gene in CD4+ T cells contribute to the disease activity of RA in patients. Methods Peripheral CD4+ T cells were collected from 35 healthy controls and 57 RA patients. Smad7 expression by CD4+ T cells were determined and correlated with the clinical parameters of RA including RA score and serum levels of IL-6, CRP, ESR, DAS28-CRP, DAS28-ESR, Swollen joints and Tender joints. Bisulfite sequencing (BSP-seq) was used to determine the DNA methylation in Smad7 promoter (-1000 to +2000) region in CD4+ T cells. In addition, a DNA methylation inhibitor, 5-Azacytidine (5-AzaC), was added to CD4+ T cells to examine the possible role of Smad7 methylation in CD4+ T cell differentiation and functional activity. Results Compared to the heath controls, Smad7 expression was significantly decreased in CD4+ T cells from RA patients and inversely correlated with the RA activity score and serum levels of IL-6 and CRP. Importantly, loss of Smad7 in CD4+ T cell was associated with the alteration of Th17/Treg balance by increasing Th17 over the Treg population. BSP-seq detected that DNA hypermethylation occurred in the Smad7 promoter region of CD4+ T cells obtained from RA patients. Mechanistically, we found that the DNA hypermethylation in the Smad7 promoter of CD4+ T cells was associated with decreased Smad7 expression in RA patients. This was associated with overreactive DNA methyltransferase (DMNT1) and downregulation of the methyl-CpG binding domain proteins (MBD4). Inhibition of DNA methylation by treating CD4+ T cells from RA patients with 5-AzaC significantly increased Smad7 mRNA expression along with the increased MBD4 but reduced DNMT1 expression, which was associated with the rebalance in the Th17/Treg response. Conclusion DNA hypermethylation at the Smad7 promoter regions may cause a loss of Smad7 in CD4+ T cells of RA patients, which may contribute to the RA activity by disrupting the Th17/Treg balance.
Collapse
Affiliation(s)
- Yiping Hu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Juan He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Hongying Shan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Gengmin Zhou
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lu Bai
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hongxi Shang
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Liping Nie
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Fan Pan
- Center for Cancer Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,*Correspondence: Qingwen Wang, ; Hui Yao Lan, ; Fan Pan,
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Department of Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People’s Hospital, Guangzhou, China,*Correspondence: Qingwen Wang, ; Hui Yao Lan, ; Fan Pan,
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China,*Correspondence: Qingwen Wang, ; Hui Yao Lan, ; Fan Pan,
| |
Collapse
|
20
|
Malcolm J, Nyirenda MH, Brown JL, Adrados-Planell A, Campbell L, Butcher JP, Glass DG, Piela K, Goodyear CS, Wright AJ, McInnes IB, Millington OR, Culshaw S. C-terminal citrullinated peptide alters antigen-specific APC:T cell interactions leading to breach of immune tolerance. J Autoimmun 2023; 135:102994. [PMID: 36706535 DOI: 10.1016/j.jaut.2023.102994] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
In rheumatoid arthritis, the emergence of anti-citrullinated autoimmunity is associated with HLA-antigen-T cell receptor complexes. The precise mechanisms underpinning this breach of tolerance are not well understood. Porphyromonas gingivalis expresses an enzyme capable of non-endogenous C-terminal citrullination with potential to generate citrullinated autoantigens. Here we document how C-terminal citrullination of ovalbumin peptide323-339 alters the interaction between antigen-presenting cells and OTII T cells to induce functional changes in responding T cells. These data reveal that C-terminal citrullination is sufficient to breach T cell peripheral tolerance in vivo and reveal the potential of C-terminal citrullination to lower the threshold for T cell activation. Finally, we demonstrate a role for the IL-2/STAT5/CD25 signalling axis in breach of tolerance. Together, our data identify a tractable mechanism and targetable pathways underpinning breach of tolerance in rheumatoid arthritis and provide new conceptual insight into the origins of anti-citrullinated autoimmunity.
Collapse
Affiliation(s)
- J Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - M H Nyirenda
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - J L Brown
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - A Adrados-Planell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Genomics and Health, FISABIO Foundation, Avda Cataluña 21, 46020, Valencia, Spain
| | - L Campbell
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J P Butcher
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - D G Glass
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - K Piela
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - C S Goodyear
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Universities of Glasgow, Birmingham, Newcastle and Oxford, UK
| | - A J Wright
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom; Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - I B McInnes
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - O R Millington
- Centre for Biophotonics, Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - S Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, Yang H, Bai J, Geng D. Comprehensive overview of microRNA function in rheumatoid arthritis. Bone Res 2023; 11:8. [PMID: 36690624 PMCID: PMC9870909 DOI: 10.1038/s41413-023-00244-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs), a class of endogenous single-stranded short noncoding RNAs, have emerged as vital epigenetic regulators of both pathological and physiological processes in animals. They direct fundamental cellular pathways and processes by fine-tuning the expression of multiple genes at the posttranscriptional level. Growing evidence suggests that miRNAs are implicated in the onset and development of rheumatoid arthritis (RA). RA is a chronic inflammatory disease that mainly affects synovial joints. This common autoimmune disorder is characterized by a complex and multifaceted pathogenesis, and its morbidity, disability and mortality rates remain consistently high. More in-depth insights into the underlying mechanisms of RA are required to address unmet clinical needs and optimize treatment. Herein, we comprehensively review the deregulated miRNAs and impaired cellular functions in RA to shed light on several aspects of RA pathogenesis, with a focus on excessive inflammation, synovial hyperplasia and progressive joint damage. This review also provides promising targets for innovative therapies of RA. In addition, we discuss the regulatory roles and clinical potential of extracellular miRNAs in RA, highlighting their prospective applications as diagnostic and predictive biomarkers.
Collapse
Affiliation(s)
- Xiaole Peng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Qing Wang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Wenming Li
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Gaoran Ge
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiachen Peng
- grid.413390.c0000 0004 1757 6938Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, 563000 Zunyi, P. R. China
| | - Yaozeng Xu
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Huilin Yang
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Jiaxiang Bai
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| | - Dechun Geng
- grid.429222.d0000 0004 1798 0228Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006 Jiangsu P. R. China
| |
Collapse
|
22
|
Effect of climatic environment on immunological features of rheumatoid arthritis. Sci Rep 2023; 13:1304. [PMID: 36693893 PMCID: PMC9873807 DOI: 10.1038/s41598-022-27153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to clarify the effect of climatic environment on the immunological features of rheumatoid arthritis (RA). Blood samples were collected from patients with RA and healthy controls (HCs), matched by age and sex, living in two locations, Tsukuba and Karuizawa, which differ in their altitude and average air temperature and atmospheric pressure. Analysis of peripheral blood mononuclear cells (PBMCs) revealed that the proportion of T and B cell subpopulations in HCs and RA patients were significantly different between two sites. Inverse probability weighting adjustment with propensity scores was used to control for potential confounding factors. The results revealed that, in comparison with RA patients in Tsukuba, those in Karuizawa showed a significant increase in cTh1, cTfh1, and Tph cells, and significant decrease in cTh17, cTh17.1, and CD8+ Treg in T cell subpopulations, and a significant increase in DNB, DN1, DN2, and class-switched memory B cells, and a significant decrease in unswitched memory B, naïve B cells, and ABCs in B cell subpopulations. Our results suggest the possibility that climatic environment might have an effect on immune cell proportion and function, and be related to the pathogenic mechanism of RA.
Collapse
|
23
|
Treg-targeted efficient-inducible platform for collagen-induced arthritis treatment. Mater Today Bio 2023; 19:100557. [PMID: 36714199 PMCID: PMC9874074 DOI: 10.1016/j.mtbio.2023.100557] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Regulatory T cells (Tregs) display great promise in rheumatoid arthritis (RA) therapy. However, their low number and differentiation rate limit their further application in the clinics. In the present study, we first optimized a combination of IL-2, TGF-β and cyclin dependent kinase inhibitor AS2863619 (IL-2/TGF-β/AS), which could induce Tregs with high efficiency in vitro. After the induced Tregs (iTregs) were confirmed to suppress lymphocyte proliferation and pro-inflammatory T help cells (Th1 and Th17) activation, a chitosan-stabilized nanoparticle drug delivery system (NDDS) was developed according to the optimized formula of IL-2/TGF-β/AS. In vivo study, the NDDS was injected into the knees of mice with collagen-induced arthritis (CIA). As a result, the NDDS remarkably reduced the pathological score of the CIA, alleviated the inflammatory cell infiltration and synovial hyperplasia, and minimized cartilage tissue damage in the knee joint of the CIA mice. Mechanically, the NDDS administration promoted Treg differentiation and decreased Th17 production, consequently reversing the ratio of Treg/Th17, and reducing the secretion of TNF-α in the sera, which facilitated to relieve the severity and progression of arthritis. In sum, NDDS capable of efficiently inducing Tregs were constructed successfully and provided a potential platform for treating RA by restoring the equilibrium of Treg/Th17 destroyed in RA.
Collapse
|
24
|
Yang S, Min HK, Park JS, Na HS, Cho ML, Park SH. A green-lipped mussel prevents rheumatoid arthritis via regulation of inflammatory response and osteoclastogenesis. PLoS One 2023; 18:e0280601. [PMID: 36662733 PMCID: PMC9858385 DOI: 10.1371/journal.pone.0280601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by progressive joint destruction. Green-lipped mussel (GLM) has chondro-modulatory and anti-inflammatory properties, but the mechanism underlying the effect of GLM on RA is unclear. To investigate the roles of GLM on the pathogenesis of RA, we examined the effects of GLM in collagen-induced arthritis (CIA) mice and osteoclast differentiation. GLM was orally administrated CIA mice at 3 weeks after chicken type II collagen (CII) immunizations. GLM reduced arthritis severity and the histologic score of CIA mice compared to vehicle. The expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-17) was decreased in the ankle joints of GLM-treated CIA mice. The expression of CD4+ IL-17+ cells decreased in ex vivo splenocytes and the spleens of GLM-treated CIA mice. Moreover, GLM inhibited TRAP+ multinucleated cells among mouse bone marrow-derived monocytes/macrophages (BMM), and the expression of osteoclast-related genes in mouse BMMs and human monocytes in vitro. These results suggest that GLM has potential as a therapeutic agent that can improve disease by controlling pathologic immune cells and osteoclastogenesis.
Collapse
Affiliation(s)
- SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Ki Min
- Department of Internal Medicine, Division of Rheumatology, Konkuk University Medical Center, Seoul, Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, Divison of Rheumatology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
25
|
Meng Q, Wen Z, Meng W, Bian H, Gu H, Zuo R, Zhan J, Wang H, Miao X, Fan W, Zhou Z, Zheng F, Wang L, Su X, Ma J. Blimp1 suppressed CD4 + T cells-induced activation of fibroblast-like synoviocytes by upregulating IL-10 via the rho pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:146-158. [PMID: 36181686 DOI: 10.1002/tox.23672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND B lymphocyte-induced maturation protein 1 (Blimp1) is a risk allele for rheumatoid arthritis (RA), but its functional mechanism in RA remains to be further explored. METHODS Flow cytometry was performed to detect CD4+ T cell differentiation. ELISA was used to measure inflammatory factor secretion. Lentivirus mediated Blimp1 overexpression vector (LV-Blimp1) or short hairpin RNA (sh-Blimp1) were used to infect CD4+ T cells stimulated by anti-CD28 and anti-CD3 mAbs. RA fibroblast-like synoviocytes (FLSs) were co-cultured with CD4+ T cells or T cell conditioned medium (CD4CM), and cell proliferation, invasion, and expression of adhesion molecules and cytokines in FLSs were evaluated. Mice were injected intradermally with type II collagen to establish a collagen-induced arthritis (CIA) mouse model, and the severity of CIA was evaluated with H&E and Safranin-O staining. RESULTS Blimp1 knockdown increased pro-inflammatory factor secretion, but downregulated IL-10 concentration in activated CD4+ T cells. Blimp1 overexpression promoted regulatory T cells (Treg) CD4+ T cell differentiation and hindered T helper 1 (Th1) and T helper 17 (Th17) CD4+ T cell differentiation. Blimp1 overexpression suppressed the expression of pro-inflammatory factors and adhesion molecules in CD4+ T cells by upregulating IL-10. Moreover, Blimp1 overexpression impeded the enhanced effect of CD4+ T cells/CD4CM on cell adhesion, inflammation, proliferation, invasion and RhoA and Rac1 activities in FLSs by upregulating IL-10. Additionally, administration with LV-Blimp1 alleviated the severity of CIA. CONCLUSION Blimp1 restrained CD4+ T cells-induced activation of FLSs by promoting the secretion of IL-10 in CD4+ T cells via the Rho signaling pathway.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhike Wen
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wanting Meng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Huimin Gu
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruiting Zuo
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junping Zhan
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Huilian Wang
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiyun Miao
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei Fan
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zipeng Zhou
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Fuzeng Zheng
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Liying Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao Su
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junfu Ma
- Department of Rheumatology, Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
26
|
Rich RR, Cron RQ. The Human Immune Response. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
27
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
28
|
Wang W, Xiang T, Yang Y, Wang Z, Xie J. E3 ubiquitin ligases STUB1/CHIP contributes to the Th17/Treg imbalance via the ubiquitination of aryl hydrocarbon receptor in rheumatoid arthritis. Clin Exp Immunol 2022; 209:280-290. [PMID: 35943876 PMCID: PMC9521662 DOI: 10.1093/cei/uxac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
STIP1-homologous U-Box containing protein 1 (STUB1) is involved in the development of immune pathologies and the regulation of T cell. However, the potential role of STUB1 in the pathogenesis of rheumatoid arthritis (RA), especially in the regulation of T cells, remains elusive. Here we show that STUB1 promotes the imbalance of Th17/Treg cells through non-degradative ubiquitination of aryl hydrocarbon receptor (AHR). Using Western blot and flow cytometry analysis, we observe that the level of STUB1 was increased in RA patients compared with healthy controls. In particular, the expression of STUB1 protein was different in Th17 cells and Treg cells of RA patients. We also demonstrated that STUB1 facilitates Th17/Treg imbalance by up- or downregulating the expression of STUB1. In a subsequent series of in vitro experiments, we revealed that STUB1 promoted the imbalance of Th17 and Treg cells through non-degradative ubiquitination of AHR. Both knockdown of the AHR expression by siRNA and assays of CYP1A1 enzymatic activity by ethoxyresorufin-O-deethylase (EROD) supported this conclusion. Furthermore, we explored the ubiquitination sites of AHR responsible for STUB1-mediated ubiquitination and revealed that STUB1 promotes ubiquitination of AHR via K63 chains. Together, STUB1 may induce the imbalance of Th17/Treg cells via ubiquitination of AHR and serve as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xiang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yachen Yang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zitao Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianmin Xie
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Baicalein Induces Apoptosis of Rheumatoid Arthritis Synovial Fibroblasts through Inactivation of the PI3K/Akt/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3643265. [PMID: 36118088 PMCID: PMC9473868 DOI: 10.1155/2022/3643265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
Purpose Rheumatoid arthritis (RA) shows abnormal proliferation, apoptosis, and invasion in fibroblast-like synoviocytes (FLSs). Baicalein (BAI), extracted from Scutellaria baicalensis, is used as an anticancer drug through inducing cancer cells apoptosis. However, the mechanism of BAI in RA progression still remains unknown. Here, we demonstrated that BAI inhibited FLS proliferation and migration, whereas it enhanced apoptosis via the PI3K/Akt/mTOR pathway in vitro. Methods Cell viability and colony formation were analyzed by MTT and plate colony formation assays in SW982 cells, respectively. Apoptosis was detected by flow cytometry and western blotting. Epithelial-mesenchymal transition (EMT), MMP family proteins (MMP2/9), and the PI3K/Akt/mTOR pathway were detected by western blot. Cell migration was detected by scratch healing assay under BAI treatment in SW982 cells. Results BAI dose-dependently inhibited cell viability and colony forming in SW982 cells. BAI upregulated apoptotic proteins and downregulated EMT-related proteins, resulting in enhanced cell apoptosis and inhibited cell migration in SW982 cells. BAI also dose-dependently inhibited the phosphorylation of PI3K, Akt, and mTOR. Conclusions These results indicated that BAI inhibited FLSs proliferation and EMT, whereas induced cell apoptosis through blocking the PI3K/Akt/mTOR pathway, supporting clinical application for RA progression.
Collapse
|
30
|
Min HK, Kim SH, Lee JY, Lee SH, Kim HR. DJ-1 controls T cell differentiation and osteoclastogenesis in rheumatoid arthritis. Sci Rep 2022; 12:12767. [PMID: 35896699 PMCID: PMC9329329 DOI: 10.1038/s41598-022-16285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we investigated the effect of DJ-1 on helper T cell differentiation, fibroblast-like synoviocyte (FLS) activation, and osteoclastogenesis in rheumatoid arthritis (RA). Serum and synovial fluid (SF) of RA and osteoarthritis (OA) patients were collected, and DJ-1 and H2O2 levels were investigated. CD4+ cells from peripheral blood mononuclear cells (PBMCs) were cultured under type 17 helper T cell (Th17) polarization conditions, and CD4+ T cell differentiation, pro-inflammatory cytokine levels, and soluble receptor activator of nuclear factor kappa-Β ligand (RANKL) were assessed. RA-FLSs were stimulated with 50 μM H2O2, and DJ-1 (10, 50, 100 ng/mL) to evaluate MMP-9, VEGF, TNF-α, and sRANKL production, while RANKL+ FLSs were assessed using flow cytometry. Monocytes were cultured with RANKL or IL-17A with or without DJ-1 and H2O2-pretreated RA-FLS, and tartrate-resistant acid phosphatase (TRAP) staining and RT-qPCR of osteoclast-related genes were performed. The levels of DJ-1 and H2O2 in serum and SF of RA patients were higher than those of OA patients. Under Th17-polarizing conditions, CD4+RANKL+ and CD4+CCR4+CCR6+CXCR3- T cells decreased, whereas CD4+CD25highFoxp3+ T cell increased after DJ-1 administration. Additionally, IL-17A, TNF-α, and sRANKL levels decreased in DJ-1-treated groups. DJ-1 lowered MMP-9, VEGF, TNF-α, and sRANKL levels, and RANKL+ FLS in ROS-stimulated RA-FLS. Both RANKL and IL-17A stimulated osteoclast differentiation, DJ-1 decreased TRAP+ cell count, and the expression levels of TRAP, ATP6v0d2, NFATc1, and CTSK. These findings were also observed in in vitro osteoclastogenesis with DJ-1 pretreated RA-FLS. As DJ-1 regulates Th17/Treg imbalance, pro-inflammatory cytokine production, RA-FLS activation, and osteoclastogenesis, it holds potential for RA therapy.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1, Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| |
Collapse
|
31
|
Chen GY, Luo J, Liu Y, Yu XB, Liu XY, Tao QW. Network Pharmacology Analysis and Experimental Validation to Investigate the Mechanism of Total Flavonoids of Rhizoma Drynariae in Treating Rheumatoid Arthritis. Drug Des Devel Ther 2022; 16:1743-1766. [PMID: 35702063 PMCID: PMC9188779 DOI: 10.2147/dddt.s354946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/26/2022] [Indexed: 12/16/2022] Open
Abstract
Objective The study aimed to explore the mechanism of total flavonoids of Rhizoma Drynariae (TFRD) in the treatment of rheumatoid arthritis (RA) based on network pharmacology and experimental validation. Methods The active components of TFRD were identified from TCMSP and TCMID databases. Relevant targets of the active compounds of TFRD and RA-related targets were predicted by public databases online. A component-target (C-T) regulatory network was constructed by Cytoscape. The genes of TFRD regulating RA were imported into STRING database to construct a protein-protein interaction (PPI) network in order to predict the key targets. KEGG enrichment analysis was performed to predict the crucial mechanism of TFRD against RA. The active components of TFRD underwent molecular docking with the key proteins. Collagen-induced arthritis (CIA) model of rats and inflammatory factors-stimulated fibroblast-like synoviocytes were used in vivo and in vitro to validate the efficacy and predicted critical mechanisms of TFRD. Results Network Pharmacology analysis revealed that TFRD had 14 active compounds, corresponding to 213 targets, and RA related to 2814 genes. There were 137 intersection genes between TFRD and RA. KEGG indicated that therapeutic effects of TFRD on RA involves T cell receptor signaling pathway, Th17 cell differentiation, IL-17 signaling pathway, TNF signaling pathway, MAPK signaling pathway and PI3K/AKT signaling pathway. In vivo experiments suggested TFRD can alleviate the inflammatory response, joint swelling and synovial abnormality of CIA rats. TFRD contributed to the decrease of Th17 cells and the down-regulated secretion of IL-17A and TNF-α of activated lymphocyte in CIA model. In vitro experiments confirmed TFRD can effectively inhibit the inflammatory response of fibroblast-like synoviocytes and suppress the abnormal activation of MAPK, PI3K/AKT and NFκB signaling pathways. Conclusion The treatment of RA with TFRD is closely related to inhibiting Th17 differentiation and inflammatory response of synoviocytes.
Collapse
Affiliation(s)
- Guang-yao Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Yi Liu
- Humanities School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xin-bo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Xiao-yu Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Qing-wen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
32
|
Owada T, Kurasawa K, Endou H, Fujita T, Anzai N, Hayashi K. LAT1-specific inhibitor ameliorates severe autoimmune arthritis in SKG mouse. Int Immunopharmacol 2022; 109:108817. [PMID: 35561482 DOI: 10.1016/j.intimp.2022.108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
Abstract
L-type amino acid transporter 1 (LAT1, slc7a5) supplies large neutral amino acids to highly proliferative cells. LAT1 is an attractive therapeutic target for treating overactive T cell-mediated immune disorders due to its high expression in activated T cells, but not in resting T cells. Here, we demonstrate that LAT1 plays a crucial role in T helper (Th) 17-mediated autoimmune arthritis in SKG mice, an animal model of human rheumatoid arthritis (RA). Administration of JPH203, a LAT1-specific inhibitor, suppressed mannan-induced joint swelling, synoviocyte proliferation and inflammatory cell infiltration in SKG mice. A diminished metabolic reprogramming, including a decrease in oxidative phosphorylation that regulates Hif-1α expression and subsequent control of glycolysis enzymes, was involved in the downregulation of Th17 differentiation by LAT1 inhibition. Moreover, publicly released database analysis revealed facilitated expression of LAT1 in T cells with cytotoxic features in patients with RA. Our results demonstrate the essential contribution of LAT1 to the development of RA, proposing a potential therapeutic approach targeting amino acid transporters for treating hypersensitive immune diseases.
Collapse
Affiliation(s)
- Takayoshi Owada
- Department of Rheumatology, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi 321-0293, Japan
| | - Kazuhiro Kurasawa
- Department of Rheumatology, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi 321-0293, Japan
| | - Hitoshi Endou
- J-Pharma Co., Ltd, Yokohama, Kanagawa 230-0046, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi 321-0293, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Tochigi 321-0293, Japan.
| |
Collapse
|
33
|
Ma Y, Chen J, Wang T, Zhang L, Xu X, Qiu Y, Xiang AP, Huang W. Accurate Machine Learning Model to Diagnose Chronic Autoimmune Diseases Utilizing Information From B Cells and Monocytes. Front Immunol 2022; 13:870531. [PMID: 35515003 PMCID: PMC9065417 DOI: 10.3389/fimmu.2022.870531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Heterogeneity and limited comprehension of chronic autoimmune disease pathophysiology cause accurate diagnosis a challenging process. With the increasing resources of single-cell sequencing data, a reasonable way could be found to address this issue. In our study, with the use of large-scale public single-cell RNA sequencing (scRNA-seq) data, analysis of dataset integration (3.1 × 105 PBMCs from fifteen SLE patients and eight healthy donors) and cellular cross talking (3.8 × 105 PBMCs from twenty-eight SLE patients and eight healthy donors) were performed to identify the most crucial information characterizing SLE. Our findings revealed that the interactions among the PBMC subpopulations of SLE patients may be weakened under the inflammatory microenvironment, which could result in abnormal emergences or variations in signaling patterns within PBMCs. In particular, the alterations of B cells and monocytes may be the most significant findings. Utilizing this powerful information, an efficient mathematical model of unbiased random forest machine learning was established to distinguish SLE patients from healthy donors via not only scRNA-seq data but also bulk RNA-seq data. Surprisingly, our mathematical model could also accurately identify patients with rheumatoid arthritis and multiple sclerosis, not just SLE, via bulk RNA-seq data (derived from 688 samples). Since the variations in PBMCs should predate the clinical manifestations of these diseases, our machine learning model may be feasible to develop into an efficient tool for accurate diagnosis of chronic autoimmune diseases.
Collapse
Affiliation(s)
- Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Liting Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xinhao Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuxuan Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Huang,
| |
Collapse
|
34
|
Di Y, Zhang M, Chen Y, Sun R, Shen M, Tian F, Yang P, Qian F, Zhou L. Catalpol Inhibits Tregs-to-Th17 Cell Transdifferentiation by Up-Regulating Let-7g-5p to Reduce STAT3 Protein Levels. Yonsei Med J 2022; 63:56-65. [PMID: 34913284 PMCID: PMC8688372 DOI: 10.3349/ymj.2022.63.1.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, and Th17 cells are key factors in the pathogenesis of human inflammatory conditions, such as RA. Catalpol (CAT), a component in Rehmanniae Radix (RR), has been found to regulate human immunity. However, the effects of CAT on Th17 cell differentiation and improvement of RA are not clear. MATERIALS AND METHODS Collagen-induced arthritis (CIA) mice were constructed to detect the effects of CAT on arthritis and Th17 cells. The effect of CAT on Th17 differentiation was evaluated with let-7g-5p transfection experiments. Flow cytometry was used to detect the proportion of Th17 cells after CAT treatment. Levels of interleukin-17 and RORγt were assessed by qRT-PCR and enzyme-linked immunosorbent assay. The expression of signal transducer and activator of transcription 3 (STAT3) was determined by qRT-PCR and Western blot. RESULTS We found that the proportion of Th17 cells was negatively associated with let-7g-5p expression in CIA mice. In in vitro experiments, CAT suppressed traditional differentiation of Th17 cells. Simultaneously, CAT significantly decreased Tregs-to-Th17 cells transdifferentiation. Our results demonstrated that CAT inhibited Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p and that the suppressive effect of CAT on traditional differentiation of Th17 cells is not related with let-7-5p. CONCLUSION Our data indicate that CAT may be a potential modulator of Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p to reduce the expression of STAT3. These results provide new directions for research into RA treatment.
Collapse
Affiliation(s)
- Yuxi Di
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingfei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichang Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengxiang Tian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiya Qian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
35
|
Liu K. Immune, metabolism and therapeutic targets in RA (Rheumatoid Arthritis). BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis is a classic autoimmune disease, the pathogenesis of which is closely linked to the auto-reactivity of immune cells and joint inflammation. Three cell types, namely T cells, macrophages and fibroblast-like synoviocytes (FLS), play an important role in the pathogenesis of RA. Numerous studies have pointed to a metabolic reprogramming of T cells, macrophages and FLS in the pathogenesis of RA arthritis, with alterations in different metabolic pathways of cells, mainly producing a shift from oxidative phosphorylation (OXPHOS) to glycolysis, in addition to lipid metabolism and amino acid metabolism which are also altered in the cellular activation state. Metabolic changes are regulated by metabolism-related signalling pathways, and RA is associated with two representative signalling pathways, namely the mTOR signalling pathway and the AMPK signalling pathway. In RA, both signalling pathways are activated or inhibited, and through a series of cascade reactions, different gene expressions are ultimately induced, altering intracellular metabolic pathways and promoting pro-inflammatory functions (e.g. pro-inflammatory cytokine release and FLS phenotypes), or inhibiting the expression of genes related to immune tolerance. Targeting key components of metabolic signalling pathways and key enzymes in cellular metabolic pathways in RA has emerged as a new way of finding drugs for RA, and many modulators targeting these targets have been extensively studied for their therapeutic effects in RA. In this article, we focus on cellular metabolic alterations in RA, related signalling pathways and possible drugs targeting RA metabolic pathways.
Collapse
|
36
|
Wang X, Fan H, Wang Y, Yin X, Liu G, Gao C, Li X, Liang B. Elevated Peripheral T Helper Cells Are Associated With Atrial Fibrillation in Patients With Rheumatoid Arthritis. Front Immunol 2021; 12:744254. [PMID: 34721413 PMCID: PMC8554094 DOI: 10.3389/fimmu.2021.744254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) have a significantly high risk of atrial fibrillation (AF). This study aimed to compare the absolute and relative changes in peripheral T cells in patients with RA who were also affected with and without AF. To help make an early diagnosis and prevent the initiation and progression of AF, the changes in the lymphocyte subsets were assessed in RA patients with and without AF. A propensity score matching (PSM) system (1:3) was used to perform a matched case-control study with 40 RA-AF cases and 120 RA controls. Changes in the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), anti-citrullinated peptide antibody (ACPA), and rheumatoid factor (RF) were examined. The percentage and absolute number of T, B, natural killer (NK), T helper (Th)1, Th2, Th17, and T-regulatory (Treg) cells in the peripheral blood of patients with and without RA-AF were determined using flow cytometry. Univariate and multivariate analyses were performed to determine the association between peripheral lymphocytes and RA-AF. Demographic data, ESR, CRP, ACPA, and the percentage, as well as the absolute value of B, NK, Th2, and Treg cells, showed no significant differences between the propensity score-matched groups of RA and RA-AF. Meanwhile, the absolute number and percentage of Th1 cells, the absolute number of Th17 cells, the ratio of Th1/Treg, Th17/Treg, and RF were significantly higher in patients with RA-AF than those in the control groups (P < 0.05). Univariate and multivariate logistic regression analyses also revealed that the percentage of Th1 cells, the absolute number of Th17 cells, and the ratio of Th1/Treg were associated with a significantly higher risk of AF. This PSM study demonstrated that the incidence of AF was higher in RA patients with Th cell immunological derangements.
Collapse
Affiliation(s)
- Xin Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongxuan Fan
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yongle Wang
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xufang Yin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guangying Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Min HK, Kim S, Lee JY, Kim KW, Lee SH, Kim HR. IL-18 binding protein suppresses IL-17-induced osteoclastogenesis and rectifies type 17 helper T cell / regulatory T cell imbalance in rheumatoid arthritis. J Transl Med 2021; 19:392. [PMID: 34530864 PMCID: PMC8444577 DOI: 10.1186/s12967-021-03071-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Patients with rheumatoid arthritis (RA) have increased levels of interleukin-18 (IL-18) and decreased levels of IL-18 binding protein (IL-18BP) in the serum and synovial fluid (SF) compared to those in patients with osteoarthritis (OA) or in healthy controls. In this study, we evaluated the effects of IL-18BP on osteoclastogenesis and T cell differentiation in RA in vitro. Methods Serum and SF of patients with RA and OA were collected to compare IL-18 and IL-18BP levels by the enzyme-linked immunosorbent assay. Peripheral blood mononuclear cells (PBMCs) and SF mononuclear cells (SFMCs) of RA patients were cultured under type 17 helper T cell (Th17) polarisation conditions with or without IL-18BP. In addition, PBMCs were cultured in the presence of receptor activator of nuclear factor kappa-Β ligand (RANKL) or IL-17A with or without IL-18BP, and tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative polymerase chain reaction for expression levels of osteoclast-related genes were performed. Results IL-18 levels were higher in the serum and SF of patients with RA, whereas IL-18BP was lower in the SF of patients with RA than in the control group. Treatment of patients’ PBMCs with IL-18BP decreased the differentiation of CD4+ IL-17A+ and CD4+ RANKL+ T cells, whereas the differentiation of CD4+CD25highFOXP3+ T cell population increased in a dose-dependent manner. These changes in CD4+ T cell differentiation were also observed in the SFMCs of patients with RA. The levels IL-17A and soluble RANKL in the culture medium were significantly decreased by IL-18BP. IL-18BP administration decreased TRAP+ cell counts in a dose-dependent manner on the background of stimulation with RANKL-and IL-17A. In addition, expression levels of TRAP, NFATC1, CTSK, and TNFRSF11A (RANK) genes were lower in the IL-18BP treated cells. Conclusion We showed that IL-18BP can rectify the Th17/Treg imbalance and decrease IL-17-induced osteoclastogenesis in PBMCs from patients with RA. Therefore, IL-18BP may have therapeutic potential for RA treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03071-2.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Sehee Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Lee
- The Rheumatism Research Center, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | | | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea. .,Department of Rheumatology, Konkuk University Medical Center, 120-1 Neungdong-ro (Hwayang-dong), Gwangjin-gu, Seoul, 143-729, Republic of Korea.
| |
Collapse
|
38
|
Song S, Shan N, Wang G, Yan X, Liu JS, Hou L. Openness Weighted Association Studies: Leveraging Personal Genome Information to Prioritize Noncoding Variants. Bioinformatics 2021; 37:4737-4743. [PMID: 34260700 PMCID: PMC8665759 DOI: 10.1093/bioinformatics/btab514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
Motivation Identification and interpretation of non-coding variations that affect disease risk remain a paramount challenge in genome-wide association studies (GWAS) of complex diseases. Experimental efforts have provided comprehensive annotations of functional elements in the human genome. On the other hand, advances in computational biology, especially machine learning approaches, have facilitated accurate predictions of cell-type-specific functional annotations. Integrating functional annotations with GWAS signals has advanced the understanding of disease mechanisms. In previous studies, functional annotations were treated as static of a genomic region, ignoring potential functional differences imposed by different genotypes across individuals. Results We develop a computational approach, Openness Weighted Association Studies (OWAS), to leverage and aggregate predictions of chromosome accessibility in personal genomes for prioritizing GWAS signals. The approach relies on an analytical expression we derived for identifying disease associated genomic segments whose effects in the etiology of complex diseases are evaluated. In extensive simulations and real data analysis, OWAS identifies genes/segments that explain more heritability than existing methods, and has a better replication rate in independent cohorts than GWAS. Moreover, the identified genes/segments show tissue-specific patterns and are enriched in disease relevant pathways. We use rheumatic arthritis and asthma as examples to demonstrate how OWAS can be exploited to provide novel insights on complex diseases. Availability and implementation The R package OWAS that implements our method is available at https://github.com/shuangsong0110/OWAS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shuang Song
- Center for Statistical Science, Tsinghua University, Beijing, China.,Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - Nayang Shan
- Center for Statistical Science, Tsinghua University, Beijing, China.,Department of Industrial Engineering, Tsinghua University, Beijing, China
| | - Geng Wang
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA, 02138, USA
| | - Lin Hou
- Center for Statistical Science, Tsinghua University, Beijing, China.,Department of Industrial Engineering, Tsinghua University, Beijing, China.,MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
39
|
Hu Y, Zhao X. Role of m6A in osteoporosis, arthritis and osteosarcoma (Review). Exp Ther Med 2021; 22:926. [PMID: 34306195 PMCID: PMC8281110 DOI: 10.3892/etm.2021.10358] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
RNA modification is a type of post-transcriptional modification that regulates important cellular pathways, such as the processing and metabolism of RNA. The most abundant form of methylation modification is RNA N6-methyladenine (m6A), which plays various post-transcriptional regulatory roles in cellular biological functions, including cell differentiation, embryonic development and disease occurrence. Bones play a pivotal role in the skeletal system as they support and protect muscles and other organs, facilitate movement and ensure haematopoiesis. The development and remodelling of bones require a delicate and accurate regulation of gene expression by epigenetic mechanisms that involve modifications of histone, DNA and RNA. The present review discusses the enzymes and proteins involved in mRNA m6A methylation modification and summarises current research progress and the mechanisms of mRNA m6A methylation in common orthopaedic diseases, including osteoporosis, arthritis and osteosarcoma.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Xiaohui Zhao
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
40
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. A Tale of Two Immune Cells in Rheumatoid Arthritis: The Crosstalk Between Macrophages and T Cells in the Synovium. Front Immunol 2021; 12:655477. [PMID: 34220809 PMCID: PMC8248486 DOI: 10.3389/fimmu.2021.655477] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Joint inflammation of RA is closely related to infiltration of immune cells, synovium hyperplasia, and superfluous secretion of proinflammatory cytokines, which lead to cartilage degradation and bone erosion. The joint synovium of RA patients contains a variety of immune cellular types, among which monocytes/macrophages and T cells are two essential cellular components. Monocytes/macrophages can recruit and promote the differentiation of T cells into inflammatory phenotypes in RA synovium. Similarly, different subtypes of T cells can recruit monocytes/macrophages and promote osteoblast differentiation and production of inflammatory cytokines. In this review, we will discuss how T cell-monocyte/macrophage interactions promote the development of RA, which will provide new perspectives on RA pathogenesis and the development of targeted therapy.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Abstract
Adaptive immunity plays central roles in the pathogenesis of rheumatoid arthritis (RA), as it is regarded as an autoimmune disease. Clinical investigations revealed infiltrations of B cells in the synovium, especially those with ectopic lymphoid neogenesis, associate with disease severity. While some B cells in the synovium differentiate into plasma cells producing autoantibodies such as anti-citrullinated protein antibody, others differentiate into effector B cells producing proinflammatory cytokines and expressing RANKL. Synovial B cells might also be important as antigen-presenting cells. Synovial T cells are implicated in the induction of antibody production as well as local inflammation. In the former, a recently identified CD4 T cell subset, peripheral helper T (Tph), which is characterized by the expression of PD-1 and production of CXCL13 and IL-21, is implicated, while the latter might be mediated by Th1-like CD4 T cell subsets that can produce multiple proinflammatory cytokines, including IFN-γ, TNF-α, and GM-CSF, and express cytotoxic molecules, such as perforin, granzymes and granulysin. CD8 T cells in the synovium are able to produce large amount of IFN-γ. However, the involvement of those lymphocytes in the pathogenesis of RA still awaits verification. Their antigen-specificity also needs to be clarified.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Arthritis and Immunology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
42
|
Zhang C, Ma K, Yang Y, Wang F, Li W. Glaucocalyxin A suppresses inflammatory responses and induces apoptosis in TNF-a-induced human rheumatoid arthritis via modulation of the STAT3 pathway. Chem Biol Interact 2021; 341:109451. [PMID: 33798506 DOI: 10.1016/j.cbi.2021.109451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
The pathogenesis of rheumatoid arthritis (RA) is characterized by synoviocyte hyperplasia and proinflammatory cytokine secretion, as well as the destruction of cartilage and bone. Glaucocalyxin A (GLA) is an alkaloid derived from a Chinese medicinal plant that exhibits anti-inflammatory, anti-tumor and neuroprotective properties. We investigated the effects of GLA on RA-fibroblast-like synoviocytes (FLS cells), and collagen-induced arthritis (CIA), and further explored the underlying mechanisms. GLA inhibited TNF-a-induced RA-FLS proliferation, increased apoptotic ratios and upregulated levels of caspase-3, cleaved PARP, and Bax. GLA also inhibited the expression of IL-10, IL-1β, and IL-6 in vitro. Levels of p-STAT3 were downregulated in a dose-dependent manner. Over-expression of STAT3 partly neutralized the GLA-mediated elevation of caspase-3 and cleaved PARP levels as well as the downregulation of IL-10, IL-1B and IL-6 expression levels. This suggests that GLA inactivated the STAT3 pathway. Furthermore, the production of inflammatory cytokines in RA-FLS and a CIA rat model were inhibited effectively by GLA. Taken together, our data suggest that GLA is a potential long-term therapeutic agent for patients with RA.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apoptosis/drug effects
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- CD4-Positive T-Lymphocytes/drug effects
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/metabolism
- Diterpenes, Kaurane/pharmacology
- Humans
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Mice, Inbred DBA
- Rats, Wistar
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Synoviocytes/drug effects
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Th17 Cells/drug effects
- Th17 Cells/physiology
- Tumor Necrosis Factor-alpha/pharmacology
- Mice
- Rats
Collapse
Affiliation(s)
- Chuan Zhang
- Orthopedic Hospital of Henan Province & Orthopedic Institute of Henan Province, Luoyang, Henan, 471002, PR China
| | - Kun Ma
- Orthopedic Hospital of Henan Province & Orthopedic Institute of Henan Province, Luoyang, Henan, 471002, PR China
| | - Yanmei Yang
- Orthopedic Hospital of Henan Province & Orthopedic Institute of Henan Province, Luoyang, Henan, 471002, PR China
| | - Fuqiang Wang
- Anyang Cancer Hospital, Anyang, Henan, 455000, PR China
| | - Wuyin Li
- Orthopedic Hospital of Henan Province & Orthopedic Institute of Henan Province, Luoyang, Henan, 471002, PR China.
| |
Collapse
|
43
|
Wang C, Huandike M, Yang Y, Zhang H, Feng G, Meng X, Zhang P, Liu J, Li J, Chai L. Glycosides of Caulis Lonicerae inhibits the inflammatory proliferation of IL-1β-mediated fibroblast-like synovial cells cocultured with lymphocytes. Phytother Res 2021; 35:2807-2823. [PMID: 33484196 DOI: 10.1002/ptr.7026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023]
Abstract
Caulis Lonicerae, the dried stem of Lonicera japonica, has been confirmed to have antiinflammatory and antioxidant therapeutic effects. In the present study, we aimed to evaluate the functional mechanism of glycosides extracted from Caulis Lonicerae on the inflammatory proliferation of interleukin-1 beta (IL-1β)-mediated fibroblast-like synoviocytes (FLSs) from rats. Rat FLSs (RSC-364) co-cultured with lymphocytes induced by IL-1β were used as a cell model. Glycosides in a freeze-dried powder of aqueous extract from Caulis Lonicerae were identified using high-performance liquid chromatography-electrospray ionization/mass spectrometry. After treatment with glycosides, the inflammatory proliferation of FLS, induced by IL-1β, decreased significantly. Flow cytometry analysis showed that treatment with glycosides restored the abnormal balance of T cells by intervening in the proliferation and differentiation of helper T (Th) cells. Glycosides also inhibited the activation of Janus kinase signal transducer and activator of transcription (JAK-STAT) and nuclear factor (NF)-κB signaling pathways by suppressing the protein expression of key molecules in these pathways. Therefore, we concluded that the glycosides of Caulis Lonicerae can intervene in the differentiation of Th cells, suppressing the activation of JAK-STAT and NF-κB signaling pathways, contributing to the inhibitory effect on inflammatory proliferation of FLS co-cultured with lymphocytes induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Changzhi Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyier Huandike
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxia Yang
- Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Liu R, Jiang C, Li J, Li X, Zhao L, Yun H, Xu W, Fan W, Liu Q, Dong H. Serum-derived exosomes containing NEAT1 promote the occurrence of rheumatoid arthritis through regulation of miR-144-3p/ROCK2 axis. Ther Adv Chronic Dis 2021; 12:2040622321991705. [PMID: 33995991 PMCID: PMC8082996 DOI: 10.1177/2040622321991705] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Evidence has demonstrated that non-coding RNAs (ncRNAs) could be delivered efficiently to recipient cells using exosomes as a carrier. Additionally, long ncRNA nuclear enriched abundant transcript 1 (NEAT1) is emerging as a vital regulatory molecule in the progression of rheumatoid arthritis (RA). The aim of this study was to identify the NEAT1/miR-144-3p/Rho-associated protein kinase 2 (ROCK2) functional network regulating the WNT signaling pathway in RA. Methods: In vivo, a collagen-induced arthritis (CIA) model was established to analyze the effects of blood exosomes on the incidence, clinical score, and bone degradation of RA. In vitro, the CD4+T cells were characterized by flow cytometry and the cell activities were analyzed in the presence of exosome treatment alone or in combination with altered expression of NEAT1, miR-144-3p or Rho-associated protein kinase 2 (ROCK2). The expression of NEAT1, miR-144-3p, ROCK2, and corresponding proteins in the WNT signaling pathway was detected by RT-qPCR and western blot techniques. The binding profile of NEAT1 to miR-144-3p was evaluated via a combination approach of luciferase activity assay, RNA immunoprecipitation, and RNA pull-down experiments. Results: Blood exosomes extracted from RA patients increased the incidence of RA and bone destruction significantly. Overexpression of NEAT1 or ROCK2 promoted immune cell (CD4+T cells) proliferation, Th17 cell differentiation, and cell migration in response to stimulus, whereas knockout of the NEAT1 gene induced the expression of miR-144-3p in CD4+T cells. ROCK2 exogenous expression inhibited the expression of miR-144-3p, inducing activation of the WNT signaling pathway. Conclusion: A novel regulatory pathway NEAT1/miR-144-3p/ROCK2/WNT in RA was investigated as a potential target for RA therapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Chunbo Jiang
- Department of Nephrology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Jingjing Li
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Xiaoru Li
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Lin Zhao
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Haifeng Yun
- Department of Internal Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Weiwei Xu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Weijian Fan
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, P.R. China
| | - Qiuhong Liu
- Department of Rheumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 18, Yangsu Road, Gusu District, Suzhou, Jiangsu Province 215009, P.R. China
| | - Hongli Dong
- Department of Encephalopathy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No. 18, Yangsu Road, Gusu District, Suzhou, Jiangsu Province 215009, P.R. China
| |
Collapse
|
45
|
Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorate collagen-induced arthritis via immunomodulatory T lymphocytes. Mol Immunol 2021; 135:36-44. [PMID: 33857817 DOI: 10.1016/j.molimm.2021.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/03/2020] [Accepted: 04/04/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease for which there are currently no effective therapies. Although mesenchymal stem cells (MSCs) can prevent arthritis through immunomodulatory mechanisms, there are several associated risks. Alternatively, MSC-derived small extracellular vesicles (sEVs) can mimic the effects of MSCs, while reducing the risk of adverse events. However, few studies have examined sEVs in the context of RA. Here, we evaluate the immunomodulatory effects of human umbilical cord MSC (hUCMSC)-derived sEVs on T lymphocytes in a collagen-induced arthritis (CIA) rat model to elucidate the possible mechanism of sEVs in RA treatment. We then compare these mechanisms to those of MSCs and methotrexate (MTX). METHODS The arthritis index and synovial pathology were assessed. T lymphocyte proliferation and apoptosis, Th17 and Treg proportions, and interleukin (IL)-17, IL-10, and transforming growth factor (TGF)-β expression were detected using flow cytometry. Retinoic acid receptor-related orphan receptor gamma t (RORγt) and forkhead box P3 (FOXP3), which are master transcriptional regulators of Th17 and Treg differentiation, were also assessed using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS sEV treatment ameliorated arthritis and inhibited synovial hyperplasia in a dose-dependent manner. These effects were mediated by inhibiting T lymphocyte proliferation and promoting their apoptosis, while decreasing Th17 cell proportion and increasing that of Treg cells in the spleen, resulting in decreased serum IL-17, and enhanced IL-10 and TGF-β expression. Transcriptionally, sEVs decreased RORγt and increased FOXP3 expression in the spleen, and decreased RORγt and FOXP3 expression in the joints. In some aspects sEVs were more effective than MSCs and MTX in treating CIA. CONCLUSIONS hUCMSC-derived sEVs ameliorate CIA via immunomodulatory T lymphocytes, and might serve as a new therapy for RA.
Collapse
|
46
|
Xu W, Wu H, Tahara K, Chen S, Wang X, Tanaka S, Sugiyama K, Sawada T, Hirano T. Effects of vitamin K 2 combined with methotrexate against mitogen-activated peripheral blood mononuclear cells of healthy subjects and rheumatoid arthritis patients. Fundam Clin Pharmacol 2021; 35:832-842. [PMID: 33780033 DOI: 10.1111/fcp.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Methotrexate (MTX) is used as anchor drug for patients with early and established rheumatoid arthritis (RA). Vitamin K2 administration was also reported to be associated with decreased disease activity in RA. OBJECTIVES Immunosuppressive pharmacodynamics of vitamin K2 combined with MTX was investigated. METHODS Mitogen-activated peripheral blood mononuclear cells (PBMCs) were used to evaluate immunosuppressive pharmacodynamics of drugs in vitro. RESULTS Vitamin K2 alone dose-dependently suppressed T cell mitogen-activated proliferation of PBMCs of both healthy subjects and RA patients. 446.5 and 2232.5 ng/mL vitamin K2 significantly decreased the IC50 values of MTX on the proliferation of PBMCs of RA patients, with little influences on the pharmacodynamics of MTX in the healthy PBMCs. 4465 ng/mL vitamin K2 potentiated the pharmacodynamics of MTX in both RA patients and healthy PBMCs. The additional effects of vitamin K2 to potentiate the suppressive effects of MTX seemed not to be related to the regulation of CD4+ CD25+ T cells or CD4+ CD25+ Foxp3+ Treg cells. MTX alone at 100 ng/mL significantly decreased the percentage of CD4+ T cells in PBMCs of healthy subjects (p < 0.001) with a slight influence in that of RA patients (not significant) and the combination did not show synergistic inhibitory effect. Vitamin K2 alone tended to suppress the secretion of IL-17, IFN-γ, and TNF-α from the activated PBMCs of RA patients with smaller influences on the cytokine productions from healthy PBMCs. These additional effects of vitamin K2 were also observed in combination with MTX. CONCLUSION The above information may partially elucidate the potentiation effects of vitamin K2 on the immunosuppressive efficacy of MTX.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hongguang Wu
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Koichiro Tahara
- Department of Rheumatology, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
47
|
New Studies of Pathogenesis of Rheumatoid Arthritis with Collagen-Induced and Collagen Antibody-Induced Arthritis Models: New Insight Involving Bacteria Flora. Autoimmune Dis 2021; 2021:7385106. [PMID: 33833871 PMCID: PMC8016593 DOI: 10.1155/2021/7385106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
Much public research suggests that autoimmune diseases such as rheumatoid arthritis (RA) are induced by aberrant “self” immune responses attacking autologous tissues and organ components. However, recent studies have reported that autoimmune diseases may be triggered by dysbiotic composition changes of the intestinal bacteria and an imbalance between these bacteria and intestinal immune systems. However, there are a few solid concepts or methods to study the putative involvement and relationship of these inner environmental factors in RA pathogenesis. Fortunately, Collagen-Induced Arthritis (CIA) and Collagen Antibody-Induced Arthritis (CAIA) models have been widely used as animal models for studying the pathogenesis of RA. In addition to RA, these models can be extensively used as animal models for studying complicated hypotheses in many diseases. In this review, we introduce some basic information about the CIA and CAIA models as well as how to apply these models effectively to investigate relationships between the pathogenesis of autoimmune diseases, especially RA, and the dysbiosis of intestinal bacterial flora.
Collapse
|
48
|
Niu HQ, Yuan C, Yan C, Li N, Lei YS, Li X, Ru J, Li XF. Decreased numbers and sex-based differences of circulating regulatory T cells in patients with seropositive undifferentiated arthritis. Ther Adv Chronic Dis 2021; 12:2040622320986721. [PMID: 33717426 PMCID: PMC7925950 DOI: 10.1177/2040622320986721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Aims: CD4+ T cells play crucial roles as both mediators and regulators of the pathogenesis of rheumatoid arthritis (RA). However, the characteristics of CD4+ T cell subpopulations in the earliest stage of RA development remain unclear. Hence, we determined the proportions and absolute counts of circulating CD4+ T cell subsets in patients with seropositive undifferentiated arthritis (SUA), the early and preclinical stage of RA. Methods: Peripheral blood samples and clinical information were collected from 177 patients with SUA, 104 patients with RA, and 120 healthy controls. All patients were newly diagnosed and untreated. Proportions and absolute counts of CD4+ T cell subpopulations were determined by flow cytometric analysis. Results: In patients with SUA, percentages and absolute counts of circulating regulatory T (Treg) cells were decreased significantly and Th17/Treg cell ratios were abnormally increased, whereas Th17 cell numbers were similar to those in healthy controls. In addition, sex-based differences in circulating Treg cells were observed, with female SUA patients having lower proportions and absolute counts of Treg cells than those in males. Moreover, female patients with SUA had higher erythrocyte sedimentation rates and 28-joint Disease Activity Scores than those in males. Conclusion: Immune tolerance deficiency resulting from an abnormal reduction in circulating Treg cells might be the most crucial immunological event in the earliest stage of RA. The sex-specific disparity in Treg cells should also be considered for immunoregulatory and preventive strategies targeting early RA.
Collapse
Affiliation(s)
- Hong-Qing Niu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenrui Yuan
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Na Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan-Sheng Lei
- Department of Neurology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuxu Li
- Department of General Practice, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinli Ru
- Department of General Practice, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
49
|
Ogata K, Matsumura-Kawashima M, Moriyama M, Kawado T, Nakamura S. Dental pulp-derived stem cell-conditioned media attenuates secondary Sjögren's syndrome via suppression of inflammatory cytokines in the submandibular glands. Regen Ther 2021; 16:73-80. [PMID: 33659580 PMCID: PMC7878993 DOI: 10.1016/j.reth.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/01/2021] [Accepted: 01/16/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Sjögren's syndrome (SS) is a chronic inflammatory autoimmune disease, which affects the exocrine glands. Its primary symptoms are decreased moisture in the mouth and eyes. Therapies are limited to treatment with steroids, which has unpleasant side effects, so new treatments would be beneficial. One possibility might be stem cells, such as bone marrow mesenchymal stem cells (BMMSCs) or dental pulp-derived stem cells (DPSCs); these have been reported to exert immunomodulatory effects on activated lymphoid cells. This study aimed to evaluate the effects of conditioned media from DPSCs (DPSC-CM) or BMMSCs (BMMSC-CM) on salivary functions in SS. Methods Cytokine array analysis was performed to assess the types of cytokines present in the media. DPSC-CM or BMMSC-CM was administered in an SS mouse model. Histological analysis of the salivary glands was performed, and gene expression levels of inflammatory and anti-inflammatory cytokines in the submandibular glands (SMGs) were evaluated. Results DPSC-CM contained more anti-inflammatory factors than BMMSC-CM. The mice that were given DPSC-CM had a lower number of inflammation sites in the SMGs than those in the other experimental groups, and their salivary flow rate increased. The expression levels of interleukin (IL)-10 and transforming growth factor-β1 increased in the DPSC-CM group, while those of Il-4, Il-6, and Il-17a decreased. The mice that received DPSC-CM showed a significantly increased percentage of regulatory T cells and a significantly decreased percentage of type T helper 17 cells compared to other groups. Conclusions These results indicate that DPSC-CM could be an effective therapy for SS-induced hyposalivation, since it decreases the number of inflammatory cytokines and regulates the local inflammatory microenvironment in the SMGs.
Collapse
|
50
|
Tavasolian F, Hosseini AZ, Soudi S, Naderi M. miRNA-146a Improves Immunomodulatory Effects of MSC-derived Exosomes in Rheumatoid Arthritis. Curr Gene Ther 2020; 20:297-312. [DOI: 10.2174/1566523220666200916120708] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Background:
Rheumatoid arthritis (RA) is a severe inflammatory joint disorder, and several
studies have taken note of the probability that microRNAs (miRNAs) play an important role in
RA pathogenesis. MiR-146 and miR-155 arose as primary immune response regulators. Mesenchymal
stem cells (MSCs) immunomodulatory function is primarily regulated by paracrine factors,
such as exosomes. Exosomes, which serve as carriers of genetic information in cell-to-cell communication,
transmit miRNAs between cells and have been studied as vehicles for the delivery of therapeutic
molecules.
Aims:
The current research aimed to investigate the therapeutic effect of miR-146a/miR-155 transduced
mesenchymal stem cells (MSC)-derived exosomes on the immune response.
Methods:
Here, exosomes were extracted from normal MSCs with over-expressed
miR-146a/miR-155; Splenocytes were isolated from collagen-induced arthritis (CIA) and control
mice. Expression levels miR-146a and miR-155 were then monitored. Flow cytometry was performed
to assess the impact of the exosomes on regulatory T-cell (Treg) levels. Expression of some
key autoimmune response genes and their protein products, including retinoic acid-related orphan
receptor (ROR)-γt, tumor necrosis factor (TNF)-α, interleukin (IL)-17, -6, -10, and transforming
growth factor (TGF)-β in the Splenocytes was determined using both quantitative real-time PCR
and ELISA. The results showed that miR-146a was mainly down-regulated in CIA mice. Treatment
with MSC-derived exosomes and miR-146a/miR-155-transduced MSC-derived exosomes significantly
altered the CIA mice Treg cell levels compared to in control mice.
Results:
Ultimately, such modulation may promote the recovery of appropriate T-cell responses in
inflammatory situations such as RA.
Conclusion:
miR-146a-transduced MSC-derived exosomes also increased forkhead box P3 (Fox-
P3), TGFβ and IL-10 gene expression in the CIA mice; miR-155 further increased the gene expressions
of RORγt, IL-17, and IL-6 in these mice. Based on the findings here, Exosomes appears to
promote the direct intracellular transfer of miRNAs between cells and to represent a possible therapeutic
strategy for RA. The manipulation of MSC-derived exosomes with anti-inflammatory miRNA
may increase Treg cell populations and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Sciences, Tehran, Iran
| |
Collapse
|