1
|
Schnell A. Stem-like T cells in cancer and autoimmunity. Immunol Rev 2024; 325:9-22. [PMID: 38804499 DOI: 10.1111/imr.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem-like T cells are characterized by their ability to self-renew, survive long-term, and give rise to a heterogeneous pool of effector and memory T cells. Recent advances in single-cell RNA-sequencing (scRNA-seq) and lineage tracing technologies revealed an important role for stem-like T cells in both autoimmunity and cancer. In cancer, stem-like T cells constitute an important arm of the anti-tumor immune response by giving rise to effector T cells that mediate tumor control. In contrast, in autoimmunity stem-like T cells perform an unfavorable role by forming a reservoir of long-lived autoreactive cells that replenish the pathogenic, effector T-cell pool and thereby driving disease pathology. This review provides background on the discovery of stem-like T cells and their function in cancer and autoimmunity. Moreover, the influence of the microbiota and metabolism on the stem-like T-cell pool is summarized. Lastly, the implications of our knowledge about stem-like T cells for clinical treatment strategies for cancer and autoimmunity will be discussed.
Collapse
Affiliation(s)
- Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Ramirez GA, Tassi E, Noviello M, Mazzi BA, Moroni L, Citterio L, Zagato L, Tombetti E, Doglio M, Baldissera EM, Bozzolo EP, Bonini C, Dagna L, Manfredi AA. Histone-Specific CD4 + T Cell Plasticity in Active and Quiescent Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:739-750. [PMID: 38111123 DOI: 10.1002/art.42778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether circulating histone-specific T cells represent tools for precision medicine in systemic lupus erythematosus (SLE). METHODS Seroprevalence of autoantibodies and HLA-DR beta (DRB) 1 profile were assessed among 185 patients with SLE and combined with bioinformatics and literature evidence to identify HLA-peptide autoepitope couples for ex vivo detection of antigen-specific T cells through flow cytometry. T cell differentiation and polarization was investigated in patients with SLE, patients with Takayasu arteritis, and healthy controls carrying HLA-DRB1*03:01 and/or HLA-DRB1*11:01. SLE Disease Activity Index 2000 and Lupus Low Disease Activity State were used to estimate disease activity and remission. RESULTS Histone-specific CD4+ T cells were selectively detected in patients with SLE. Among patients with a history of anti-DNA antibodies, 77% had detectable histone-specific T cells, whereas 50% had lymphocytes releasing cytokines or upregulating activation markers after in vitro challenge with histone peptide antigens. Histone-specific regulatory and effector T helper (Th) 1-, Th2-, and atypical Th1/Th17 (Th1*)-polarized cells were significantly more abundant in patients with SLE with quiescent disease. In contrast, total Th1-, Th2-, and Th1*-polarized and regulatory T cells were similarly represented between patients and controls or patients with SLE with active versus quiescent disease. Histone-specific effector memory T cells accumulated in the blood of patients with quiescent SLE, whereas total effector memory T cell counts did not change. Immunosuppressants were associated with expanded CD4+ histone-specific naive T (TN) and terminally differentiated T cells. CONCLUSION Histone-specific T cells are selectively detected in patients with SLE, and their concentration in the blood varies with disease activity, suggesting that they represent innovative tools for patient stratification and therapy.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | - Luca Moroni
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | - Chiara Bonini
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Dagna
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Hughes EP, Syage AR, Tantin D. Durable CD4 + T cell immunity: cherchez la stem. Trends Immunol 2024; 45:158-166. [PMID: 38388231 PMCID: PMC10947858 DOI: 10.1016/j.it.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Mammalian stem cells govern development, tissue homeostasis, and regeneration. Following years of study, their functions have been delineated with increasing precision. The past decade has witnessed heightened widespread use of stem cell terminology in association with durable T cell responses to infection, antitumor immunity, and autoimmunity. Interpreting this literature is complicated by the fact that descriptions are diverse and criteria for labeling 'stem-like' T cells are evolving. Working under the hypothesis that conceptual frameworks developed for actual stem cells can be used to better evaluate and organize T cells described to have stem-like features, we outline widely accepted properties of stem cells and compare these to different 'stem-like' CD4+ T cell populations.
Collapse
Affiliation(s)
- Erik P Hughes
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Amber R Syage
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Li Y, Wang Z, Han F, Zhang M, Yang T, Chen M, Du J, Wang Y, Zhu L, Hou H, Chang Y, Han L, Lyu X, Zhang N, Sun W, Cai Z, Wei W. Single-cell transcriptome analysis profiles cellular and molecular alterations in submandibular gland and blood in IgG4-related disease. Ann Rheum Dis 2023; 82:1348-1358. [PMID: 37474274 DOI: 10.1136/ard-2023-224363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES The aim of this study is to profile the transcriptional landscapes of affected tissues and peripheral blood mononuclear cells (PBMCs) at the single-cell level in IgG4-related disease (IgG4-RD). Identifying the cell populations and crosstalk between immune cells and non-immune cells will assist us in understanding the aetiology of IgG4-RD. METHODS We performed single-cell RNA sequencing analysis on submandibular glands (SMGs) and PBMCs from patients with IgG4-RD and matched controls. Additionally, bulk RNA sequencing of PBMCs was used to construct the immune repertoire. Furthermore, multiplex immunofluorescence staining was performed to validate the transcriptomic results. RESULTS We identified three novel subsets of tissue-resident immune cells in the SMGs of patients with IgG4-RD. TOP2A_B cells and TOP2A_T cells had stemness signatures, and trajectory analysis showed that TOP2A_B cells may differentiate into IgG4+plasma cells and that TOP2A_T cells may differentiate into T follicular helper (Tfh) cells. ICOS_PD-1_B cells with Tfh-like characteristics appeared to be an intermediate state in the differentiation from B cells to IgG4+plasma cells. The cellular communication patterns within immune cells and between immune cells and non-immune cells were altered in IgG4-RD compared with controls. Consistently, infection-related pathways were shared in B cells and T cells from SMGs and PBMCs. Furthermore, immune clonotype analysis of PBMC samples showed the complementary determining region 3 amino acid CQQSYSTPYTF was expanded in patients with IgG4-RD. CONCLUSION Our data revealed the cellular and molecular changes at the single-cell resolution of IgG4-RD and provide valuable insights into the aetiology and novel therapeutic targets of the autoimmune disease.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Zhiqin Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Blood Science, Tianjin, China
| | - Feng Han
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Tong Yang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Ming Chen
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Jun Du
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Yin Wang
- Department of Oral Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Zhu
- Department of Ultrasound, Tianjin Medical University General Hospital, Tianjin, China
| | - Hou Hou
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Yanxia Chang
- Department of Research and Development, Seekgene Biotechnology Co, Ltd, Beijing, China
| | - Lin Han
- Department of Oral Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Lyu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Wenwen Sun
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| | - Zhigang Cai
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- National Key Laboratory of Blood Science, Tianjin, China
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Clinical Research Center for Rheumatic and Immune Diseases, Tianjin, China
| |
Collapse
|
6
|
Chang Y, Jiang M, Wang Y, Fu Q, Lin S, Wu J, Di W. Erucic acid improves the progress of pregnancy complicated with systemic lupus erythematosus by inhibiting the effector function of CD8 + T cells. MedComm (Beijing) 2023; 4:e382. [PMID: 37771913 PMCID: PMC10522964 DOI: 10.1002/mco2.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/30/2023] Open
Abstract
Pathogenic CD8+ T cells are pivotal contributors to the onset of systemic lupus erythematosus (SLE). Erucic acid (EA) has been proven to have anti-inflammatory activity. However, the capacity of EA to regulate pathogenic CD8+ T cells in the context of pregnancy complicated with SLE (pSLE) remains unclear. In our investigation, we observed augmented CD8+ T cell effector function juxtaposed with diminished EA levels in pSLE patients relative to healthy pregnant controls. Significantly, plasma EA levels exhibited a negative correlation with the severity of pSLE-associated complications. In blood from patients with pSLE, EA inhibited the effector function of CD8+ T cells, concurrently dampening the maintenance of stem cell-like memory CD8+ T cells. Mechanistically, EA orchestrated the inhibition of CD8+ T cell effector function by impeding signal transducer and activator of transcription 3 phosphorylation and promoting ferroptosis. Moreover, EA supplementation in pregnant MRL/lpr mice manifested as the attenuation of uterine CD8+ T cell effector function, culminating in the mitigation of placental pathological damage. Our findings uncover the immune response modulatory effects of EA upon pathogenic CD8+ cells, thereby unveiling new perspectives for therapeutic strategies targeting pSLE patients.
Collapse
Affiliation(s)
- Yanling Chang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Meng Jiang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - You Wang
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Qiong Fu
- Department of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of RheumatologyShanghaiChina
| | - Sihan Lin
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Jiayue Wu
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| | - Wen Di
- Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyShanghaiChina
- Department of Obstetrics and Gynecology, State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Sachdeva M, Taneja S, Sachdeva N. Stem cell-like memory T cells: Role in viral infections and autoimmunity. World J Immunol 2023; 13:11-22. [DOI: 10.5411/wji.v13.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
Stem cell-like memory T (TSCM) cells possess stem cell properties including multipotency and self-renewal and are being recognized as emerging players in various human diseases. Advanced technologies such as multiparametric flowcytometry and single cell sequencing have enabled their identification and molecular characterization. In case of chronic viral diseases such as human immunodeficiency virus-1, CD4+ TSCM cells, serve as major reservoirs of the latent virus. However, during immune activation and functional exhaustion of effector T cells, these cells also possess the potential to replenish the pool of functional effector cells to curtail the infection. More recently, these cells are speculated to play important role in protective immunity following acute viral infections such as coronavirus disease 2019 and might be amenable for therapeutics by ex vivo expansion. Similarly, studies are also investigating their pathological role in driving autoimmune responses. However, there are several gaps in the understanding of the role of TSCM cells in viral and autoimmune diseases to make them potential therapeutic targets. In this minireview, we have attempted an updated compilation of the dyadic role of these complex TSCM cells during such human diseases along with their biology and transcriptional programs.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shivangi Taneja
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
8
|
Fazeli P, Kalani M, Hosseini M. T memory stem cell characteristics in autoimmune diseases and their promising therapeutic values. Front Immunol 2023; 14:1204231. [PMID: 37497231 PMCID: PMC10366905 DOI: 10.3389/fimmu.2023.1204231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Abstract
Memory T cells are conventionally subdivided into T central memory (TCM) and T effector memory (TEM) cells. However, a new subset of memory T cells named T memory stem cell (TSCM) cells has been recognized that possesses capabilities of both TCM and TEM cells including lymphoid homing and performing effector roles through secretion of cytokines such as interleukin-2 (IL-2) and interferon-gamma (IFN-γ). The TSCM subset has some biological properties including stemness, antigen independency, high proliferative potential, signaling pathway and lipid metabolism. On the other hand, memory T cells are considered one of the principal culprits in the pathogenesis of autoimmune diseases. TSCM cells are responsible for developing long-term defensive immunity against different foreign antigens, alongside tumor-associated antigens, which mainly derive from self-antigens. Hence, antigen-specific TSCM cells can produce antitumor responses that are potentially able to trigger autoimmune activities. Therefore, we reviewed recent evidence on TSCM cell functions in autoimmune disorders including type 1 diabetes, systemic lupus erythematosus, rheumatoid arthritis, acquired aplastic anemia, immune thrombocytopenia, and autoimmune uveitis. We also introduced TSCM cell lineage as an innovative prognostic biomarker and a promising therapeutic target in autoimmune settings.
Collapse
Affiliation(s)
- Pooria Fazeli
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Kalani
- Department of Immunology, Prof. Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Sengupta S, Bhattacharya G, Mohanty S, Shaw SK, Jogdand GM, Jha R, Barik PK, Parida JR, Devadas S. IL-21, Inflammatory Cytokines and Hyperpolarized CD8 + T Cells Are Central Players in Lupus Immune Pathology. Antioxidants (Basel) 2023; 12:antiox12010181. [PMID: 36671045 PMCID: PMC9855022 DOI: 10.3390/antiox12010181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 01/15/2023] Open
Abstract
Systemic lupus erythematous (SLE) is a chronic autoimmune disorder, broadly characterized by systemic inflammation along with heterogeneous clinical manifestations, severe morbidity, moribund organ failure and eventual mortality. In our study, SLE patients displayed a higher percentage of activated, inflamed and hyper-polarized CD8+ T cells, dysregulated CD8+ T cell differentiation, significantly elevated serum inflammatory cytokines and higher accumulation of cellular ROS when compared to healthy controls. Importantly, these hyper-inflammatory/hyper-polarized CD8+ T cells responded better to an antioxidant than to an oxidant. Terminally differentiated Tc1 cells also showed plasticity upon oxidant/antioxidant treatment, but that was in contrast to the SLE CD8+ T cell response. Our studies suggest that the differential phenotype and redox response of SLE CD8+ T cells and Tc1 cells could be attributed to their cytokine environs during their respective differentiation and eventual activation environs. The polarization of Tc1 cells with IL-21 drove hyper-cytotoxicity without hyper-polarisation suggesting that the SLE inflammatory cytokine environment could drive the extreme aberrancy in SLE CD8+ T cells.
Collapse
Affiliation(s)
- Soumya Sengupta
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology (RCB), Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Gargee Bhattacharya
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology (RCB), Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | | | - Shubham K. Shaw
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology (RCB), Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | | | - Rohila Jha
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology (RCB), Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | | | - Jyoti R. Parida
- Odisha Arthritis & Rheumatology Centre (OARC), Bhubaneswar 751006, Odisha, India
- Correspondence: (J.R.P.); (S.D.); Tel.: +0091-955-6980101 (J.R.P.); +0091-674-2300701 (S.D.); Fax: +0091-674-2300728 (S.D.)
| | - Satish Devadas
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology (RCB), Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Correspondence: (J.R.P.); (S.D.); Tel.: +0091-955-6980101 (J.R.P.); +0091-674-2300701 (S.D.); Fax: +0091-674-2300728 (S.D.)
| |
Collapse
|
10
|
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, Yang WH. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Front Immunol 2023; 14:1104771. [PMID: 36891319 PMCID: PMC9986432 DOI: 10.3389/fimmu.2023.1104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
T cells play a crucial role in the regulation of immune response and are integral to the efficacy of cancer immunotherapy. Because immunotherapy has emerged as a promising treatment for cancer, increasing attention has been focused on the differentiation and function of T cells in immune response. In this review, we describe the research progress on T-cell exhaustion and stemness in the field of cancer immunotherapy and summarize advances in potential strategies to intervene and treat chronic infection and cancer by reversing T-cell exhaustion and maintaining and increasing T-cell stemness. Moreover, we discuss therapeutic strategies to overcome T-cell immunodeficiency in the tumor microenvironment and promote continuous breakthroughs in the anticancer activity of T cells.
Collapse
Affiliation(s)
- Xiaoxia Chi
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Ye
- Department of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Fazeli P, Talepoor AG, Faghih Z, Gholijani N, Ataollahi MR, Ali‐Hassanzadeh M, Moravej H, Kalantar K. The frequency of CD4+ and CD8+ circulating T stem cell memory in type 1 diabetes. Immun Inflamm Dis 2022; 10:e715. [PMID: 36169248 PMCID: PMC9500591 DOI: 10.1002/iid3.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION The frequencies and functions of T stem cell memory (TSCM) subsets vary in autoimmune diseases. We evaluated the frequencies of CD4+ and CD8+ TSCM subsets as well as their PD-1 expression levels in patients with T1D. METHODS Blood samples were collected from new case (NC) (n = 15), and long-term (LT) (n = 15) groups and healthy controls (n = 15). Five subsets of T cells including TCM(CD4+ /CD8+ CCR7+ CD45RO+ CD95+ ), TCMhi (CD4+ /CD8+ CCR7+ CD45ROhi CD95+ ), TEM(CD4+ /CD8+ CCR7- CD45RO+ CD95+ ), TSCM(CD4+ /CD8+ CCR7+ CD45RO- CD95+ ), and T naive (CD4+ /CD8+ CCR7+ CD45RO- CD95- ) were detected by flow-cytometry. RESULTS The frequency of CD4+ TSCM was higher in NC patients than LT patients and controls (p < .0001 and p = .0086, respectively). A higher percentage of the CD8+ T naive cells was shown in NC patients as compared with LT and healthy individuals (p = .0003 and p = .0002, respectively). An increased level of PD-1 expression was observed on the CD4+ TCM and TCMhi cells in LT patients as compared with healthy controls (p = .0037 and p = .0145, respectively). Also, the higher PD-1 expression was observed on the CD8+ TCM and TCMhi in NC and LT patients as compared with controls (p = .0068 and p < .0001; p = .0012 and p = .0012, respectively). CONCLUSION Considering TSCMs' capacities to generate all memory and effector T cells, our results may suggest a potential association between the increased frequencies of TSCMs and T1D progression.
Collapse
Affiliation(s)
- Pooriya Fazeli
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Zahra Faghih
- Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Nasser Gholijani
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| | | | | | - Hossein Moravej
- Department of PediatricsSchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Kurosh Kalantar
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
12
|
Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol 2022; 241:109078. [PMID: 35840054 DOI: 10.1016/j.clim.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
Stem cell like memory T (TSCM) cells have emerged as the apex of memory T cell differentiation for their properties of self-renewal and replenishing progenies. With potent long-term persistence, proliferative capacity and antitumor activity, TSCM cells were thought to be the ideal candidate for cancer immunotherapies. Several strategies have been proposed, such as manipulations of cytokines, metabolic factors, signal pathways, and T cell receptor signal intensity, to induce more TSCM cells in vitro, in the hope that they could reach a clinical order of magnitude to provide more long-lasting and effective anti-tumor effects in vivo. In this review, we summarized the differentiation characteristics of TSCM cells and strategies to generate more TSCM cells. We focused on their roles and application in the cancer immunotherapy especially in adoptive cell transfer therapy and cancer therapeutic vaccines, and hopefully provided clues for future understanding and researches.
Collapse
|
13
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
14
|
Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 2022; 18:232-244. [PMID: 35075294 DOI: 10.1038/s41584-021-00741-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.
Collapse
|
15
|
Cencioni MT, Genchi A, Brittain G, de Silva TI, Sharrack B, Snowden JA, Alexander T, Greco R, Muraro PA. Immune Reconstitution Following Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis: A Review on Behalf of the EBMT Autoimmune Diseases Working Party. Front Immunol 2022; 12:813957. [PMID: 35178046 PMCID: PMC8846289 DOI: 10.3389/fimmu.2021.813957] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disorder, which is mediated by an abnormal immune response coordinated by T and B cells resulting in areas of inflammation, demyelination, and axonal loss. Disease-modifying treatments (DMTs) are available to dampen the inflammatory aggression but are ineffective in many patients. Autologous hematopoietic stem cell transplantation (HSCT) has been used as treatment in patients with a highly active disease, achieving a long-term clinical remission in most. The rationale of the intervention is to eradicate inflammatory autoreactive cells with lympho-ablative regimens and restore immune tolerance. Immunological studies have demonstrated that autologous HSCT induces a renewal of TCR repertoires, resurgence of immune regulatory cells, and depletion of proinflammatory T cell subsets, suggesting a "resetting" of immunological memory. Although our understanding of the clinical and immunological effects of autologous HSCT has progressed, further work is required to characterize the mechanisms that underlie treatment efficacy. Considering that memory B cells are disease-promoting and stem-like T cells are multipotent progenitors involved in self-regeneration of central and effector memory cells, investigating the reconstitution of B cell compartment and stem and effector subsets of immunological memory following autologous HSCT could elucidate those mechanisms. Since all subjects need to be optimally protected from vaccine-preventable diseases (including COVID-19), there is a need to ensure that vaccination in subjects undergoing HSCT is effective and safe. Additionally, the study of vaccination in HSCT-treated subjects as a means of evaluating immune responses could further distinguish broad immunosuppression from immune resetting.
Collapse
Affiliation(s)
- Maria Teresa Cencioni
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Angela Genchi
- Department of Neurology, Neurology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Gavin Brittain
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Institute for Translational Neuroscience and Sheffield Neuroscience Biomedical Research Centre (BRC), Sheffield, United Kingdom
| | - Thushan I de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Institute for Translational Neuroscience and Sheffield Neuroscience Biomedical Research Centre (BRC), Sheffield, United Kingdom
| | - John Andrew Snowden
- Department of Haematology, Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom.,Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | - Tobias Alexander
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum, ein Leibniz Institut, Berlin, Germany
| | - Raffaella Greco
- Unit of Haematology and Bone Marrow Transplantation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo A Muraro
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
16
|
Li Y, Wu D, Yang X, Zhou S. Immunotherapeutic Potential of T Memory Stem Cells. Front Oncol 2021; 11:723888. [PMID: 34604060 PMCID: PMC8485052 DOI: 10.3389/fonc.2021.723888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Memory T cells include T memory stem cells (TSCM) and central memory T cells (TCM). Compared with effector memory T cells (TEM) and effector T cells (TEFF), they have better durability and anti-tumor immunity. Recent studies have shown that although TSCM has excellent self-renewal ability and versatility, if it is often exposed to antigens and inflammatory signals, TSCM will behave as a variety of inhibitory receptors such as PD-1, TIM-3 and LAG-3 expression, and metabolic changes from oxidative phosphorylation to glycolysis. These changes can lead to the exhaustion of T cells. Cumulative evidence in animal experiments shows that it is the least differentiated cell in the memory T lymphocyte system and is a central participant in many physiological and pathological processes in humans. It has a good clinical application prospect, so it is more and more important to study the factors affecting the formation of TSCM. This article summarizes and prospects the phenotypic and functional characteristics of TSCM, the regulation mechanism of formation, and its application in treatment of clinical diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Dengqiang Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Xuejia Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China.,National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Wang S, Wang L, Liu Y, Zhu Y, Liu Y. Characteristics of T-cell receptor repertoire of stem cell-like memory CD4+ T cells. PeerJ 2021; 9:e11987. [PMID: 34527440 PMCID: PMC8401816 DOI: 10.7717/peerj.11987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Stem cell-like memory T cells (Tscm) combine phenotypes of naïve and memory. However, it remains unclear how T cell receptor (TCR) characteristics contribute to heterogeneity in Tscm and other memory T cells. We compared the TCR-beta (TRB) repertoire characteristics of CD4+ Tscm with those of naïve and other CD4+ memory (Tm) in 16 human subjects. Compared with Tm, Tscm had an increased diversity across all stretches of TRB repertoire structure, a skewed gene usage, and a shorter length distribution of CDR3 region. These distinctions between Tscm and Tm were enlarged in top1000 abundant clonotypes. Furthermore, top1000 clonotypes in Tscm were more public than those in Tm and grouped in more clusters, implying more epitope types recognized by top1000 clonotypes in Tscm. Importantly, self-reactive clonotypes were public and enriched in Tscm rather than Tm, of type one diabetes patients. Therefore, this study highlights the unique features of Tscm different from those of other memory subsets and provides clues to understand the physiological and pathological functions of Tscm.
Collapse
Affiliation(s)
- Shiyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Longlong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
18
|
Lee YJ, Park EH, Park JW, Jung KC, Lee EB. Proinflammatory Features of Stem Cell-like Memory T Cells from Human Patients with Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2021; 207:381-388. [PMID: 34162725 DOI: 10.4049/jimmunol.2000814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Stem cell-like memory T (Tscm) cells are a subset of memory T cells that have characteristics of stem cells. The characteristics of Tscm cells in patients with rheumatoid arthritis (RA) are not well known. The percentage of CD4+ and CD8+ Tscm cells in PBMCs and synovial fluid mononuclear cells was measured. After confirming the stem cell nature of Tscm cells, we examined their pathogenicity in RA patients and healthy controls (HCs) by assessing T cell activation markers and cytokine secretion after stimulation with anti-CD3/CD28 beads and/or IL-6. Finally, RNA transcriptome patterns in Tscm cells from RA patients were compared with those in HCs. In this study, the percentage of CD4+ and CD8+ Tscm cells in total T cells was significantly higher in RA patients than in HCs. Tscm cells self-proliferated and differentiated into memory and effector T cell subsets when stimulated. Compared with Tscm cells from HCs, Tscm cells from RA patients were more easily activated by anti-CD3/CD28 beads augmented by IL-6. Transcriptome analyses revealed that Tscm cells from RA patients showed a pattern distinct from those in HCs; RA-specific transcriptome patterns were not completely resolved in RA patients in complete clinical remission. In conclusion, Tscm cells from RA patients show a transcriptionally distinct pattern and are easily activated to produce inflammatory cytokines when stimulated by TCRs in the presence of IL-6. Tscm cells can be a continuous source of pathogenicity in RA.
Collapse
Affiliation(s)
- Ye Ji Lee
- Graduate Course of Translational Medicine (Immunology), Seoul National University College of Medicine, Seoul, Korea
| | - Eun Hye Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Won Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea; and
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Mohd Shukri ND, Farah Izati A, Wan Ghazali WS, Che Hussin CM, Wong KK. CD3 +CD4 +gp130 + T Cells Are Associated With Worse Disease Activity in Systemic Lupus Erythematosus Patients. Front Immunol 2021; 12:675250. [PMID: 34149710 PMCID: PMC8213373 DOI: 10.3389/fimmu.2021.675250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The receptors for IL-35, IL-12Rβ2 and gp130, have been implicated in the inflammatory pathophysiology of autoimmune diseases. In this study, we set out to investigate the serum IL-35 levels and the surface levels of IL-12Rβ2 and gp130 in CD3+CD4+, CD3+CD4─ and CD3─CD4─ lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients (n=50) versus healthy controls (n=50). The potential T cell subsets associated with gp130 transcript (i.e. IL6ST) expression in CD4+ T cells of SLE patients was also examined in publicly-available gene expression profiling (GEP) datasets. Here, we report that serum IL-35 levels were significantly higher in SLE patients than healthy controls (p=0.038) but it was not associated with SLEDAI-2K scores. The proportions of IL-12Rβ2+ and gp130+ cells in SLE patients did not differ significantly with those of healthy controls in all lymphocyte subpopulations investigated. Essentially, higher SLEDAI-2K scores were positively correlated with increased proportion of gp130+ cells, but not IL-12Rβ2+ cells, on CD3+CD4+ T cells (r=0.425, p=0.002, q=0.016). Gene Set Enrichment Analysis (GSEA) of a GEP dataset of CD4+ T cells isolated from SLE patients (n=8; GSE4588) showed that IL6ST expression was positively associated with genes upregulated in CD4+ T cells vs myeloid or B cells (q<0.001). In an independent GEP dataset of CD4+ T cells isolated from SLE patients (n=9; GSE1057), IL6ST expression was induced upon anti-CD3 stimulation, and that Treg, TCM and CCR7+ T cells gene sets were significantly enriched (q<0.05) by genes highly correlated with IL6ST expression (n=92 genes; r>0.75 with IL6ST expression) upon anti-CD3 stimulation in these SLE patients. In conclusion, gp130 signaling in CD3+CD4+ T cell subsets may contribute to increased disease activity in SLE patients, and it represents a promising therapeutic target for inhibition in the disease.
Collapse
Affiliation(s)
- Nur Diyana Mohd Shukri
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Aziz Farah Izati
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Syamimee Wan Ghazali
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Maraina Che Hussin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
20
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|
21
|
Graham AK, Fong C, Naqvi A, Lu JQ. Toxoplasmosis of the central nervous system: Manifestations vary with immune responses. J Neurol Sci 2020; 420:117223. [PMID: 33213861 DOI: 10.1016/j.jns.2020.117223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is an opportunistic infection caused by Toxoplasma gondii (TG), which affects one third of the global human population and commonly involves the central nervous system (CNS)/brain despite the so-called CNS immune privilege. Symptomatic clinical disease of TG infection is much more commonly associated with immunodeficiency; clinicopathological manifestations of CNS toxoplasmosis are linked to individual immune responses including the CNS infiltration of T-cells that are thought to prevent the disease. In patients with autoimmune diseases, immune status is complicated mainly byimmunosuppressant and/or immunomodulatory treatment but typically accompanied by infiltration of T-cells that supposedly fight against toxoplasmosis. In this article, we review characteristics of CNS toxoplasmosis comparatively in immunocompromised patients, immunocompetent patients, and patients with coexisting autoimmune diseases, as well as CNS immune responses to toxoplasmosis with a representative case to demonstrate brain lesions at different stages. In addition to general understanding of CNS toxoplasmosis, our review reveals that clinical manifestations of CNS toxoplasmosis are commonly nonspecific, and incidental pathological findings of TG infection are relatively common in immunocompetent patients and patients with autoimmune diseases (compared to immunocompromised patients); CNS immune responses such as T-cell infiltrates vary in acute and chronic lesions of brain toxoplasmosis.
Collapse
Affiliation(s)
- Alice K Graham
- Department of Pathology and Molecular Medicine, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada.
| | - Crystal Fong
- Neuroradiology Division, Department of Radiology, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada
| | - Asghar Naqvi
- Department of Pathology and Molecular Medicine, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada; Neuropathology Section, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
22
|
Padgett LE, Dinh HQ, Wu R, Gaddis DE, Araujo DJ, Winkels H, Nguyen A, McNamara CA, Hedrick CC. Naive CD8 + T Cells Expressing CD95 Increase Human Cardiovascular Disease Severity. Arterioscler Thromb Vasc Biol 2020; 40:2845-2859. [PMID: 33054398 DOI: 10.1161/atvbaha.120.315106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Cardiovascular disease (CVD) remains a significant global health concern with a high degree of mortality. While CD4+ T cells have been extensively studied in CVD, the importance of CD8+ T cells in this disease, despite their abundance and increased activation in human atherosclerotic plaques, remains largely unknown. Thus, the objective of this study was to compare peripheral T-cell signatures between humans with a high (severe) risk of CVD (including myocardial infarction or stroke) and those with a low risk of CVD. Approach and Results: Using mass cytometry, we uncovered a naive CD8+ T (TN) cell population expressing CD95 (termed CD95+CD8+ stem cell memory T [CD8 TSCM] cells) that was enriched in patients with high compared with low CVD. This T-cell subset enrichment within individuals with high CVD was a relative increase and resulted from the loss of CD95lo cells within the TN compartment. We found that CD8 TSCM cells positively correlated with CVD risk in humans, while CD8+ TN cells were inversely correlated. Atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice also displayed respective 7- and 2-fold increases in CD8+ TSCM frequencies within the peripheral blood and aorta-draining paraaortic lymph nodes compared with C57BL/6J mice. CD8+ TSCM cells were 1.7-fold increased in aortas from western diet fed ApoE-/- mice compared with normal laboratory diet-fed ApoE-/- mice. Importantly, transfer of TSCM cells into immune-deficient Rag.Ldlr recipient mice that lacked T cells increased atherosclerosis, illustrating the importance of these cells in atherogenesis. CONCLUSIONS CD8+ TSCM cells are increased in humans with high CVD. As these TSCM cells promote atherosclerosis, targeting them may attenuate atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Huy Q Dinh
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Anh Nguyen
- Cardiovascular Research Center and Division of Cardiovascular Medicine, University of Virginia, Charlottesville (A.N., C.A.M.)
| | - Coleen A McNamara
- Cardiovascular Research Center and Division of Cardiovascular Medicine, University of Virginia, Charlottesville (A.N., C.A.M.)
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| |
Collapse
|
23
|
Cianciotti BC, Ruggiero E, Campochiaro C, Oliveira G, Magnani ZI, Baldini M, Doglio M, Tassara M, Manfredi AA, Baldissera E, Ciceri F, Cieri N, Bonini C. CD4+ Memory Stem T Cells Recognizing Citrullinated Epitopes Are Expanded in Patients With Rheumatoid Arthritis and Sensitive to Tumor Necrosis Factor Blockade. Arthritis Rheumatol 2020; 72:565-575. [PMID: 31682074 DOI: 10.1002/art.41157] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Memory stem T (Tscm) cells are long-lived, self-renewing T cells that play a relevant role in immunologic memory. This study was undertaken to investigate whether Tscm cells accumulate in rheumatoid arthritis (RA). METHODS The polarization and differentiation profiles of circulating T cells were assessed by flow cytometry. Antigen-specific T cells were characterized by staining with major histocompatibility complex class II tetramers. The T cell receptor (TCR) repertoire was analyzed by high-throughput sequencing using an unbiased RNA-based approach in CD4+ T cell subpopulations sorted by fluorescence-activated cell sorting. RESULTS We analyzed the dynamics of circulating Tscm cells (identified as CD45RA+CD62L+CD95+ T cells) by flow cytometry in 27 RA patients, 16 of whom were also studied during treatment with the anti-tumor necrosis factor (anti-TNF) agent etanercept. Age-matched healthy donors were used as controls. CD4+ Tscm cells were selectively and significantly expanded in RA patients in terms of frequency and absolute numbers, and significantly contracted upon anti-TNF treatment. Expanded CD4+ Tscm cells displayed a prevalent Th17 phenotype and a skewed TCR repertoire in RA patients, with the 10 most abundant clones representing up to 53.7% of the detected sequences. CD4+ lymphocytes specific for a citrullinated vimentin (Cit-vimentin) epitope were expanded in RA patients with active disease. Tscm cells accounted for a large fraction of Cit-vimentin-specific CD4+ cells. CONCLUSION Our results indicate that Tscm cells, including expanded clones specific for relevant autoantigens, accumulate in RA patients not exposed to biologic agents, and might be involved in the natural history of the disease. Further analysis of Tscm cell dynamics in autoimmune disorders may have implications for the design and efficacy assessment of innovative therapies.
Collapse
Affiliation(s)
| | | | - Corrado Campochiaro
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | - Angelo A Manfredi
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Fabio Ciceri
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Chiara Bonini
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
24
|
Jimbo K, Konuma T, Watanabe E, Kohara C, Mizukami M, Nagai E, Oiwa-Monna M, Mizusawa M, Isobe M, Kato S, Takahashi S, Tojo A. T memory stem cells after allogeneic haematopoietic cell transplantation: unique long-term kinetics and influence of chronic graft-versus-host disease. Br J Haematol 2019; 186:866-878. [PMID: 31135974 DOI: 10.1111/bjh.15995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
T memory stem cells (TSCMs) are a subset of primitive T cells capable of both self-renewal and differentiation into all subsets of memory and effector T cells. Therefore, TSCMs may play a role in immune reconstitution and graft-versus-host disease (GVHD) in patients receiving allogeneic haematopoietic cell transplantation (HCT). We conducted a cross-sectional study to evaluate the proportions, absolute counts, phenotypes and functions of TSCMs in 152 adult patients without disease recurrence at least 12 months after undergoing HCT. CD4+ TSCMs were negatively correlated with number of months after transplantation in HCT patients that received cord blood transplantation, but not in patients that received bone marrow transplantation or peripheral blood stem cell transplantation. The proportions and absolute counts of CD4+ TSCMs and expression levels of inducible co-stimulator (ICOS) in CD8+ TSCMs were significantly higher in patients with mild and moderate/severe cGVHD compared to patients without cGVHD. These data suggested that, more than 12 months after allogeneic HCT, the kinetics of CD4+ TSCMs were dependent on the type of donor source, and further that CD4+ TSCMs and ICOS levels in CD8+ TSCMs were associated with cGVHD.
Collapse
Affiliation(s)
- Koji Jimbo
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Konuma
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- Department of IMSUT Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Kohara
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoko Mizukami
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Oiwa-Monna
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mai Mizusawa
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masamichi Isobe
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
powerTCR: A model-based approach to comparative analysis of the clone size distribution of the T cell receptor repertoire. PLoS Comput Biol 2018; 14:e1006571. [PMID: 30485278 PMCID: PMC6287877 DOI: 10.1371/journal.pcbi.1006571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/10/2018] [Accepted: 10/19/2018] [Indexed: 11/19/2022] Open
Abstract
Sequencing of the T cell receptor (TCR) repertoire is a powerful tool for deeper study of immune response, but the unique structure of this type of data makes its meaningful quantification challenging. We introduce a new method, the Gamma-GPD spliced threshold model, to address this difficulty. This biologically interpretable model captures the distribution of the TCR repertoire, demonstrates stability across varying sequencing depths, and permits comparative analysis across any number of sampled individuals. We apply our method to several datasets and obtain insights regarding the differentiating features in the T cell receptor repertoire among sampled individuals across conditions. We have implemented our method in the open-source R package powerTCR. A more detailed understanding of the immune response can unlock critical information concerning diagnosis and treatment of disease. Here, in particular, we study T cells through T cell receptor sequencing, as T cells play a vital role in immune response. One important feature of T cell receptor sequencing data is the frequencies of each receptor in a given sample. These frequencies harbor global information about the landscape of the immune response. We introduce a flexible method that extracts this information by modeling the distribution of these frequencies, and show that it can be used to quantify differences in samples from individuals of different biological conditions.
Collapse
|