1
|
Vishnevetskii DV, Metlin FA, Andrianova YV, Polyakova EE, Ivanova AI, Averkin DV, Mekhtiev AR. Preparation of Composite Hydrogels Based on Cysteine-Silver Sol and Methylene Blue as Promising Systems for Anticancer Photodynamic Therapy. Gels 2024; 10:577. [PMID: 39330179 PMCID: PMC11431599 DOI: 10.3390/gels10090577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel supramolecular composite, "photogels", was synthesized by mixing of cysteine-silver sol (CSS) and methylene blue (MB). A complex of modern physico-chemical methods of analysis such as viscosimetry, UV spectroscopy, dynamic and electrophoretic light scattering, scanning electron microscopy and energy-dispersive X-ray spectroscopy showed that MB molecules are uniformly localized mainly in the space between fibers of the gel-network formed by CSS particles. Molecules of the dye also bind with the surface of CSS particles by non-covalent interactions. This fact is reflected in the appearance of a synergistic anticancer effect of gels against human squamous cell carcinoma even in the absence of light irradiation. A mild toxic influence of hydrogels was observed in normal keratinocyte cells. Photodynamic exposure significantly increased gel activity, and there remained a synergistic effect. The study of free-radical oxidation in cells has shown that gels are not only capable of generating reactive oxygen species, but also have other targets of action. Flow cytometric analysis allowed us to find out that obtained hydrogels caused cell cycle arrest both without irradiation and with light exposure. The obtained gels are of considerable interest both from the point of view of academics and applied science, for example, in the photodynamic therapy of superficial neoplasms.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Fedor A. Metlin
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Yana V. Andrianova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia; (F.A.M.); (Y.V.A.); (E.E.P.)
| | - Alexandra I. Ivanova
- Department of Applied Physics, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| |
Collapse
|
2
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Gao ZZ, Qi N, Chen WJ, Zhao H. Construction of hydroxyethyl cellulose/silica/graphitic carbon nitride solid foam for adsorption and photocatalytic degradation of dyes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Khan F, Das S. Modified Low Molecular Weight Pure and Engineered Gels: A Review of Strategies towards Their Development. ChemistrySelect 2022. [DOI: 10.1002/slct.202200205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Finaz Khan
- Department of Chemistry Amity Institute of Applied Sciences Amity University Kolkata Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown West Bengal 700135 India
| | - Susmita Das
- Department of Chemistry Amity Institute of Applied Sciences Amity University Kolkata Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown West Bengal 700135 India
| |
Collapse
|
5
|
Kimura S, Mori S, Yokoya M, Yamanaka M. Multiple Stimuli-Responsive Supramolecular Gel Formed from Modified Adenosine. Chem Pharm Bull (Tokyo) 2022; 70:443-447. [PMID: 35650041 DOI: 10.1248/cpb.c22-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Urea derivatives 1 and 2, synthesized from adenosine, were designed as low-molecular-weight gelators. Hydrophobic groups have been introduced into all or part of the hydroxy groups of the hydrophilic ribose moiety of 1 and 2 to control the solvophilicity of the molecules and their aggregates. Compound 2 selectively formed supramolecular gels in halogenated solvents such as chloroform and 1,2-dichloroethane. The supramolecular gel of 2 and chloroform was thermally stable and its gel-to-sol phase transition temperature was higher than the boiling point of chloroform. The physical properties of the supramolecular gel were investigated by determining its viscoelastic properties using a rheometer. The supramolecular gel realized multiple stimuli-responsive reversible gel-sol phase transitions. The supramolecular gel showed reversible phase transition by repeated warming-cooling cycles accompanying with the gel-sol transitions. The supramolecular gel could undergo five repeated mechano-responsive gel-sol transitions. Gel-to-sol phase transition could also be achieved by adding various anions to the supramolecular gel, such as tetrabutylammonium fluoride. Regelation was realized by adding boron trifluoride etherate to the fluoride ion containing sol. Addition of methanol to the supramolecular gel also induced gel-to-sol phase transition. Regelation was realized by adding molecular sieves 4 Å to the suspension.
Collapse
|
6
|
Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Du W, Fan J, Ma R, Yang G, Liu J, Zhang S, Chen T. Radiation‐initiated chitosan‐based double network hydrogel: Synthesis, characterization, and adsorption of methylene blue. J Appl Polym Sci 2021. [DOI: 10.1002/app.51531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wenjie Du
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jinxu Fan
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Rui Ma
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Gang Yang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Jiaqi Liu
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Shifan Zhang
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology Hubei University of Science and Technology Xianning China
| |
Collapse
|
8
|
A Simple Microextraction Method for Toxic Industrial Dyes Using a Fatty-Acid Solvent Mixture. SEPARATIONS 2021. [DOI: 10.3390/separations8090135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A mixture of dodecanoic and hexanoic fatty acids was used to perform a simple and efficient microextraction method for industrial dyes such as methylene blue (MB), methyl violet (MV), and malachite green (MG) in aqueous solution. The fatty-acid microextractants were simply mixed and heated until the mixture became homogeneous before adding it to the dye solutions. The fatty-acid solvent and its components were characterized with Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) measurements, while the dye concentrations were measured using UV-Vis spectroscopy. The performance of the extracting mixture was observed to vary across different dye contaminants, dosages of the extractant, concentrations of the dyes, and contact times. High extraction efficiencies of up to ~99% were obtained for MG as well as MV, and ~73% efficiency was achieved for MB. The study shows how a mixture of fatty acids can be used as a simple, efficient, green, and sustainable low-volume method for the removal of toxic industrial dyes in aqueous solutions.
Collapse
|
9
|
Komiyama T, Harada Y, Hase T, Mori S, Kimura S, Yokoya M, Yamanaka M. Effect of Alkyl Chain Length of N-Alkyl-N'-(2-benzylphenyl)ureas on Gelation. Chem Asian J 2021; 16:1750-1755. [PMID: 34008323 DOI: 10.1002/asia.202100433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Indexed: 11/07/2022]
Abstract
Urea derivatives that were substituted with a 2-benzylphenyl group and an alkyl group functioned as low molecular weight gelators for various organic solvents and ionic liquids. Urea derivatives with long alkyl chains were effective for the gelation of polar solvents. However, they were not suitable for the gelation of non-polar solvents, whereas urea derivatives with short alkyl chains were effective. Ionic liquids were similar to polar solvents in that urea derivatives with long alkyl chains were the most effective gelators. The physical properties of the formed supramolecular gels were analyzed by dynamic viscoelasticity measurements using a rheometer.
Collapse
Affiliation(s)
- Tomoki Komiyama
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.,Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yoko Harada
- Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takayuki Hase
- Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sota Mori
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
10
|
Yoshisaki R, Kimura S, Yokoya M, Yamanaka M. Enzymatic Hydrolysis-Responsive Supramolecular Hydrogels Composed of Maltose-Coupled Amphiphilic Ureas. Chem Asian J 2021; 16:1937-1941. [PMID: 34003592 DOI: 10.1002/asia.202100376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Indexed: 11/10/2022]
Abstract
Maltose is a ubiquitous disaccharide produced by the hydrolysis of starch. Amphiphilic ureas bearing hydrophilic maltose moiety were synthesized via the following three steps: I) construction of urea derivatives by the condensation of 4-nitrophenyl isocyanate and alkylamines, II) reduction of the nitro group by hydrogenation, and III) an aminoglycosylation reaction of the amino group and the unprotected maltose. These amphiphilic ureas functioned as low molecular weight hydrogelators, and the mixtures of the amphipathic ureas and water formed supramolecular hydrogels. The gelation ability largely depended on the chain length of the alkyl group of the amphiphilic urea; amphipathic urea having a decyl group had the highest gelation ability (minimum gelation concentration=0.4 mM). The physical properties of the supramolecular hydrogels were evaluated by measuring their thermal stability and dynamic viscoelasticity. These supramolecular hydrogels underwent gel-to-sol phase transition upon the addition of α-glucosidase as a result of the α-glucosidase-catalyzed hydrolysis of the maltose moiety of the amphipathic urea.
Collapse
Affiliation(s)
- Ryohei Yoshisaki
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.,Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
11
|
Yokoya M, Kimura S, Yamanaka M. Urea Derivatives as Functional Molecules: Supramolecular Capsules, Supramolecular Polymers, Supramolecular Gels, Artificial Hosts, and Catalysts. Chemistry 2021; 27:5601-5614. [DOI: 10.1002/chem.202004367] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Masashi Yokoya
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| | - Shinya Kimura
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University (MPU) 2-522-1 Noshio Kiyose 204-8588 Japan
| |
Collapse
|
12
|
Maria Rahman M, Al Foisal J, Ihara H, Takafuji M. Efficient removal of methylene blue dye from an aqueous solution using silica nanoparticle crosslinked acrylamide hybrid hydrogels. NEW J CHEM 2021. [DOI: 10.1039/d1nj04383h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica nanoparticle cross-linked acrylamide polymer hydrogels showed promising adsorption behavior for organic dye removal in a neutral to basic pH range with a rapid adsorption rate, high adsorption capacity and excellent regeneration efficacy.
Collapse
Affiliation(s)
- M. Maria Rahman
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
- Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh
| | - Jannat Al Foisal
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
- Okinawa College, National Institute of Technology, 905 Henoko, Ns, Okinawa, 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
13
|
Arcon DP, Franco FC. All-fatty acid hydrophobic deep eutectic solvents towards a simple and efficient microextraction method of toxic industrial dyes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Hou N, Wang R, Wang F, Bai J, Zhou J, Zhang L, Hu J, Liu S, Jiao T. Fabrication of Hydrogels via Host-Guest Polymers as Highly Efficient Organic Dye Adsorbents for Wastewater Treatment. ACS OMEGA 2020; 5:5470-5479. [PMID: 32201839 PMCID: PMC7081645 DOI: 10.1021/acsomega.0c00076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 05/23/2023]
Abstract
New self-assembled hydrogel materials of poly(vinyl alcohol)/cyclodextrin-modified poly(acrylic acid)/azobenzene-modified poly(acrylic acid) (PVA/PAA-CD/PAA-Azo) were successfully prepared via host-guest interactions and hydrogen bonds. The as-prepared hydrogel materials were characterized by various techniques, including Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, ultraviolet spectroscopy, and specific surface area tests. The prepared hydrogels with different concentrations of PVA exhibited different network structures. In addition, ultraviolet (UV) light irradiation and temperature change induce a gel-sol phase transition in the hydrogel materials. The obtained hydrogel materials could be used as good adsorbents for two model organic dye molecules, which was mainly due to electrostatic interactions between methylene blue/rhodamine B (MB/RhB) and the gels in the adsorption process. In particular, the adsorption processes of the as-prepared hydrogel materials conformed to the pseudo-first-order model with a high correlation coefficient, which indicates that gel has a potential application in the field of wastewater purification.
Collapse
Affiliation(s)
- Nan Hou
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fan Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jiahui Bai
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jingxin Zhou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jie Hu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shufeng Liu
- Key
Laboratory of Optic-electric Sensing and Analytical Chemistry for
Life Science, Ministry of Education, College of Chemistry and Molecular
Engineering, Qingdao University of Science
and Technology, 53 Zhengzhou Road, Qingdao 266042, P. R. China
| | - Tifeng Jiao
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
15
|
Ran J, Li M, Zhang C, Xue F, Tao M, Zhang W. Synergistic Adsorption for Parabens by an Amphiphilic Functionalized Polypropylene Fiber with Tunable Surface Microenvironment. ACS OMEGA 2020; 5:2920-2930. [PMID: 32095714 PMCID: PMC7033986 DOI: 10.1021/acsomega.9b03765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/24/2020] [Indexed: 05/14/2023]
Abstract
A series of novel amphiphilic functionalized fibers with polarity tunable surface microenvironment were constructed by introducing hydrophilic polyamines and hydrophobic linear alkyl chain groups, aiming to selectively remove parabens from water. In addition, Fourier-transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, etc. were employed to determine the successful preparation of amphiphilic functionalized fibers. The adsorption experimental data indicated that the amphiphilic fibers showed excellent selectivity for parabens. In the amphiphilic fibers, hydrogen bonding and hydrophobic interaction existing in one molecular unit can effectively act together to enhance the interaction between substrate and fibers. Kinetic studies illustrated that the adsorption process was a physical adsorption with chemical characteristics. The overall initial adsorption rate together with the stepwise adsorption rate was quantified, and it is inferred that the hydrophobic interaction plays a leading role in the first step of the adsorption process. Moreover, the Freundlich model well described the sorption process with a maximum adsorption of 138.4 mg/g. What's more, the fiber still keeps excellent adsorption capacity (>90%) even after 10 adsorption/desorption cycles, which certifies it is an excellent adsorbent and can be utilized to remove paraben in practice.
Collapse
Affiliation(s)
- Jiaoru Ran
- Department
of Chemistry, School of Sciences, Tianjin
University, Tianjin 300072, P. R. China
| | - Mengmeng Li
- Department
of Chemistry, School of Sciences, Tianjin
University, Tianjin 300072, P. R. China
| | - Chenlu Zhang
- Department
of Chemistry, School of Sciences, Tianjin
University, Tianjin 300072, P. R. China
| | - Feifei Xue
- Department
of Chemistry, School of Sciences, Tianjin
University, Tianjin 300072, P. R. China
| | - Minli Tao
- Department
of Chemistry, School of Sciences, Tianjin
University, Tianjin 300072, P. R. China
- National
Demonstration Center for Experimental Chemistry & Chemical Engineering
Education, Tianjin University, Tianjin 300350, P. R. China
- E-mail:
| | - Wenqin Zhang
- Department
of Chemistry, School of Sciences, Tianjin
University, Tianjin 300072, P. R. China
| |
Collapse
|
16
|
Hou N, Wang R, Wang F, Bai J, Jiao T, Bai Z, Zhang L, Zhou J, Peng Q. Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Hou N, Wang R, Geng R, Wang F, Jiao T, Zhang L, Zhou J, Bai Z, Peng Q. Facile preparation of self-assembled hydrogels constructed from poly-cyclodextrin and poly-adamantane as highly selective adsorbents for wastewater treatment. SOFT MATTER 2019; 15:6097-6106. [PMID: 31271185 DOI: 10.1039/c9sm00978g] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembled hydrogel materials constructed from cyclodextrin polymer (P-CD)/adamantane-modified poly acrylic acid (PAA-Ad) were designed and prepared via host-guest interactions. It was observed that the prepared supramolecular hydrogels had an interconnected three-dimensional porous network. In addition, the obtained hydrogels showed a recovery performance and it was confirmed that the host-guest interactions between β-cyclodextrin and adamantane were the main driving force for the formation of the hydrogels. The mechanical properties of the hydrogels could be adjusted by varying the concentrations of PAA-Ad. In particular, the prepared supramolecular hydrogels exhibited superior performances in water purification. The results demonstrated that the hydrogels possessed different mechanisms in the adsorption of the four typical poisonous organic dye molecules used, including bisphenol A (BPA), 4-aminoazobenzene (N-Azo), methylene blue (MB), and rhodamine B (RhB). The hydrogels mainly adsorbed N-Azo by host-guest interaction and adsorbed BPA by host-guest interaction and hydrogen bond synergy. They also adsorbed MB and RhB by hydrogen bonding and electrostatic interaction.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China. and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Rui Geng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fan Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China. and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|
18
|
Thamizhanban A, Lalitha K, Nagarajan S. Self-Assembled Soft Materials for Energy and Environmental Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-04474-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
19
|
Zama Y, Yanai K, Takeshita J, Ishii A, Yamanaka M, Hasegawa M. Gelation and luminescence of lanthanide hydrogels formed with deuterium oxide. RSC Adv 2019; 9:1949-1955. [PMID: 35516109 PMCID: PMC9059775 DOI: 10.1039/c8ra08504h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/19/2018] [Indexed: 11/21/2022] Open
Abstract
Gel formations and efficient lanthanide luminescence appeared in deuterium oxide (D2O) medium instead of light water (H2O), and their solvation possibilities by using luminescence lifetimes were discussed. The lanthanide ions in the hydrogel of 1 obtained by H2O (abbreviated as H2O-Ln1; Ln = Eu, Tb, and Gd) in our previous report act as the coupling part between neighbor molecules for the bundle structure. Here, D2O also acts as a medium to form the lanthanide-hydrogel of 1, and increases intensities of luminescence for Tb, because a soft crystalline state reducing resonance thermal relaxation is realized. The gel-formation and luminescence band positions of Ln1 in D2O corresponded to those in H2O. From the observation of luminescence lifetimes in H2O and D2O, the number of coordinating water molecules on Eu and Tb were estimated to be around 3 or 4 for both. The luminescence intensity of Eu1 did not increase even in D2O, due to a blue shift of the excited triplet state of 1, as compared to that in H2O. Luminescent lanthanide hydrogels using the low-molecular weight gelator 1 in D2O were developed and evaluated quantitatively.![]()
Collapse
Affiliation(s)
- Yusuke Zama
- College of Science and Engineering
- Aoyama Gakuin University
- Sagamihara
- Japan
| | - Kazushige Yanai
- Department of Chemistry
- Faculty of Science
- Shizuoka University
- Shizuoka 422-8529
- Japan
| | - Juri Takeshita
- Department of Chemistry
- Faculty of Science
- Shizuoka University
- Shizuoka 422-8529
- Japan
| | - Ayumi Ishii
- College of Science and Engineering
- Aoyama Gakuin University
- Sagamihara
- Japan
- JST
| | - Masamichi Yamanaka
- Department of Chemistry
- Faculty of Science
- Shizuoka University
- Shizuoka 422-8529
- Japan
| | - Miki Hasegawa
- College of Science and Engineering
- Aoyama Gakuin University
- Sagamihara
- Japan
- Mirai Molecular Material Design Institute
| |
Collapse
|
20
|
Zhu J, Wang R, Geng R, Zhang X, Wang F, Jiao T, Yang J, Bai Z, Peng Q. A facile preparation method for new two-component supramolecular hydrogels and their performances in adsorption, catalysis, and stimuli-response. RSC Adv 2019; 9:22551-22558. [PMID: 35519444 PMCID: PMC9067143 DOI: 10.1039/c9ra03827b] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, we prepared a novel multifunctional two-component supramolecular hydrogel (T-G hydrogel) via two organic molecules in ethanol/water mixed solvents. In addition, we prepared gold nanoparticle/T-G (AuNPs/T-G) composite hydrogels using T-G hydrogel as a template for stabilizing AuNPs by adding HAuCl4 and NaBH4 during the heating and cooling process of T-G hydrogels. The morphology and microstructure of the as-prepared hydrogels were characterized using SEM, TEM, XRD, and FT-IR. The hydrogels prepared by solutions that contained different ethanol/water volume ratios exhibited different microstructures, such as sheets, strips, and rods. The obtained T-G hydrogels exhibited a sensitive response to pH changes in the process of sol–gel transformation and showed good adsorption properties for model organic dyes. In the presence of NaBH4, the obtained AuNP/T-G composite hydrogels exhibited the excellent catalytic performance for 4-nitrophenol (4-NP) degradation. Thus, the current research provides new clues in developing new multifunctional two-component supramolecular gel materials and exhibits potential applications for wastewater treatment. New two-component supramolecular hydrogels were prepared via a self-assembly process, demonstrating potential applications in adsorption and catalysis as well as sensor materials.![]()
Collapse
Affiliation(s)
- Junlin Zhu
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Rui Geng
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Xuan Zhang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Fan Wang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Jingyue Yang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Zhenhua Bai
- National Engineering Research Center for Equipment and Technology of Cold Strip Rolling
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| |
Collapse
|
21
|
Morita-Imura C, Sakurai Y, Uchiumi A, Shindo H. Ion-selective molecular inclusion of organic dyes into pH-responsive gel assemblies of zwitterionic surfactants. NEW J CHEM 2019. [DOI: 10.1039/c9nj01335k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pH-Responsive sol–gel transition of a surfactant gel took place along with ion-selective capture and release of dye molecules.
Collapse
Affiliation(s)
- Clara Morita-Imura
- Department of Chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo
- Japan
| | - Yuka Sakurai
- Department of Chemistry
- Faculty of Science
- Ochanomizu University
- Tokyo
- Japan
| | - Anna Uchiumi
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| | - Hitoshi Shindo
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| |
Collapse
|
22
|
Li H, Li Q, He Y, Zhang N, Xu Z, Wang Y. Facile Fabrication of Magnetic Metal-Organic Framework Composites for the Highly Selective Removal of Cationic Dyes. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E744. [PMID: 29735934 PMCID: PMC5978121 DOI: 10.3390/ma11050744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
In this work, we show a novel magnetic composite material Fe₃O₄@HPU-9 (HPU-9 = {[Cd(L)0.5(H₂O)](DMA)(CH₃CN)}n) (H₄L = 1,1′-di(3,5-dicarbonylbenzyl)-2,2′bimidazoline, DMA = N,N-dimethylacetamide) constructed by in situ growth of HPU-9 on Fe₃O₄, which has excellent absorption of cationic dyes from aqueous solution. The Fe₃O₄@HPU-9 particle possesses a well-defined core-shell structure consisting of a Fe₃O₄ core (diameter: 190 nm) and a HPU-9 shell (thickness: 10 nm). In the composite, the HPU-9 shell contributes to the capsulation of cationic dyes through electrostatic attractions between HPU-9 and cationic dyes, while the Fe₃O₄ core serves as magnetic particle. The maximum absorption capacity of Fe₃O₄@HPU-9 for R6G was 362.318 mg·g−1. The absorption kinetics data were well described by a psedo-second-order model (R² > 0.99), and the equilibrium data were also well fitted to Langmuir isotherm model (R² > 0.99). Our data confirmed that the proposed magnetic composite could be recycled and reused several times without centrifugal separation, making it more convenient, economic and efficient than common adsorbents.
Collapse
Affiliation(s)
- Huijun Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Qingqing Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yaling He
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Ning Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Zhouqing Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
23
|
Sawada H, Yamanaka M. Synthesis of a Bis-Urea Dimer and Its Effects on the Physical Properties of an Amphiphilic Tris-Urea Supramolecular Hydrogel. Chem Asian J 2018; 13:929-933. [PMID: 29512335 DOI: 10.1002/asia.201800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Indexed: 12/20/2022]
Abstract
The successful development of stiff supramolecular gels is an important goal toward their practical application. One approach to stiffen supramolecular gels is to introduce covalent cross-links. The bis-urea dimer 2, having a structure similar to that of the low-molecular-weight gelator 1, was synthesized. Supramolecular hydrogels were formed from mixtures of 1 and 2 in appropriate ratios, with 2 acting as a covalent cross-linker to connect the fibrous aggregates formed by the self-assembly of 1. The introduction of these covalent cross-links greatly influenced the dynamic viscoelasticity of the supramolecular hydrogels. In the supramolecular hydrogel of 1 mixed with 5 % 2, the storage modulus was 1.35 times higher than that of the supramolecular hydrogel of 1 alone, and the crossover strain was extended from 5 % to over 20 %. The supramolecular hydrogel of 1 and 2 was free-standing and supported 13 times its own weight.
Collapse
Affiliation(s)
- Hiroki Sawada
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Masamichi Yamanaka
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|