1
|
Ceramella J, Troiano R, Iacopetta D, Mariconda A, Pellegrino M, Catalano A, Saturnino C, Aquaro S, Sinicropi MS, Longo P. Synthesis of Novel N-Heterocyclic Carbene-Ruthenium (II) Complexes, “Precious” Tools with Antibacterial, Anticancer and Antioxidant Properties. Antibiotics (Basel) 2023; 12:antibiotics12040693. [PMID: 37107055 PMCID: PMC10135378 DOI: 10.3390/antibiotics12040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (Ru-NHC) complexes show interesting physico-chemical properties as catalysts and potential in medicinal chemistry, exhibiting multiple biological activities, among them anticancer, antimicrobial, antioxidant, and anti-inflammatory. Herein, we designed and synthesized a new series of Ru-NHC complexes and evaluated their biological activities as anticancer, antibacterial, and antioxidant agents. Among the newly synthesized complexes, RANHC-V and RANHC-VI are the most active against triple-negative human breast cancer cell lines MDA-MB-231. These compounds were selective in vitro inhibitors of the human topoisomerase I activity and triggered cell death by apoptosis. Furthermore, the Ru-NHC complexes’ antimicrobial activity was studied against Gram-positive and -negative bacteria, revealing that all the complexes possessed the best antibacterial activity against the Gram-positive Staphylococcus aureus, at a concentration of 25 µg/mL. Finally, the antioxidant effect was assessed by DPPH and ABTS radicals scavenging assays, resulting in a higher ability for inhibiting the ABTS•+, with respect to the well-known antioxidant Trolox. Thus, this work provides encouraging insights for further development of novel Ru-NHC complexes as potent chemotherapeutic agents endowed with multiple biological properties.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Rubina Troiano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Zhao F, Tan B, Li Q, Tan Q, Huang H. Progress in C-C and C-Heteroatom Bonds Construction Using Alcohols as Acyl Precursors. Molecules 2022; 27:8977. [PMID: 36558110 PMCID: PMC9781314 DOI: 10.3390/molecules27248977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acyl moiety is a common structural unit in organic molecules, thus acylation methods have been widely explored to construct various functional compounds. While the traditional Friedel-Crafts acylation processes work to allow viable construction of arylketones under harsh acid conditions, recent progress on developing acylation methods focused on the new reactivity discovery by exploiting versatile and easily accessible acylating reagents. Of them, alcohols are cheap, have low toxicity, and are naturally abundant feedstocks; thus, they were recently used as ideal acyl precursors in molecule synthesis for ketones, esters, amides, etc. In this review, we display and discuss recent advances in employing alcohols as unusual acyl sources to form C-C and C-heteroatom bonds, with emphasis on the substrate scope, limitations, and mechanism.
Collapse
Affiliation(s)
- Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Bin Tan
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qing Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qi Tan
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
3
|
Half‐Sandwich Ruthenium Complexes Bearing Hemilabile κ
2
‐(
C
,
S
)−Thioether‐Functionalized NHC Ligands: Application to Amide Synthesis from Alcohol and Amine. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Huang M, Liu J, Li Y, Lan XB, Su P, Zhao C, Ke Z. Recent advances on N-heterocyclic carbene transition metal complexes for dehydrogenative catalysis using alcohols. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Heravi MRP, Hosseinian A, Rahmani Z, Ebadi A, Vessally E. Transition‐metal‐catalyzed dehydrogenative coupling of alcohols and amines: A novel and atom‐economical access to amides. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran Tehran Iran
| | - Zahra Rahmani
- Department of Chemistry Tabriz Branch, Islamic Azad University Tabriz Iran
| | - Abdolghaffar Ebadi
- Department of Agriculture Jouybar Branch, Islamic Azad University Jouybar Iran
| | | |
Collapse
|
6
|
Harry NA, Ujwaldev SM, Aneeja T, Anilkumar G. A Comprehensive Overview of Perimidines: Synthesis, Chemical Transformations, and Applications. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201124141506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Perimidines are nitrogen-containing heterocyclic scaffolds with a wide range of
biological and material properties. Several synthetic transformations on perimidines afford
fused heterocycles. This review focuses on every aspect of perimidines, including different
synthetic procedures, reactions and applications, and covers the literature published up to the
year 2020, using more than 170 references.
Collapse
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| | - Sankuviruthiyil M. Ujwaldev
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O. Kottayam, Kerala-686560, India
| |
Collapse
|
7
|
Wang WQ, Wang ZQ, Sang W, Zhang R, Cheng H, Chen C, Peng DY. Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: The influence of catalyst loadings, ancillary and added ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Chen W, Egly J, Poblador-Bahamonde AI, Maisse-Francois A, Bellemin-Laponnaz S, Achard T. Synthesis, characterization, catalytic and biological application of half-sandwich ruthenium complexes bearing hemilabile (κ2-C,S)-thioether-functionalised NHC ligands. Dalton Trans 2020; 49:3243-3252. [PMID: 32096513 DOI: 10.1039/c9dt04825a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of cationic Ru(ii)(η6-p-cymene) complexes with thioether-functionalised N-heterocyclic carbene ligands have been prepared and fully characterized. Steric and electronic influence of the R thioether substituent on the coordination of the sulfur atom was investigated. The molecular structure of three of them has been determined by means of X-ray diffractrometry and confirmed the bidentate (κ2-C,S) coordination mode of the ligand. Interestingly, only a single diastereomer, as an enantiomeric couple, was observed in the solid state for complexes 1c, 1i and 1j. DFT calculations established a low energy inversion barrier between the two diastereomers through a sulfur pyramidal inversion pathway with R donating group while a dissociative/associative mechanism is more likely with R substituents that contain electron withdrawing group, thus suggesting that the only species observed by the 1H-NMR correspond to an average resonance position of a fluxional mixtures of isomers. All these complexes were found to catalyse the oxydant-free double dehydrogenation of primary amine into nitrile. Ru complex bearing NHC-functionalised S-tBu group was further investigated in a wide range of amines and was found more selective for alkyl amine substrates than for benzylamine derivatives. Finally, preliminary results of the biological effects on various human cancer cells of four selected Ru complexes are reported.
Collapse
Affiliation(s)
- Weiguang Chen
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR7504, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
9
|
Zhu YQ, Zhang R, Sang W, Wang HJ, Wu Y, Yu BY, Zhang JC, Cheng H, Chen C. Ligand-controlled palladium catalysis enables switch between mono- and di-arylation of primary aromatic amines with 2-halobenzothiazoles. Org Chem Front 2020. [DOI: 10.1039/d0qo00361a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mono- and di-arylation was switchable simply by varying the applied ligand from Xantphos to a pyridine-functionalized N-heterocyclic carbene (NHC) ligand.
Collapse
Affiliation(s)
- Yan-Qiu Zhu
- Department of Chemical Engineering and Food Science
- Hubei University of Arts and Science
- Xiangyang 441053
- P. R. China
| | - Rui Zhang
- Department of Chemical Engineering and Food Science
- Hubei University of Arts and Science
- Xiangyang 441053
- P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Hua-Jing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Yuan Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China)
- Ministry of Agriculture
- Beijing University of Agriculture
- Beijing 102206
- P. R. China
| | - Jun-Chao Zhang
- Department of Chemical Engineering and Food Science
- Hubei University of Arts and Science
- Xiangyang 441053
- P. R. China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science
- Hubei University of Arts and Science
- Xiangyang 441053
- P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| |
Collapse
|
10
|
Highly Efficient N-Heterocyclic Carbene/Ruthenium Catalytic Systems for the Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Effects of Ancillary and Additional Ligands. Catalysts 2019. [DOI: 10.3390/catal10010010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transition-metal-catalyzed alcohol dehydrogenation to carboxylic acids has been identified as an atom-economical and attractive process. Among various catalytic systems, Ru-based systems have been the most accessed and investigated ones. With our growing interest in the discovery of new Ru catalysts comprising N-heterocyclic carbene (NHC) ligands for the dehydrogenative reactions of alcohols, we designed and prepared five NHC/Ru complexes ([Ru]-1–[Ru]-5) bearing different ancillary NHC ligands. Moreover, the effects of ancillary and additional ligands on the alcohol dehydrogenation with KOH were thoroughly explored, followed by the screening of other parameters. Accordingly, a highly active catalytic system, which is composed of [Ru]-5 combined with an additional NHC precursor L5, was discovered, affording a variety of acid products in a highly efficient manner. Gratifyingly, an extremely low Ru loading (125 ppm) and the maximum TOF value until now (4800) were obtained.
Collapse
|
11
|
Wang W, Yuan Y, Miao Y, Yu B, Wang H, Wang Z, Sang W, Chen C, Verpoort F. Well‐defined N‐heterocyclic carbene/ruthenium complexes for the alcohol amidation with amines: The dual role of cesium carbonate and improved activities applying an added ligand. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wan‐Qiang Wang
- Department of Chemical Engineering and Food ScienceHubei University of Arts and Science 296 Longzhong Road Xiangyang 441053 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Yang Miao
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Bao‐Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of AgricultureBeijing University of Agriculture Beinong Road 7 Beijing 102206 P. R. China
| | - Hua‐Jing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Chemistry, Chemical Engineering and Life SciencesWuhan University of Technology Wuhan 430070 P. R. China
| | - Zhi‐Qin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russian Federation
- Ghent University Global Campus 119 Songdomunhwa‐Ro, Yeonsu‐Gu Incheon 21985 South Korea
| |
Collapse
|
12
|
Sang W, Gavi AJ, Yu BY, Cheng H, Yuan Y, Wu Y, Lommens P, Chen C, Verpoort F. Palladium-Catalyzed Ligand-Free C-N Coupling Reactions: Selective Diheteroarylation of Amines with 2-Halobenzimidazoles. Chem Asian J 2019; 15:129-135. [PMID: 31762212 DOI: 10.1002/asia.201901465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Indexed: 12/14/2022]
Abstract
2-Aminobenzimidazoles are widely present in a number of bioactive molecules. Generally, the preparation of these molecules could be realized by the mono-substitution of 2-halobenzimidazoles with amines. However, rare examples were reported for the di-substituted products and the selectivity of mono- vs. di-substitution was relatively low. Considering the potential values of the di-substituted products, we accomplished the first selective diheteroarylation of amines with 2-halobenzimidazoles. Notably, this Pd-catalyzed transformation was realized under ligand-free conditions. Accordingly, numerous target products were efficiently produced from various aromatic or aliphatic amines and 2-halobenzimidazoles. It was worth noting that two representative products were further confirmed by X-ray crystallography. More significantly, this catalytic process could be applied to the synthesis and discovery of new bioactive compounds, which demonstrated the synthetic usefulness of this newly developed approach.
Collapse
Affiliation(s)
- Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Ayao Jean Gavi
- Odisee/KU Leuven Technology Campus, Gebroeders de Smetstraat 1, 9000, Ghent, Belgium
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing University of Agriculture, Beinong Road 7, Beijing, 102206, P. R. China
| | - Hua Cheng
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, P. R. China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Yuan Wu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, P. R. China
| | - Petra Lommens
- Odisee/KU Leuven Technology Campus, Gebroeders de Smetstraat 1, 9000, Ghent, Belgium
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China.,National Research Tomsk Polytechnic University, Tomsk, 634050, Russian Federation.,Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 21985, Korea
| |
Collapse
|
13
|
Kaloğlu M. Half-sandwich ruthenium-carbene catalysts: Synthesis, characterization, and catalytic application in the N-alkylation of amines with alcohols. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yin G, Yan B, Chen J, Ji M. An efficient transformation of methyl ethers and nitriles to amides catalyzed by Iron(III) perchlorate hydrate. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01615-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Wu XJ, Wang HJ, Yang ZQ, Tang XS, Yuan Y, Su W, Chen C, Verpoort F. Efficient and phosphine-free bidentate N-heterocyclic carbene/ruthenium catalytic systems for the dehydrogenative amidation of alcohols and amines. Org Chem Front 2019. [DOI: 10.1039/c8qo00902c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient and phosphine-free bidentate NHC/Ru catalytic system was discovered for the dehydrogenative amide synthesis from alcohols and amines.
Collapse
Affiliation(s)
- Xuan-Jun Wu
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Hua-Jing Wang
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Zhao-Qi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Jiangsu 214122
- China
| | - Xiao-Sheng Tang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education) College of Optoelectronic Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Wei Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- National Research Tomsk Polytechnic University
| |
Collapse
|
16
|
Chen C, Miao Y, De Winter K, Wang HJ, Demeyere P, Yuan Y, Verpoort F. Ruthenium-Based Catalytic Systems Incorporating a Labile Cyclooctadiene Ligand with N-Heterocyclic Carbene Precursors for the Atom-Economic Alcohol Amidation Using Amines. Molecules 2018; 23:molecules23102413. [PMID: 30241354 PMCID: PMC6222456 DOI: 10.3390/molecules23102413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Transition-metal-catalyzed amide-bond formation from alcohols and amines is an atom-economic and eco-friendly route. Herein, we identified a highly active in situ N-heterocyclic carbene (NHC)/ruthenium (Ru) catalytic system for this amide synthesis. Various substrates, including sterically hindered ones, could be directly transformed into the corresponding amides with the catalyst loading as low as 0.25 mol.%. In this system, we replaced the p-cymene ligand of the Ru source with a relatively labile cyclooctadiene (cod) ligand so as to more efficiently obtain the corresponding poly-carbene Ru species. Expectedly, the weaker cod ligand could be more easily substituted with multiple mono-NHC ligands. Further high-resolution mass spectrometry (HRMS) analyses revealed that two tetra-carbene complexes were probably generated from the in situ catalytic system.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Yang Miao
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Kimmy De Winter
- Odisee/KU Leuven Technology Campus, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium.
| | - Hua-Jing Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Patrick Demeyere
- Odisee/KU Leuven Technology Campus, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium.
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian.
- Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Korea.
| |
Collapse
|
17
|
Feng CL, Yin GB, Yan B, Chen JQ, Ji M. FeCl2·4H2O catalyzed ritter reaction with nitriles and halohydrocarbons. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0585-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Cheng H, Xiong M, Zhang N, Wang H, Miao Y, Su W, Yuan Y, Chen C, Verpoort F. Efficient N‐Heterocyclic Carbene/Ruthenium Catalytic Systems for the Alcohol Amidation with Amines: Involvement of Poly‐Carbene Complexes? ChemCatChem 2018. [DOI: 10.1002/cctc.201800945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hua Cheng
- Department of Chemical Engineering and Food ScienceHubei University of Arts and Science Xiangyang 441053 P. R. China
| | - Mao‐Qian Xiong
- State Key Laborotory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P.R. China
| | - Ni Zhang
- Hubei University of Technology Engineering and Technology College Wuhan 430068 P. R. China
| | - Hua‐Jing Wang
- School of Chemistry, Chemical Engineering and Life SciencesWuhan University of Technology Wuhan 430070 P. R. China
| | - Yang Miao
- School of Materials Science and EngineeringWuhan University of Technology Wuhan 430070 P. R. China
| | - Wei Su
- School of Materials Science and EngineeringWuhan University of Technology Wuhan 430070 P. R. China
| | - Ye Yuan
- State Key Laborotory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P.R. China
| | - Cheng Chen
- State Key Laborotory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P.R. China
| | - Francis Verpoort
- State Key Laborotory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology Wuhan 430070 P.R. China
- School of Materials Science and EngineeringWuhan University of Technology Wuhan 430070 P. R. China
- National Research Tomsk Polytechnic University Tomsk 634050 Russia
- Ghent University Global Campus Incheon 21985 Korea
| |
Collapse
|
19
|
Huang L, Sayoga GV, Hollmann F, Kara S. Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactamization of Amino Alcohols. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02355] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lei Huang
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073 Hamburg, Germany
| | - Giovanni Vallian Sayoga
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073 Hamburg, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Selin Kara
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073 Hamburg, Germany
- Department of Engineering, Biological and Chemical Engineering Section, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus-C, Denmark
| |
Collapse
|
20
|
Feng C, Yin G, Yan B, Chen J, Ji M. Convenient synthesis of amides by Zn(ClO4)2·6H2O catalysed Ritter reaction with nitriles and halohydrocarbons. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15323343112324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A convenient and high yielding procedure for the synthesis of amides by the Ritter reaction of nitriles and halohydrocarbons in the presence of Zn(ClO4)2·6H2O as a highly stable, effective and available catalyst is described.
Collapse
Affiliation(s)
- Chengliang Feng
- Institute of Pharmaceutical Engineering, Jiangsu College of Engineering and Technology, Nantong, Jiangsu, 226000, P.R. China
| | - Guibo Yin
- Institute of Pharmaceutical Engineering, Jiangsu College of Engineering and Technology, Nantong, Jiangsu, 226000, P.R. China
| | - Bin Yan
- Institute of Pharmaceutical Engineering, Jiangsu College of Engineering and Technology, Nantong, Jiangsu, 226000, P.R. China
| | - Junqing Chen
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu 211189, P.R. China
| | - Min Ji
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, Jiangsu 211189, P.R. China
| |
Collapse
|