1
|
van Turnhout L, Congrave DG, Yu Z, Arul R, Dowland SA, Sebastian E, Jiang Z, Bronstein H, Rao A. Distance-Independent Efficiency of Triplet Energy Transfer from π-Conjugated Organic Ligands to Lanthanide-Doped Nanoparticles. J Am Chem Soc 2024; 146:22612-22621. [PMID: 39101932 PMCID: PMC11328174 DOI: 10.1021/jacs.4c07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Lanthanide-doped nanoparticles (LnNPs) possess unique optical properties and are employed in various optoelectronic and bioimaging applications. One fundamental limitation of LnNPs is their low absorption cross-section. This hurdle can be overcome through surface modification with organic chromophores with large absorption cross-sections. Controlling energy transfer from organic molecules to LnNPs is crucial for creating optically bright systems, yet the mechanisms are not well understood. Using pump-probe spectroscopy, we follow singlet energy transfer (SET) and triplet energy transfer (TET) in systems comprising different length 9,10-bis(phenylethynyl)anthracene (BPEA) derivatives coordinated onto ytterbium and neodymium-doped nanoparticles. Photoexcitation of the ligands forms singlet excitons, some of which convert to triplet excitons via intersystem crossing when coordinated to the LnNPs. The triplet generation rate and yield are strongly distance-dependent. Following their generation, TET occurs from the ligands to the LnNPs, exhibiting an exponential distance dependence, independent of solvent polarity, suggesting a concerted Dexter-type process with a damping coefficient of 0.60 Å-1. Nevertheless, TET occurs with near-unity efficiency for all BPEA derivatives due to the lack of other triplet deactivation pathways and long intrinsic triplet lifetimes. Thus, we find that close coupling is primarily important to ensure efficient triplet generation rather than efficient TET. Although SET is faster, we find its efficiency to be lower and more strongly distance-dependent than the TET efficiency. Our results present the first direct distance-dependent energy transfer measurements in LnNP@organic nanohybrids and establish the advantage of using the triplet manifold to achieve the most efficient energy transfer and best sensitization of LnNPs with π-conjugated ligands.
Collapse
Affiliation(s)
- Lars van Turnhout
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Daniel G Congrave
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Rakesh Arul
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Simon A Dowland
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ebin Sebastian
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Zhao Jiang
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Hugo Bronstein
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
2
|
Zhao T, Wu D, Zhang X, Lyu H. A fluorescent sensor based on single band bright red luminescent core-shell UCNPs for the high-sensitivity detection of glucose and glutathione. Anal Chim Acta 2024; 1295:342323. [PMID: 38355224 DOI: 10.1016/j.aca.2024.342323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
As the reliable biomarkers to evaluate the diabetes and neurological disease, sensitive and accurate detection of glucose and glutathione (GSH) in biological samples is necessary for early precaution and diagnosis of related-diseases. The single red upconversion nanoparticles (UCNPs) especially with core-shell structure can penetrate deeper biological tissues and cause less energy loss and thus have higher sensitivity and accuracy. Additionally, an enzyme-controlled cascade signal amplification (ECSAm) strategy will further enhance sensitivity. Herein, using single red UCNPs with core-shell structure as the luminescent material, a fluorescent sensor based on ECSAm was developed for the highly sensitive and accurate detection of glucose and GSH. Under the optimal conditions, the limits of detection for glucose and GSH by fluorescent method were 0.03 μM and 0.075 μM, separately. This assay was used to analyze the content of glucose and GSH in serum samples, and the obtained data was close to that of commercial blood glucose and GSH detection kit. The developed sensor platform based on single red UCNPs with core-shell structure and ECSAm can be a promising method for the accurate and sensitive detection of glucose and GSH in biological samples.
Collapse
Affiliation(s)
- Tianlu Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dongzhi Wu
- Department of Orthopedics Institute, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China; Department of Orthopedics Institute, Fuzhou Second Hospital, Fuzhou, 350007, China
| | - Xuecheng Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Jin Z, Jia W, Sheng W, Sun M, Ren L, Bai D, Wang S, Ya T, Wang Z, Tang X. Fluorescence immunoassay for simultaneous detection typical β-agonists in animal derived food using blue-green upconversion nanoparticles as labels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123253. [PMID: 37579663 DOI: 10.1016/j.saa.2023.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Common typical β-agonists mainly include ractopamine (RAC), salbutamol (SAL), and clenbuterol (CLB). In view of the harm to human health causes by the ingestion of animal derived food containing β-agonists, and a series of regulations have been issued to restrict the usage of β-agonists as growth promoters. In this work, a fluorescence immunoassay is developed for the simultaneous detection of typical β-agonists based on blue-green upconversion nanoparticles (UCNPs) combine with magnetic separation. Here, blue-green UCNPs act as a signal amplification source, and magnetic polystyrene microspheres (MPMs) act as an ideal separation medium. Based on a competitive form, capture probe competes (RAC-OVA@MPMs and SAL-OVA@MPMs) with targets to bind corresponding signal probe (anti-RAC antibody@NaYF4:Yb, Tm UCNPs and anti-SAL antibody@NaYF4:Yb, Er UCNPs). The fluorescence difference values of the competitive immune-complex obtained via magnetic separation at 483 nm and 550 nm are proportional to concentrations of RAC and SAL, respectively. The immunoassay has the wide detection linear range from 0.001 to 100 μg L-1, and the low limit of detection (LOD) is 5.04 × 10-4 μg L-1 for RAC, 1.97 × 10-4 μg L-1 for SAL, respectively. Meanwhile, use of antibody with same recognition ability for SAL and CLB makes that the fluorescence immunoassay can achieve simultaneous detection of three typical β-agonists (RAC, SAL, and CLB). This fluorescence immunoassay has good application value and practicability for simultaneous detection of typical β-agonists in animal derived food.
Collapse
Affiliation(s)
- Zixin Jin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wenjing Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Meiyi Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lishuai Ren
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Dongmei Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Tingting Ya
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xinshuang Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
4
|
Hlaváček A, Uhrová K, Weisová J, Křivánková J. Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities. Anal Chem 2023; 95:12256-12263. [PMID: 37552526 PMCID: PMC10448498 DOI: 10.1021/acs.analchem.3c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Massively parallel spectroscopy (MPS) of many single nanoparticles in an aqueous dispersion is reported. As a model system, bioconjugated photon-upconversion nanoparticles (UCNPs) with a near-infrared excitation are prepared. The UCNPs are doped either with Tm3+ (emission 450 and 802 nm) or Er3+ (emission 554 and 660 nm). These UCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlated with an ensemble spectra measurement, and the limit of detection (1.6 fmol L-1) and the linearity range (4.8 fmol L-1 to 40 pmol L-1) for bioconjugated UCNPs are estimated. MPS is used for observing the bioaffinity clustering of bioconjugated UCNPs. This observation is correlated with a native electrophoresis and bioaffinity assay on a microtiter plate. A competitive MPS bioaffinity assay for biotin is developed and characterized with a limit of detection of 6.6 nmol L-1. MPS from complex biological matrices (cell cultivation medium) is performed without increasing background. The compatibility with polydimethylsiloxane microfluidics is proven by recording MPS from a 30 μm deep microfluidic channel.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical
Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Kateřina Uhrová
- Institute of Analytical
Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Julie Weisová
- Institute of Analytical
Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Jana Křivánková
- Institute of Analytical
Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| |
Collapse
|
5
|
Tanner PA, Thor W, Zhang Y, Wong KL. Energy Transfer Mechanism and Quantitative Modeling of Rate from an Antenna to a Lanthanide Ion. J Phys Chem A 2022; 126:7418-7431. [PMID: 36200840 PMCID: PMC9589723 DOI: 10.1021/acs.jpca.2c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The excitation energy transfer (ET) pathway and
mechanism from an organic antenna to a lanthanide ion has been the
subject of discussion for many decades. In the case of europium (Eu3+), it has been suggested that the transfer originates from
the ligand singlet state or a triplet state. Taking the lanthanide
complex Eu(TTA)3(H2O)2 as an example, we have investigated the spectra and luminescence
kinetics, mainly at room temperature and 77 K, to acquire the necessary
experimental data. We put forward an experimental and theoretical
approach to measure the energy transfer rates from the antenna to
different Eu3+ levels using the Dexter formulation. We
find that transfer from the ligand singlet state to Eu3+ may account for the ET pathway, by combined electric dipole–electric
dipole (ED–ED) and ED-electric quadrupole (EQ) mechanisms.
The contributions from the triplet state by these mechanisms are very
small. An independent systems rate equation approach can effectively
model the experimental kinetics results. The model utilizes the cooperative
processes that take place on the metal ion and ligand and considers
S0, S1, and T1 ligand states in addition
to 7F0,1, 5D0, 5D1, and 5DJ (=5L6, 5D3, 5D2 combined) Eu3+ states. The triplet exchange ET rate is estimated to be
of the order 107 s–1. The observation
of a nanosecond risetime for the Eu3+ 5D1 level does not enable the assignment of the ET route or the mechanism.
Furthermore, the 5D1 risetime may be contributed
by several processes. Observation of its temperature dependence and
also that of the ground-state population can supply useful information
concerning the mechanism because the change in metal-ion internal
conversion rate has a greater effect than changes in singlet or triplet
nonradiative rates. A critical comparison is included for the model
of Malta employed in the online software LUMPAC and JOYSpectra. The
theoretical treatment of the exchange mechanism and its contribution
are now being considered.
Collapse
Affiliation(s)
- Peter A Tanner
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong S.A.R., P. R. China
| | - Waygen Thor
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong S.A.R., P. R. China
| | - Yonghong Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830017 Xinjiang, P. R. China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong S.A.R., P. R. China
| |
Collapse
|
6
|
Dhaini B, Wagner L, Moinard M, Daouk J, Arnoux P, Schohn H, Schneller P, Acherar S, Hamieh T, Frochot C. Importance of Rose Bengal Loaded with Nanoparticles for Anti-Cancer Photodynamic Therapy. Pharmaceuticals (Basel) 2022; 15:ph15091093. [PMID: 36145315 PMCID: PMC9504923 DOI: 10.3390/ph15091093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Rose Bengal (RB) is a photosensitizer (PS) used in anti-cancer and anti-bacterial photodynamic therapy (PDT). The specific excitation of this PS allows the production of singlet oxygen and oxygen reactive species that kill bacteria and tumor cells. In this review, we summarize the history of the use of RB as a PS coupled by chemical or physical means to nanoparticles (NPs). The studies are divided into PDT and PDT excited by X-rays (X-PDT), and subdivided on the basis of NP type. On the basis of the papers examined, it can be noted that RB used as a PS shows remarkable cytotoxicity under the effect of light, and RB loaded onto NPs is an excellent candidate for nanomedical applications in PDT and X-PDT.
Collapse
Affiliation(s)
- Batoul Dhaini
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, F-54000 Nancy, France
| | - Laurène Wagner
- Laboratory of Macromolecular Physical Chemistry, Université de Lorraine, LCPM-CNRS, F-54000 Nancy, France
| | - Morgane Moinard
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, F-54000 Nancy, France
| | - Joël Daouk
- Department of Biology, Signals and Systems in Cancer and Neuroscience, Université de Lorraine, CRAN-CNRS, F-54000 Nancy, France
| | - Philippe Arnoux
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, F-54000 Nancy, France
| | - Hervé Schohn
- Department of Biology, Signals and Systems in Cancer and Neuroscience, Université de Lorraine, CRAN-CNRS, F-54000 Nancy, France
| | - Perrine Schneller
- Department of Biology, Signals and Systems in Cancer and Neuroscience, Université de Lorraine, CRAN-CNRS, F-54000 Nancy, France
| | - Samir Acherar
- Laboratory of Macromolecular Physical Chemistry, Université de Lorraine, LCPM-CNRS, F-54000 Nancy, France
| | - Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Laboratory of Materials, Catalysis, Environment and Analytical Methods Laboratory (MCEMA), Faculty of Sciences, Lebanese University, Hadath 6573, Lebanon
| | - Céline Frochot
- Reactions and Chemical Engineering Laboratory, Université de Lorraine, LRGP-CNRS, F-54000 Nancy, France
- Correspondence:
| |
Collapse
|
7
|
Pilch-Wrobel A, Kotulska AM, Lahtinen S, Soukka T, Bednarkiewicz A. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200464. [PMID: 35355389 DOI: 10.1002/smll.202200464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio-imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo-bleaching, spectral cross-excitation, and emission bleed-through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay-based analysis of D-A interaction. In this work, the assessment of designed virtual core-shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy-transfer and energy migration between lanthanide ion dopants and how the architecture of core-shell UCNPs affects their performance as FRET donors to organic acceptor dyes.
Collapse
Affiliation(s)
- Aleksandra Pilch-Wrobel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Agata Maria Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| |
Collapse
|
8
|
Meng Z, Wu Y, Ren J, Li X, Zhang S, Wu S. Upconversion Nanoparticle-Integrated Bilayer Inverse Opal Photonic Crystal Film for the Triple Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12562-12570. [PMID: 35230796 DOI: 10.1021/acsami.1c25059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optical anticounterfeiting plays a vital role in information security because it can be recognized by the naked eye and is difficult to imitate. Herein, a hydrophilic modified upconversion nanoparticle (M-UCNP)-integrated bilayer inverse opal photonic crystal (IOPC) film was designed in which the luminescent M-UCNPs were deposited on the surface of the optimized bilayer structure with double photonic stop bands. The structure which can modulate light to produce structural colors can also enhance the upconversion luminescence (UCL) to improve the anticounterfeiting effect synergistically. On the one hand, the reflection colors from green to blue were observed in the specular angles on the front (540-layer) of the film. Meanwhile, the scattering colors under nonspecular angles from red to blue on the back (808-layer) appeared in the natural light. On the other hand, the bilayer structure in which the 808-layer functions as a "secondary excitation source" to improve the intensity of the excitation light on M-UCNPs and the 540-layer reflects the emission light of the M-UCNPs to enhance the UCL intensity endows the film with good night vision ability. Finally, the dual-mode structural colors and enhanced UCL of the patterned film work together to realize triple anticounterfeiting in banknotes.
Collapse
Affiliation(s)
- Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
9
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
10
|
Zhang P, Ke J, Tu D, Li J, Pei Y, Wang L, Shang X, Guan T, Lu S, Chen Z, Chen X. Enhancing Dye‐Triplet‐Sensitized Upconversion Emission Through the Heavy‐Atom Effect in CsLu
2
F
7
:Yb/Er Nanoprobes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jianxi Ke
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Jiayao Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yifan Pei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Le Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Tianyong Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Shan Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Key Laboratory of Nanomaterials State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
11
|
Xiao X, Zheng B, Zheng Q, Lu Z, Cen D, Cai X, Li X, Deng R. NIR light‐triggered peroxynitrite anion production via direct lanthanide‐triplet photosensitization for enhanced photodynamic therapy. J Mater Chem B 2022; 10:4501-4508. [DOI: 10.1039/d2tb00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxynitrite anion (ONOO−), a product derived from reaction between reactive oxygen species (ROS) and nitric oxide (NO), is considered to be a more toxic reactive specie than most ROS for...
Collapse
|
12
|
Zhang P, Ke J, Tu D, Li J, Pei Y, Wang L, Shang X, Guan T, Lu S, Chen Z, Chen X. Enhancing Dye-Triplet-Sensitized Upconversion Emission Through the Heavy-Atom Effect in CsLu 2 F 7 :Yb/Er Nanoprobes. Angew Chem Int Ed Engl 2021; 61:e202112125. [PMID: 34676648 DOI: 10.1002/anie.202112125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Lanthanide (Ln3+ )-doped upconversion (UC) nanoprobes, which have drawn extensive attention for various bioapplications, usually suffer from small absorption cross-sections and weak luminescence intensity of Ln3+ ions. Herein, we report the controlled synthesis of a new class of Ln3+ -doped UC nanoprobes based on CsLu2 F7 :Yb/Er nanocrystals (NCs), which can effectively increase the intersystem crossing (ISC) efficiency from singlet excited state to triplet excited state of IR808 up to 99.3 % through the heavy atom effect. By virtue of the efficient triplet sensitization of IR808, the optimal UC luminescence (UCL) intensity of IR808-modified CsLu2 F7 :Yb/Er NCs is enhanced by 1309 times upon excitation at 808 nm. Benefiting from the intense dye-triplet-sensitized UCL, the nanoprobes are demonstrated for sensitive assay of extracellular and intracellular hypochlorite with an 808-nm/980-nm dual excited ratiometric strategy.
Collapse
Affiliation(s)
- Peng Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jianxi Ke
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Jiayao Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yifan Pei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Le Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Tianyong Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shan Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
13
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
14
|
Adusumalli VNKB, Mrówczyńska L, Kwiatek D, Piosik Ł, Lesicki A, Lis S. Ligand-Sensitised LaF 3 :Eu 3+ and SrF 2 :Eu 3+ Nanoparticles and in Vitro Haemocompatiblity Studies. ChemMedChem 2021; 16:1640-1650. [PMID: 33527762 DOI: 10.1002/cmdc.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 11/11/2022]
Abstract
Luminescent Ln3+ -doped nanoparticles (NPs) functionalised with the desired organic ligand molecules for haemocompatibility studies were obtained in a one-pot synthesis. Chelated aromatic organic ligands such as isophthalic acid, terephthalic acid, ibuprofen, aspirin, 1,2,4,5-benzenetetracarboxylic acid, 2,6-pyridine dicarboxylic acid and adenosine were applied for surface functionalisation. The modification of the nanoparticles is based on the donor-acceptor character of the ligand-nanoparticle system, which is an alternative to covalent functionalisation by peptide bonding as presented in our recent report. The aromatic groups of selected ligands absorb UV light and transfer their excited-state energy to the dopant Eu3+ ions in LaF3 and SrF2 NPs. Herein, we discuss the structural and spectroscopic characterisation of the NPs and the results of haemocompatibility studies. Flow cytometry analysis of the nanoparticles' membrane-binding is also presented.
Collapse
Affiliation(s)
- Venkata N K B Adusumalli
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dorota Kwiatek
- Department of Molecular Probes and Prodrugs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Piosik
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Stefan Lis
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
15
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
16
|
Burgess L, Wilson H, Jones AR, Harvey P, Natrajan LS, Hay S. Covalent Attachment of Active Enzymes to Upconversion Phosphors Allows Ratiometric Detection of Substrates. Chemistry 2020; 26:14817-14822. [PMID: 32476171 PMCID: PMC7756657 DOI: 10.1002/chem.202001974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/14/2023]
Abstract
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Here, UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate proteins with surface-accessible cysteines. Variants of green fluorescent protein (GFP) and the flavoenzyme pentaerythritol tetranitrate reductase (PETNR) were then attached via maleimide-thiol coupling in order to allow energy transfer from the UCP to the GFP or flavin cofactor of PETNR, respectively. PETNR retains its activity when coupled to the UCPs, which allows reversible detection of enzyme substrates via ratiometric sensing of the enzyme redox state.
Collapse
Affiliation(s)
- Letitia Burgess
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Hannah Wilson
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Alex R. Jones
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Biometrology, Chemical and Biological Sciences, National Physical LaboratoryHampton RoadTeddington, MiddlesexTW11 0LWUnited Kingdom
| | - Peter Harvey
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- School of MedicineThe University of NottinghamUniversity ParkNottinghamNG7 2RDUnited Kingdom
| | - Louise S. Natrajan
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Sam Hay
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
17
|
Lin C, Xia Z, Zhang L, Chen X, Sun Q, Lu M, Yuan Z, Xie X, Huang L. Organic Linkers Enable Tunable Transfer of Migrated Energy from Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31783-31792. [PMID: 32539325 DOI: 10.1021/acsami.0c07683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy transfer plays a pivotal role in applying lanthanide-doped upconversion nanoparticles (UCNPs) as optical probes for diverse applications, particularly in biology and medicine. However, achieving tunable energy transfer from UCNPs to different acceptors remains a daunting challenge. Here, we demonstrate that using small organic molecules as linkers, the energy transfer from UCNPs to acceptors can be modulated. Specifically, organic linkers can enable efficient energy transfer from NaGdF4:Yb/Tm@NaGdF4 core-shell UCNPs to different acceptors. Moreover, the organic linker-mediated energy transfer can be facilely tuned by simply changing organic linkers. Based on our mechanistic investigations, the extraction of Gd3+ migrated energy from UCNPs by organic linkers and the subsequent energy injection from linkers to acceptors should be the two key processes for controlling the energy transfer. The tunable energy transfer from UCNPs allows us to design novel applications, including sensors and optical waveguides, based on UCNPs. These findings may open up new ways to develop UCNP-based bioapplications and advance further fabrication of hybrid upconversion nanomaterials.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhengyu Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiumei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiang Sun
- Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Min Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ze Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
18
|
Plunkett S, El Khatib M, Şencan İ, Porter JE, Kumar ATN, Collins JE, SakadŽić S, Vinogradov SA. In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing. NANOSCALE 2020; 12:2657-2672. [PMID: 31939953 PMCID: PMC7101076 DOI: 10.1039/c9nr07778b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Collapse
Affiliation(s)
- Shane Plunkett
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - İkbal Şencan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason E Porter
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Anand T N Kumar
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Sava SakadŽić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Zhang C, Ling X, Mei Q, He H, Deng S, Zhang Y. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide. Analyst 2020; 145:537-543. [PMID: 31763636 DOI: 10.1039/c9an01725a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensitive and on-site detection of sulfur dioxide (SO2) is in great demand in the fields of food safety and environmental protection. Here, we developed a novel upconversion nanoprobe based on the luminescence energy transfer mechanism for monitoring the atmospheric SO2 concentrations. The lanthanide emitters, Tm3+ ions, were optimized to be doped on the surface layer of the upconversion nanoparticles to improve their energy transfer efficiency by minimizing the distance between the emitters and the surface quencher, a cyanine dye. As a proof-of-concept, the optimal nanoprobe was utilized to detect SO2 water derivatives, bisulfite ions, exhibiting a linear luminescence increase in the range of 1 nM to 10 nM. Furthermore, we assembled the cyanine-modified upconversion nanoparticles onto a test paper, and used a smartphone-based detection platform to achieve portable and visual detection of SO2. The test paper showed a strong luminescence stability, homogeneity and good anti-interference. The limit of detection for SO2 gas was found to be 1 ng L-1. This novel upconversion test paper was also demonstrated to directly monitor the concentration of SO2 gas in atmosphere.
Collapse
Affiliation(s)
- Cuilan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xiao Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Qingsong Mei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Hongbo He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Shengsong Deng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore. and School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
Chen C, Tian R, Zeng Y, Chu C, Liu G. Activatable Fluorescence Probes for “Turn-On” and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjug Chem 2020; 31:276-292. [DOI: 10.1021/acs.bioconjchem.9b00734] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun Zeng
- Department of Pharmacy, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
21
|
Wu X, Yan P, Ren Z, Wang Y, Cai X, Li X, Deng R, Han G. Ferric Hydroxide-Modified Upconversion Nanoparticles for 808 nm NIR-Triggered Synergetic Tumor Therapy with Hypoxia Modulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:385-393. [PMID: 30556390 DOI: 10.1021/acsami.8b18427] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficacy of dynamic therapy for solid tumors suffers daunting challenges induced by tumor hypoxia. Herein, we report a biocompatible nanosystem containing Fe(OH)3-modified upconversion nanoparticles (UCNPs) for promoting synergetic chemo- and photodynamic therapy with the modulation of tumor hypoxia. In this system, UCNPs convert 808 nm near-infrared excitation to visible photon energy, which stimulates chlorin-e6 photosensitizers to generate toxic reactive oxygen species (ROS) by consumption of dissolved oxygen in cancer cells. Importantly, we employ Fe(OH)3 compounds to enable continuous oxygen generation in cancer cells and, meanwhile, induce extra ROS formation through the Fenton-like reaction. The system consequently improves the tumor treatment efficacy in vitro and in vivo. This study puts forward a novel combinatorial therapeutic platform for tumor microenvironment modulation and enhanced cancer therapy.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Peijian Yan
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| |
Collapse
|
22
|
Liu B, Meng Z, Wu S, Wu Y, Zhang S. Separating and enhancing the green and red emissions of NaYF 4:Yb 3+/Er 3+ by sandwiching them into photonic crystals with different bandgaps. NANOSCALE HORIZONS 2018; 3:616-623. [PMID: 32254114 DOI: 10.1039/c8nh00136g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational control of the multiple emission outputs and achieving single-band and strong luminescence of Ln3+ doped upconversion nanoparticles is highly desirable for their applications in sensor and display fields. Here, we designed a sandwich structure to separate and enhance the green and red emission of NaYF4:Yb3+/Er3+ simultaneously and realized pure strong green and red emissions. NaYF4:Yb3+/Er3+ nanocrystals were sandwiched between two layers of photonic crystals, which have bandgaps at 660 nm and 530 nm, respectively. The photonic crystal with a bandgap at 530 nm on top of the NaYF4:Yb3+/Er3+ layer can filter the green emission of NaYF4:Yb3+/Er3+, prohibiting its emission upward, and at the same time, enhancing its emission downward. Similarly, the photonic crystal with a bandgap at 660 nm can prohibit the transmission of the red emission, and at the same time enhance its reflection in the opposite direction. Consequently, enhanced green emission was observed from the bottom of the sandwich structure and enhanced red emission was observed from the top of the sandwich structure. Thus, the green and red emissions of NaYF4:Yb3+/Er3+ were separated and both of them were enhanced. On the other hand, when using a photonic crystal with a bandgap that overlapped with the excitation light of NaYF4:Yb3+/Er3+ nanoparticles, their emissions were all greatly enhanced. Our results suggest that photonic crystals are good candidates to separate and enhance the emissions of Ln3+ doped luminescent materials.
Collapse
Affiliation(s)
- Baoqi Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2018; 91:548-568. [DOI: 10.1021/acs.analchem.8b04049] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiming Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Qingsong Mei
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|