1
|
Sárkány Z, Figueiredo F, Macedo-Ribeiro S, Martins PM. NAGPKin: Nucleation-and-growth parameters from the kinetics of protein phase separation. Mol Biol Cell 2024; 35:mr1. [PMID: 38117593 PMCID: PMC10916857 DOI: 10.1091/mbc.e23-07-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
The assembly of biomolecular condensate in eukaryotic cells and the accumulation of amyloid deposits in neurons are processes involving the nucleation and growth (NAG) of new protein phases. To therapeutically target protein phase separation, drug candidates are tested in in vitro assays that monitor the increase in the mass or size of the new phase. Limited mechanistic insight is, however, provided if empirical or untestable kinetic models are fitted to these progress curves. Here we present the web server NAGPKin that quantifies NAG rates using mass-based or size-based progress curves as the input data. A report is generated containing the fitted NAG parameters and elucidating the phase separation mechanisms at play. The NAG parameters can be used to predict particle size distributions of, for example, protein droplets formed by liquid-liquid phase separation (LLPS) or amyloid fibrils formed by protein aggregation. Because minimal intervention is required from the user, NAGPKin is a good platform for standardized reporting of LLPS and protein self-assembly data. NAGPKin is useful for drug discovery as well as for fundamental studies on protein phase separation. NAGPKin is freely available (no login required) at https://nagpkin.i3s.up.pt.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Francisco Figueiredo
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Sandra Macedo-Ribeiro
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Pedro M. Martins
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
2
|
Figueiredo F, Sárkány Z, Silva A, Vilasboas-Campos D, Maciel P, Teixeira-Castro A, Martins PM, Macedo-Ribeiro S. Drug repurposing of dopaminergic drugs to inhibit ataxin-3 aggregation. Biomed Pharmacother 2023; 165:115258. [PMID: 37549460 DOI: 10.1016/j.biopha.2023.115258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.
Collapse
Affiliation(s)
- Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Sárkány Z, Rocha F, Bratek‐Skicki A, Tompa P, Macedo‐Ribeiro S, Martins PM. Quantification of Surface Tension Effects and Nucleation-and-Growth Rates during Self-Assembly of Biological Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301501. [PMID: 37279376 PMCID: PMC10427409 DOI: 10.1002/advs.202301501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Liquid-solid and liquid-liquid phase separation (PS) drives the formation of functional and disease-associated biological assemblies. Principles of phase equilibrium are here employed to derive a general kinetic solution that predicts the evolution of the mass and size of biological assemblies. Thermodynamically, protein PS is determined by two measurable concentration limits: the saturation concentration and the critical solubility. Due to surface tension effects, the critical solubility can be higher than the saturation concentration for small, curved nuclei. Kinetically, PS is characterized by the primary nucleation rate constant and a combined rate constant accounting for growth and secondary nucleation. It is demonstrated that the formation of a limited number of large condensates is possible without active mechanisms of size control and in the absence of coalescence phenomena. The exact analytical solution can be used to interrogate how the elementary steps of PS are affected by candidate drugs.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- IBMC − Instituto de Biologia Molecular e CelularUniversidade do PortoPorto4150–180Portugal
- i3S − Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4150–180Portugal
| | - Fernando Rocha
- LEPABE − Laboratory for Process Engineering Environment Biotechnology and EnergyFaculdade de Engenharia da Universidade do PortoPorto4200‐465Portugal
| | - Anna Bratek‐Skicki
- Jerzy Haber Institute of Catalysis and Surface ChemistryPolish Academy of SciencesNiezapominajek 8KrakowPL30239Poland
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologyBrussels1050 IxellesBelgium
- Structural Biology Brussels (SBB)Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsB‐1050Belgium
| | - Peter Tompa
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologyBrussels1050 IxellesBelgium
- Structural Biology Brussels (SBB)Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsB‐1050Belgium
- Institute of EnzymologyResearch Centre for Natural SciencesBudapest1117Hungary
| | - Sandra Macedo‐Ribeiro
- IBMC − Instituto de Biologia Molecular e CelularUniversidade do PortoPorto4150–180Portugal
- i3S − Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4150–180Portugal
| | - Pedro M. Martins
- IBMC − Instituto de Biologia Molecular e CelularUniversidade do PortoPorto4150–180Portugal
- i3S − Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4150–180Portugal
| |
Collapse
|
4
|
Indig RY, Landau M. Designed inhibitors to reduce amyloid virulence and cytotoxicity and combat neurodegenerative and infectious diseases. Curr Opin Chem Biol 2023; 75:102318. [PMID: 37196450 DOI: 10.1016/j.cbpa.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
The review highlights the role of amyloids in various diseases and the challenges associated with targeting human amyloids in therapeutic development. However, due to the better understanding of microbial amyloids' role as virulence factors, there is a growing interest in repurposing and designing anti-amyloid compounds for antivirulence therapy. The identification of amyloid inhibitors has not only significant clinical implications but also provides valuable insights into the structure and function of amyloids. The review showcases small molecules and peptides that specifically target amyloids in both humans and microbes, reducing cytotoxicity and biofilm formation, respectively. The review emphasizes the importance of further research on amyloid structures, mechanisms, and interactions across all life forms to yield new drug targets and improve the design of selective treatments. Overall, the review highlights the potential for amyloid inhibitors in therapeutic development for both human diseases and microbial infections.
Collapse
Affiliation(s)
- Rinat Yona Indig
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Centre for Structural Systems Biology (CSSB) and Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg, Germany.
| |
Collapse
|
5
|
Claesson K, Chew YL, Ecroyd H. Exploiting flow cytometry for the unbiased quantification of protein inclusions in Caenorhabditis elegans. J Neurochem 2022; 161:281-292. [PMID: 35170035 PMCID: PMC9541147 DOI: 10.1111/jnc.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
The aggregation of proteins into inclusions or plaques is a prominent hallmark of a diverse range of pathologies including neurodegenerative diseases. The quantification of such inclusions in Caenorhabditis elegans models of aggregation is usually achieved by fluorescence microscopy or other techniques involving biochemical fractionation of worm lysates. Here, we describe a simple and rapid flow cytometry-based approach that allows fluorescently tagged inclusions to be enumerated in whole worm lysate in a quantitative and unbiased fashion. We demonstrate that this technique is applicable to multiple C. elegans models of aggregation and importantly, can be used to monitor the dynamics of inclusion formation in response to heat shock and during ageing. This includes the characterisation of physicochemical properties of inclusions, such as their apparent size, which may reveal how aggregate formation is distinct in different tissues or at different stages of pathology or ageing. This new method can be used as a powerful technique for the medium- to high-throughput quantification of inclusions in future studies of genetic or chemical modulators of aggregation in C. elegans.
Collapse
Affiliation(s)
- Kristian Claesson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
| | - Yee Lian Chew
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
6
|
Abu-Hussien M, Viswanathan GK, Borisover L, Mimouni M, Engel H, Zayit-Soudry S, Gazit E, Segal D. Inhibition of amyloid fibrillation of γD-crystallin model peptide by the cochineal Carmine. Int J Biol Macromol 2020; 169:342-351. [PMID: 33347930 DOI: 10.1016/j.ijbiomac.2020.12.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/09/2023]
Abstract
γD-crystallin is among the most abundant γ-crystallins in the human eye lens which are essential for preserving its transparency. Aging, and environmental changes, cause crystallins to lose their native soluble structure and aggregate, resulting in the formation of cataract. Current treatment of cataract is surgical removal which is costly. Pharmaceutical therapeutics of cataract is an unmet need. We report a screen for small molecules capable of inhibiting aggregation of human γD-crystallin. Using a highly amyloidogenic hexapeptide model 41GCWMLY46 derived from the full-length protein, we screened a library of 68 anthraquinone molecules using ThT fluorescence assay. A leading hit, the cochineal Carmine, effectively reduced aggregation of the model GDC6 peptide in dose dependent manner. Similar effect was observed toward aggregation of the full-length γD-crystallin. Transmission electron microscopy, intrinsic Tryptophan fluorescence and ANS fluorescence assays corroborated these results. Insights obtained from molecular docking suggested that Carmine interaction with monomeric GDC6 involved hydrogen bonding with Ace group, Cys, Met residues and hydrophobic contact with Trp residue. Carmine was non-toxic toward retinal cells in culture. It also reduced ex vivo the turbidity of human extracted cataract material. Collectively, our results indicate that Carmine could be used for developing new therapeutics to treat cataract.
Collapse
Affiliation(s)
- Malak Abu-Hussien
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Guru Krishnakumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lia Borisover
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Shiri Zayit-Soudry
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, 69978 Tel Aviv, Israel; The Interdisciplinary Sagol School of Neurosciences, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
7
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Pinto MF, Figueiredo F, Silva A, Pombinho AR, Pereira PJB, Macedo-Ribeiro S, Rocha F, Martins PM. Major Improvements in Robustness and Efficiency during the Screening of Novel Enzyme Effectors by the 3-Point Kinetics Assay. SLAS DISCOVERY 2020; 26:373-382. [PMID: 32981414 DOI: 10.1177/2472555220958386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - António R Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Pedro M Martins
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|